
Investigating the Application of Moving Target Defenses to Network Security

Rui Zhuang∗, Su Zhang∗, Alex Bardas∗, Scott A. DeLoach∗, Xinming Ou∗, Anoop Singhal†

∗Kansas State University

{zrui, zhangs84, bardasag, sdeloach, xou}@ksu.edu

†National Institute of Standards and Technology

{psinghal}@nist.gov

Abstract—This paper presents a preliminary design for
a moving-target defense (MTD) for computer networks to
combat an attacker’s asymmetric advantage. The MTD system
reasons over a set of abstract models that capture the network’s
configuration and its operational and security goals to select
adaptations that maintain the operational integrity of the
network. The paper examines both a simple (purely random)
MTD system as well as an intelligent MTD system that uses
attack indicators to augment adaptation selection. A set of
simulation-based experiments show that such an MTD system
may in fact be able to reduce an attacker’s success likelihood.
These results are a preliminary step towards understanding
and quantifying the impact of MTDs on computer networks.

Keywords-moving target, adaptive security, network security

I. IN T RO D U C T I O N

In cyber space, time is on the attackers’ side; they have
time to study our networks to determine potential vulner­
abilities and choose the time of attack to cause maximal
impact. Then, once attackers acquire a privilege, they can
keep that privilege for a long time without being detected [1],
[2]. The static nature of current networks makes it easy to
attack and breach a system and to maintain illegal access
privileges for extended periods of time. To combat this
advantage, a promising new approach to network security
has been suggested called the moving target defense (MTD)
[3]. While there are many facets of MTD, for computer
networks, one can broadly interpret MTD as the fact that the
network constantly changes its configuration to increase the
difficulty of intrusion as well as maintain illegally acquired
privileges for long. By changing a system’s configuration
proactively, it can also avoid a number of key obstacles
that have made the traditional approaches less effective, such
as zero-day vulnerabilities and false positive from intrusion
detection systems (IDS). While promising, little research
has been done to show that MTDs can work effectively in
realistic networked systems.

There are a number of challenges to make an MTD system
work for computer networks. First and foremost, while a
network’s configuration can be made more dynamic through
constant changing, legitimate users still need to locate and
access needed services. The design of an MTD system must
ensure that even with the possibility of locating services

through compromised components, the overall attack surface
is still significantly reduced.

Typical security hardening measures focus on reducing
the size of the attack surface. However, alternative ways
to increase security include 1) increasing the “exploration
surface” by moving the attack surface and 2) adapting the
system’s attack surface by changing system components.
The larger the exploration surface and the smaller the attack
surface, the more difficult it will be for an attacker to
successfully penetrate a system. Both the frequency of these
adaptation and which aspects of the systems can be modified
determine the effectiveness of the moving target defense.
Ideally a set of objective analytical models and metrics,
parameterized by the above factors can be used to predict the
effectiveness of MTD systems to protect computer networks.
Such metrics would be difficult to calculate without a
detailed design of the MTD system, since they are highly
dependent on the runtime adaptation approaches used.

This paper presents a preliminary design for a moving-
target defense system for computer networks. After present­
ing the preliminary design in Section II, we show simulation
results of three different sets of experiments that show the
efficacy of our design in Section III. We then discuss these
results in Section IV followed by related work in Section V
and our final conclusions in Section VI.

II. MOV I N G TA R G E T DE F E N S E SY S T E M OV E RV I E W

The high-level architecture of our proposed MTD system
that adapts in a purely randomly fashion is shown inside the

Logical Security
Model

security state

Logical Mission
Model

. vulnerabilities .

. adaptations .

current statenew state

real time
events

configuration

Analysis Engine

Adaption
Engine

Configuration
Manager

. reflection .Physical Network

Figure 1. Moving Target Defense System Designs

mailto:psinghal}@nist.gov
mailto:xou}@ksu.edu

dashed box in Figure 1. This system produces random adap­
tations that do not inhibit correct system operation. The key
to making these random adaptations is that they are based
on a Logical Mission Model, which captures an abstract
view of the Physical Network’s current configuration along
with the functional requirements of the network. The driver
is the Adaption Engine, which orders random adaptations
to the network configuration at random intervals. These
adaptations are implemented by the Configuration Manager,
which controls the configuration of the Physical Network.

