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Abstract—This paper presents a preliminary design for 
a moving-target defense (MTD) for computer networks to 
combat an attacker’s asymmetric advantage. The MTD system 
reasons over a set of abstract models that capture the network’s 
configuration and its operational and security goals to select 
adaptations that maintain the operational integrity of the 
network. The paper examines both a simple (purely random) 
MTD system as well as an intelligent MTD system that uses 
attack indicators to augment adaptation selection. A set of 
simulation-based experiments show that such an MTD system 
may in fact be able to reduce an attacker’s success likelihood. 
These results are a preliminary step towards understanding 
and quantifying the impact of MTDs on computer networks. 
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I. IN T RO D U C T I O N 

In cyber space, time is on the attackers’ side; they have 
time to study our networks to determine potential vulner­
abilities and choose the time of attack to cause maximal 
impact. Then, once attackers acquire a privilege, they can 
keep that privilege for a long time without being detected [1], 
[2]. The static nature of current networks makes it easy to 
attack and breach a system and to maintain illegal access 
privileges for extended periods of time. To combat this 
advantage, a promising new approach to network security 
has been suggested called