The architecture of an intelligent MTD system is the
complete system shown in Figure 1. The basic operation of
the random adaptation remains the same; however, we have
added an Analysis Engine that takes real-time events from
the Physical Network and the current configuration from the
Configuration Manager to determine possible vulnerabilities
and on-going attacks. The Adaptation Engine is extended
to look at the network’s current state along with its security
state, as captured in the Logical Security Model. The Logical
Security Model also consists of two runtime models: a goal
model and a model of system vulnerabilities. The goal model
captures the system’s security goals while the vulnerability
model is in the form of a novel Conservative Attack Graph
(CAG), which captures both known and unknown system
vulnerabilities and how an attacker might move through the
system to gain specific privileges.

A. Resource Mapping System

A significant problem with a “moving” system is how to
ensure that components in the system can locate other com­
ponents they depend upon for functionality, given constant
adaptations. We propose a Resource Mapping System (RMS)
to solve this problem. An RMS is ideally implemented as a
system communication enforcement component and knows
the location of all the other components that this component
depends upon. The RMS interacts with the Configuration
Manager, which pushes the up-to-date location information
of the various resources to the corresponding RMS’s.

For clarity, we use the terms roles to refer to network
services such as web servers, db servers, etc., and resources
to refer to the physical system components such as a host
with a concrete network address. Our initial design of the
RMS’s use in MTDs is shown in Figure 2. We assume each
mission-critical role is executed on a unique virtual machine
(VM), which has a dedicated RMS component to support
communications with other roles.

The limitation of the RMS becomes evident if attackers
compromise a critical role or VM. In this case, roles with
which the compromised role initiates communications can
be easily located and attacked since the compromised role’s
RMS knows their location. However, the attacker must
follow the exact communication pattern defined by the
Logical Mission Model; communication outside the pre­
defined paths can be easily detected. In addition, adaptation

Host 4

Host 1 Host 3Host 2

Configuration
Manager

VM
 GeoDB

RMS

VM
 Planner

VM
 AssetDB

Configuration Commands
Application Communications

RMS RMS

VM
 Email

RMS

VM
 TargetDB

RMS

adaptations

Figure 2. RMS System

can come to the rescue as, eventually, the VM of the
compromised role will be refreshed and the attacker will
lose any gained privilege.

B. Adaptation Engine

In traditional adaptive systems, the adaptation algorithm
would attempt to provide optimal or near optimal config­
urations [4]. The objective of this component is to pro­
duce effective configurations that are significantly different
in some aspect while limiting the costs of adaptation, or
essentially maximizing the entropy of the configurations.
Effective configurations must be functionally correct and
consistent, as well as having an tolerable impact on network
performance; the physical network and logical mission mod­
els are designed to allow the adaptation engine to predict
these impacts based on the capabilities of the resources
assigned to the system roles.

While the use of intelligent adaptations allows the MTD
to react to suspected intrusions instead of simply adapting
randomly, using intelligent adaptations in conjunction with
purely random adaptations allows the MTD to effectively
mitigate unpredicted attacks as well as mask the actions
of the intelligent control system. While the use of random
adaptations may not keep an attacker from learning all
aspects of how the MTD system responds, we predict
that it will make the learning process more difficult and
time consuming. Additionally, by incorporating responses to
suspected intrusions into adaptations, the system can react
to suspected intrusions much sooner than a normal intrusion
response system since even responses to false positives
will leave the system in an operational state with no more
overhead expended than for a random adaptation.

Since the Adaptation Engine is the main decision making
apparatus for the MTD, it must be able to control the various
modifiable aspects of the system such as the assignment of
roles to resources, IP addresses and ports, firewall settings,
applications (types, versions, etc.), VM types, and protocols
between roles.

Internet
Access

Planner
Compromised

Authorizer
Compromised

- ID IP and Port
- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID IP and Port
- ID Vulnerabilities
- Exploit
 Vulnerabilities

p
ro

b
ab

ility
o

f su
ccess

t - time

GeoDB
Compromised

TargetDB
Compromised

AssetDB
Compromised

- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID Vulnerabilities
- Exploit
 Vulnerabilities

Figure 3. Conservative Attack Graph

C. Analysis Engine

The purpose of the Analysis Engine is to infer the most
critical vulnerabilities and most likely attack activities so the
Adaptation Engine can make intelligent adaptation choices.
The key output of the Analysis Engine is the CAG that
captures known and unknown vulnerabilities and indicates
paths the attacker might take in attacking the system.

To analyze the effect of an MTD on computer networks,
we propose to use a conservative attack graph (CAG).
Assuming unknown vulnerabilities in CAG actually reduces
the size of the state model and makes it easier to apply
stochastic analysis. Modeling an attacker both gaining and
losing knowledge and privileges in CAG invalidates the
typical monotonicity assumption [5] of most attack-graph
work and requires a state-machine model, rather than tra­
ditional dependency attack graphs [6], [7], [8]. Previous
state-enumeration attack graphs [9], [10] have encountered
scalability challenges when applied to large networks [8];
however, these issues should be minimized due to the smaller
size of a CAG.

As an example, Figure 3 shows the CAG for the mission
planning system used in this paper. The topology of the
conservative attack graph is partially derived from the logical
mission model (not shown), where dependencies between
roles are explicitly captured. In normal operation, valid users
log in from the internet through the Authorizer node and
interact with the Planner node. The Planner node interacts
with the user by using data from the three database nodes,
GeoDB, TargetDB, and AssetDB. The only legitimate access
paths in the system are (1) from the Internet to the Autho­
rizer, (2) from the Authorizer to the Planner and (3) from the
Planner to the three database servers (AssetDB, TargetDB,
and GeoDB). The conservative attack graph captures these
logical access paths.

The conservative attack graph can also be viewed as a
state-transition system. Each arrow is annotated with a label

Internet Planner

0.4

0.4

0.4

0.6
Authorizer

0.6

GeoDB

TargetDB

AssetDB

Figure 4. Simplified Conservative Attack Graph for Simulation

describing the activities involved to move from one state
to the next. The effort involved in the activities can be
measured in various ways. For example, one can ascribe a
success-likelihood to time diagram to indicate how much
time it will take the attacker to reach a certain success
likelihood for a specific action.

III . EX P E R I M E N T S

To determine if our approach has merit, we developed
three high-level simulations to reflect the MTD approach dis­
cussed above. The first simulation, which we call the RMS-
only Simulation, was developed to evaluate the effectiveness
of our MTD approach using an existing network simulator
called NeSSi2, an open-source, discrete-event based network
security simulator with support for complex application-level
scenarios based on a simulated TCP/IP protocol stack [11].
In this simulation, we assumed the attacker had full knowl­
edge of the logical system configuration and only attacked
through the systems RMS system. In the second and third
simulations (which we term broad attack simulations), while
the attacker still has full knowledge of the logical system
configuration, the attacker also attempts attacks between
nodes not directly connected via the RMS system. For these
broad attack simulations, we developed a unique event-
driven simulator based on the experience of building our
first NeSSi2-based simulator. In the first two simulations, we
assumed only a basic MTD system that adapted randomly
at a specified time interval. However, in the last simulation,
we upgraded the MTD to an intelligent MTD system that
could detect when attacks were attempted outside the RMS
system.

An overview of the simulated network is shown in the
simplified CAG of Figure 4. The edges in the graph (with
the exception of the Internet to Authorizer edge) show the
valid paths supported by the RMS. In normal operation,
valid users log in through the Authorizer node and interact
with the Planner node. The Planner node interacts with the
user by using data from the three database nodes, GeoDB,
TargetDB, and AssetDB. We assume the attacker is located
at the Internet node and wishes to attack the TargetDB. We
made several assumptions to simplify our simulations.

1) Adaptations are applied at a specified time interval and
are random in nature (which is extended in the third

simulation to include intelligent adaptation).
2) Adaptations are limited to VM refreshing.
3) All VMs assigned to play a given role have the same

configuration except for its ID and IP address.
4) Once a node is compromised, the attacker can imme­

diately use the RMS to attack the next node.
5) Attack is restricted to the VMs playing the five roles.
6) The attacker knows immediately when a VM it has

compromised has been refreshed.

While these assumptions make the simulation easier, they
are also tilted toward the attacker since we do not use
advanced variability techniques (software versions, operating
systems, etc.), which would make compromises more diffi­
cult, and we assume the attacker knows the system design
and can immediately compromise the RMS.

A. RMS-only Attack Simulation

The three main components of the RMS-only testbed in­
clude the Defense component, the Attack component and the
Ground Truth component. The Defense component contains
the Configuration Manager, three physical resources (hosts)
and five active VMs. These five VMs can be assigned to
any hosts to play any of the five roles: Authorizer Planner,
TargetDB, AssetDB, or GeoDB. The Configuration Manager
is the core of the Defense component and combines the func­
tionality of the Configuration Manager and the Adaptation
Engine from Figure 1. At each adaptation time interval, the
Configuration Manager selects an adaptation by creating a
new task, tnew = {role, host, vmid, ip}, by (1) randomly
picking a role, (2) randomly picking a host, (3) generating a
new unique VM ID, and (4) randomly picking an unassigned
IP address. The Configuration Manager finds the associated
old task, told = {role, host', vmid', ip'}, within its set of
existing tasks, T , by matching role names. It then informs
the old task’s current host, host', to shut down the vmid'

VM and tells the new host, host, to start up a new VM
at address ip to play the role. Finally, the Configuration
Manager updates the Ground Truth component with the
current configuration.

The Attack component simulates the attacker and uses the
CAG shown in Figure 4 to allow it to know exactly where
to attack to achieve its goal, the TargetDB. Since the only
available attack path is to penetrate from Internet to the
Authorizer, the Authorizer to the Planner, and then from
Planner to TargetDB. The edge values in the CAG denote
the attacker’s probability of attack success between nodes
assuming both nodes remain static. As shown, the attacker
has a 40% chance of compromising the TargetDB if (1) it has
already compromised the Planner and (2) the Configuration
Manager does not adapt either the Planner or the TargetDB
during the time step. In a real system, these probabilities
would be based on the current probability of unknown and
known vulnerabilities of the roles.

CoreRouter10

CoreRouter11

AccessRouter13

AccessRouter0

FireWall

HostA

HostB HostC

Configuration
Manager

Attacker

Figure 5. Network Topology

Each simulated attack has several steps. First the current
CAG is retrieved from the Ground Truth component. Next,
after waiting Δt time intervals (which simulates the time
required to launch an attack), an updated version of the
CAG is retrieved and used to determine whether the attack
has succeeded or not. To determine attack success, we first
generate a random value and check to see if it’s less than
the CAG edge value for the current attack. If it does, the
simulation determines if the VMs on either the attacker’s
current node or the attacked node have been refreshed; if
either of them has been refreshed, the attack fails. If the
attacker’s current node was the VM that was refreshed, the
attacker is pushed back to its previous node. If neither were
refreshed, the attack succeeds.

The Ground Truth component maintains the current CAG.
The Ground Truth component receives adaptation informa­
tion from Configuration Manager and updates the CAG as
required. It also supplies the current CAG to the Attack
component when requested. The Attack component, Defense
component, and Ground Truth component are implemented
as NeSSi2 components along with the three host resources:
hostA, hostB, and hostC. These six components are loaded
onto the corresponding nodes as shown in Figure 5.

1) RMS-only Attack Simulation Results: We conducted
two different experiments (denoted 1a and 1b) to see how the
frequency of system adaptation would impact attack success.
Within each experiment, we included a control scenario
where no adaptation occurred. Attacks were launched from
the Internet towards the TargetDB. Each attack consisted
of single step attacks from the Internet to the Authorizer,
the Authorizer to the Planner, and from the Planner to the
TargetDB. Once the TargetDB was compromised, the attack
was counted as a successful. If a single step attack failed,
the attacker remained at its the current VM and retried the
attack until successful or the MTD system refreshed the VM.
In each experiment, we performed 1000 single step attacks

0

27

57

123

183

0
11

41

107

168

0
20
40
60
80

100
120
140
160
180
200

20 50 100 200 Static

Su
cc
es
sf
ul
 a
tt
ac
ks
 (p

er
 1
00
0
st
ep

s)

Adaptation Interval

Internet Planner

0.4

0.4

0.4

0.6
Authorizer

0.6

GeoDB

TargetDB

AssetDB

RMS attack route
Non-RMS attach route

Figure 6. Attack Success Against TargetDB (experiment 1a are shown by
green while experiment 1b are shown by gold bars)

with a fixed Δt between each single step attack of 100
time intervals. We ran the 1000 single step attacks against
an MTD system using 5 different time intervals (20, 50,
100, 200 and ∞) between each adaptation. Note that an ∞
adaptation interval corresponds to a static system.

In the experiment 1a, we assumed that in order to stop
a single step attack from succeeding, either a randomly
generated probability value is greater than the single step
edge associated probability in CAG, or the MTD must
refresh either the node under attack or the node from which
the attack was launched during the attack (100 time inter­
vals). Therefore, if there was a single step attack occurring
from the Planner to the TargetDB, it could be stopped if
either a randomly generated probability value is greater than
0.4, or the Planner, or TargetDB roles were refreshed by
the MTD system during the attack. However, the attacker
would remain on the network unless the actual VM it was
residing on was refreshed. The green bars in Figure 6 shows
the ability of the MTD to deter a successful attack from
the Internet through the Authorizer and the Planner to the
TargetDB. When the configuration is static, the number
of successful attacks (of each round of 1000 single step
attacks) is 183. Essentially, since no refreshing was going
on, this is maximum number of successful attacks given
the probabilities of single step attack success. Once the
MTD system is activated, the number of successful attacks
decreases. With an adaptation interval of 200, the number
of successful attacks is reduced to 123, while an interval
of 100 reduces it to 57, and an interval of 20 eliminates
all successful attacks against the TargetDB. Figure 6 clearly
shows that as the adaptation interval is reduced, the effect
of the MTD defense is clearly visible.

In the experiment 1b, we assumed that in order to stop an
attack from succeeding, the MTD could refresh any node on
the path to the node being attacked during the attack (100
time intervals). Thus in this version, if there was an single
step attack occurring from the Planner to the TargetDB,
it could be stopped if either the Authorizer, Planner, or
TargetDB roles were refreshed during the attack. The gold

Figure 7. Attack Success Probabilities in Broad Attack Simulation
(dashed lines have a probability of p/65,536 where p is the probability
of successfully attacking the role through the RMS)

bars in Figure 6 shows the ability of the MTD to deter a
completed attack from the Internet through the Authorizer
and the Planner to the TargetDB. When the configuration is
static, the number of completed attacks (out of 1000) is 168,
while an adaptation interval of 200 reduces that number to
107, 100 reduces it to 41, and an adaptation interval of 20
again eliminates all successful attacks against the TargetDB.
Again, Figure 6 clearly shows that as the adaptation interval
is reduced, the effect of the MTD defense is obvious.

B. Broad Attack Simulation System

In the broad attack simulation, the TargetDB is again
the attacker’s goal. However, we assume a more aggressive
attacker who automatically attacks each available node in the
network from each compromised VM using either the RMS
or by guessing an address and port of an available node.
Thus, the attacker is not limited to the RMS routes and the
attack routes form a completely bidirectionally connected
graph (except for the Internet node) as shown in Figure 7.
However, since we assume that the RMS is designed to not
respond to standard requests for mapping information, this
eliminates the attacker’s ability to automatically map the
address space.

The probabilities associated with each attack depend on
the node from which the attack originates and the node
being attacked. All attacks along the RMS maintain their
probabilities as shown in Figure 7. However, the dashed
lines, which denote attacks outside the RMS, have a much
lower probability due to the fact that the attacker must
guess the appropriate port for the attack to even have a
chance to succeed. Therefore, each dashed line has an attack
success probability of p/65, 536 where p is the probability
of successfully attacking that node through the RMS and
65536 is the port number space. Thus, all attacks against
the TargetDB from any node but the Planner would have a
0.4/65, 536 probability of success. While this might seem
like a very low probability, we believe that it is actually the
upper bound for such an attack. Since the VMs addresses
are being modified over time, the attacker will also have to

guess the VM address. However, since it is hard to determine
the specific range over which the addresses be assigned, we
assume the attacker can guess that in some way (again giving
the benefit to the attacker as opposed to the MTD system).

The simulation starts with the attacker at the Internet
node. From the Internet node, the attacker attempts to attack
each node in the network. The success of each attack is
determined based on the probability of success of the attack
and whether either the node being attacked or the node
from which the attack originated was refreshed during the
attack. If any of the attacks were successful, the newly
compromised nodes are used to mount new attacks. Again,
we assume we try to attack all uncompromised nodes from
each newly compromised node. This process continues until
the TargetDB becomes compromised, or the attacker has no
compromised nodes in the network (other than the Internet).

1) Broad Attack Simulation Results: We conducted 1000
runs (as opposed to 1000 single step attacks used in the RMS
only experiments) of the broad attack simulation against var­
ious frequencies of MTD adaptation to determine its impact
against attack success. Each run consisted of a sequence of
attacks starting with the initial attack from the Internet to the
Authorizer node and continuing until either (1) the attacker
did not have access to a compromised node in the network or
(2) the attacker successfully compromised the TargetDB. As
with the previous experiments, we included a static control
scenario where no adaptation occurred. In each experiment,
we again assumed a fixed time interval Δt = 100 between
each single step attack, and we ran the 1000 runs using 5
different adaptation intervals (20, 50, 100, 200 and ∞).

Figure 8 shows the ability of the MTD to deter an attack
from the Internet through the network to the TargetDB.
When the configuration is static, the number of completed
attacks (out of 1000) is 588, which is close the expected
60% rate given that the probability of compromising the
Authorizer node from the Internet is 0.6. This is due to the
fact that if the attacker compromised the Authorizer node on
the first attack, with a static network, the attacker will remain
on the Authorizer node attacking various network nodes until
the TargetDB is eventually compromised. We also noted that
no attacks outside the RMS actually succeeded, which was
expected given the extremely low probability of success.
When we introduced our random adaptations, we found
that an adaptation interval of 200 reduced the number of
successful attacks against the TargetDB to 421, an adaptation
interval of 100 reduced that number to 57, an adaptation
interval of 50 allowed only 24 successful attacks, and an
adaptation interval of 20 totally eliminated the ability of the
attacker to compromise the TargetDB. Once again, Figure 8
clearly shows that as the adaptation interval is reduced, the
effect of the MTD defense is clearly visible.

0	
 24	

216	

421	

588	

0	

100	

200	

300	

400	

500	

600	

700	

20	
 50	
 100	
 200	
 Sta-c	

Su
cc
es
s	
 a

/
ac
ks
	
 e
ac
h	

10

00
	
 ru

ns
	

Adapta8on	
 Interval	

Figure 8. Attack Success Against TargetDB for Broad Attack Simulation
Against Simple MTD

C. Intelligent MTD Simulation System

To help determine the effect of an intelligent MTD
system, we again used our broad attack simulation where
the attacker attempts to compromise the TargetDB. In fact,
the experimental setup was the same as for the broad attack
simulation presented above with one exception. To simulate
an intelligent MTD system, we assumed that whenever the
attacker attempted an attack outside the RMS, that such
an attack could trigger an alert based on some probability
of detection, pd. Since the RMS is set up to allow only
communication from known nodes on exactly one port, we
believe the implementation of such detectors would be both
practical and efficient. When detected, alerts would be sent
directly to the Adaptation Engine, which would request that
Configuration Manager immediately refresh the VM from
which the detected attack originated. In addition, random
adaptations continued to occur at the same predetermined
intervals Δt as used in the previous experiments.

1) Intelligent MTD Simulation Results: The result of the
intelligent MTD simulation is shown in Figure 9; note that
the graph is logarithmic to show proper detail. Since the
attacker indiscriminately attacks all nodes in the network
without necessarily attempting to go through the RMS
system, thus raising many alerts, the success rate of the
attacker is reduced significantly. At a 100% probability of
detection, the attacker is always immediately detected and
removed from the system, thus the attack success rate is
0%. However, even with lower pd values, the reduction in
attack success is significant. Even in the static case, with
a pd of 50%, the number of successful attacks is reduced
from 616 (61.2%) to 32 (3.2%). We believe this shows the
power of using an RMS with an intelligent MTD system.
The RMS minimizes the attack surface to such a degree that
attacks outside the RMS are easily detected and significantly
decreases the attacker’s likelihood of success.

When compared to the attack success rate of the simple
MTD (shown by the pd = 0% line in Figure 9), the intelligent
MTD performs significantly better. A slight data anomaly
is evident at adaptation interval 20 when pd is 15% and
25%; there is one successful attack while there are none

0 0 0 0 00

1 1

3
2

0

2

5

17

32

1

8

38

69
166

1

16

72

166 276

0

40

181

399 616

0

1

10

100

1000

Su
cc
e
ss
fu
l A

tt
ac
ks
 p
e
r
1
00
0

20 50 100 200 Static
Interval for Random Adaptations

pd
0%

15%

25%

50%

75%

100%

Figure 9. Attack Success Against TargetDB for Broad Attack Simulation Against Intelligent MTD

when pd = 0%. With more runs, we believe the data would
normalized. This does show that while the probability is ex­
tremely low, the attacker can succeed. While not conclusive,
this clearly shows the need for further research into the costs
and benefits of intelligent MTD systems.

IV. DI S C U S S I O N A N D FU T U R E WO R K

This paper presents our initial results into understanding
and quantifying the impact of MTD systems on computer
networks. Our end goal is to develop objective analytical
models to predict the effectiveness of MTD systems to
protect networks, taking into account attacker models and
the overhead of deploying the MTD system. The results
presented are promising and warrant continued research.

To quantify the effect of MTD on the attack and explo­
ration surfaces, we perform a simple analysis using only
IP address and ports. In the static system where each VM
instance performs a single function using a single port,
the minimum attack surface size would be 5. With our
MTD system, we add a host each for the Configuration
Manager and Adaptation Engine and open an extra port on
each VM for RMS and VM interactions. Thus, the attack
surface increases to (5 × 2) + (2 × 1) = 12. If we assume
our subnet has 256 addresses and each VM has 65,536
available ports, then the maximum exploration surface size
is 256 × 65, 536 = 16, 777, 216. The MTD’s exploration
surface size is equivalent to this maximum size. A static
system’s exploration area is much smaller as it uses standard
ports and thus database services can be identified by probing
around two dozen ports per VM; this reduces the effective
exploration surface size to 256 × 24 = 6, 144. Thus, the
increase in the exploration surface for a MTD system would
be 272,966%. Even with the increase in attack surface size,
the MTD’s vastly expanded exploration surface significantly
increases an attacker’s effort to find and attack the system.

A major issue that must be addressed is the cost of an
MTD system. In our simulations, the biggest cost drivers
were the cost of high quality detectors, in terms of pd,
and the random adaptation interval, Δt. There seems to
be a trade off between these two costs as, even with a
high Δt, the intelligent MTD was effective when pd >
50%. Other costs to be addressed include the overhead
of actually adapting the system (e.g., refreshing VMs),
automatic system configuration, and real time data collection
of the system’s operational and security states.

Another key issue is the design of the RMS system. We
made several assumptions about how the RMS operates and
what it will and will not allow. While no such system
currently exists, there are possibilities such as the Self-
shielding Dynamic Network Architecture [12], [13].

Finally, our results only show a potential for MTD to
be effective in stopping attacks against computer networks.
Obviously, simulation can only provide insights based on the
assumptions made. Therefore, we are currently developing
an MTD testbed using OpenStack [14] to show that our
MTD design can actually work. Building an MTD system in
a cloud infrastructure will be instrumental in demonstrating
the effectiveness of MTDs for computer networks as well
as validating analytical models.

Besides the security benefits discussed, using our MTD
system in a cloud infrastructure may provide additional
benefits. As the network expands, the system will know the
exact configurations and service dependencies, which could
significantly simplify life of the network administrator.

V. RE L AT E D WO R K

Most work on network-based MTDs focuses on low-level
techniques such as IP address shifting and network routing
and topology control. In the late 90s, BBN developed ap­
proaches to active network defense [15] that gave the illusion
that the addresses and port numbers used by the network’s

computers changed dynamically. While these techniques
significantly increased the attacker’s effort by making it
almost impossible to map the network [15], they required
all trusted computers be shielded by special processes and
had several application interoperability issues [16]. More
recently, a network address space randomization scheme to
thwart hit list worms [17], which configured DHCP servers
to expire the leases of hosts at various intervals to support
address randomization. In [18], an approach to dynamically
changing network packet routes so that observable traffic
patterns change was proposed to make network mapping
more difficult and to make packet sniffing less effective.

More recently, Al-Shaer has created a moving target
approach named Mutable Networks (MUTE) [19], which
also works by re-assigning host IP addresses randomly.
However, instead of mapping messages between hosts via
an RMS, MUTE synchronizes the address knowledge within
the network using cryptographic functions and secret keys.

VI. CO N C L U S I O N S

This paper presented a preliminary moving-target defense
system design. We conducted several experiments to study
the effects of randomly adapting one aspect of the system
(role to VM mapping) in reducing attacker’s success likeli­
hood. Our results showed, a reduction in attack success as
the rate of adaptation increased. In addition, we conducted
simulations that showed the effect of using knowledge about
when and where to adapt based on detecting attacks outside
the RMS. Even with less than perfect detectors, significant
improvements in network security can be made. The results
clearly show the potential for simple and intelligent MTD
systems and are first steps toward a comprehensive evalua­
tion and analysis framework for MTD systems.

Acknowledgment. This work was supported by the Air
Force Office of Scientific Research (FA9550-12-1-0106) and
U.S. National Science Foundation (1038366, 1018703).

RE F E R E N C E S

[1] Mandiant	 Intelligence Center, “APT1: Exposing one of
China’s cyber espionage units,” Mandiant, Tech. Rep., 2013.

[2] D.	 Barrett, “Hackers penetrate NASDAQ computers,”
http://online.wsj.com/article/, Feb. 2011.

[3] NITRD, “National Cyber Leap Year Summit 2009 co-chairs’
report, networking and information technology research and
development,” National Office for the Federal Networking and
Information Technology Research and Development Program,
Tech. Rep., Sep. 2009.

[4] C. Zhong and S. A. DeLoach.,	 “An investigation of reor­
ganization algorithms.” in the International Conference on
Artificial Intelligence (IC-AI’2006)., June 2006.

[5] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-
based network vulnerability analysis.” in Proceedings of 9th
ACM Conference on Computer and Communications Security,
nov 2002.

[6] S. Jajodia, S. Noel, and B. O’Berry., “Topological analysis
of network attack vulnerability.” Managing Cyber Threats:
Issues, Approaches and Challanges, 2003.

[7] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski,
K. Kratkiewicz, M. Artz, and R.K.Cunningham., “Evaluating
and strengthening enterprise network security using attack
graphs.” MIT Lincoln Laboratory, Tech. Rep., 2005.

[8] X. Ou, W. F. Boyer, and M. A. McQueen., “A scalable ap­
proach to attack graph generation.” in 13th ACM Conference
on Computer and Communications Security, Oct 2006.

[9] C.	 Phillips and L. P. Swiler, “Graph-based system for
network-vulnerability analysis.” in NSPW 98: Proceedings of
the 1998 Workshop on New Security Paradigms, 1998.

[10] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated generation and analysis of attack graphs.” in the
IEEE Symposium on Security and Privacy, may 2002.

[11] S. Schmidt, R. Bye, J. Chinnow, K. Bsufka, A. Camtepe,
and S. Albayrak, “Application-level simulation for network
security,” SIMULATION, vol. 86, pp. 311–330, 2010.

[12] J.	 Yackoski, P. Xie, H. Bullen, J. Li, and K. Sun, “A
self-shielding dynamic network architecture,” Proceedings of
IEEE MILCOM, pp. 1381–1386, 2011.

[13] J. Yackoski, J. Li, S. A. DeLoach, X. Ou, and A. Singhal,
“Mission-oriented moving target defense based on crypto­
graphically strong network dynamics,” in CSIIRW ’12: Eight
Annual Workshop on Cyber Security and Information Intelli­
gence Research. New York, USA: ACM, 2013.

[14] Openstack,	 “Openstack: The folsom release,”
http://www.openstack.org/software/, july 1, 2013.

[15] D. Kewley,	 R. Fink, J. Lowry, and M. Dean, “Dynamic
approaches to thwart adversary intelligence gathering,,” Pro­
ceedings of the DARPA Information Survivability Conference
& Exposition, pp. 176–185, 2001.

[16] J. Michalski, C. Price, E. Stanton, E. L. Chua, K. Seah,
W. Y. Heng, and T. C. Pheng, “Final report for the network
security mechanisms utilizing network address translation
LDRD project,” Sandia National Laboratories, Tech. Rep.
Technical Report SAND2002-3613, November 2002.

[17] S. Antonatos, P. Akritidis, E. Markatos, and K. Anagnostakis,
“Defending against hitlist worms using network address space
randomization,” Comput. Netw., vol. 51, no. 12, pp. 3471–
3490, Aug. 2007.

[18] M.	 D. Compton, “Improving the quality of service and
security of military networks with a network tasking order
process,” Ph.D. dissertation, Air Force Institute of Technol­
ogy, 2009.

[19] E. Al-Shaer, “Toward network configuration randomization
for moving target defense,” in Moving Target Defense, ser.
Advances in Information Security, S. Jajodia, A. K. Ghosh,
V. Swarup, C. Wang, and X. S. Wang, Eds. Springer New
York, 2011, vol. 54, pp. 153–159.

http://www.openstack.org/software
http://online.wsj.com/article

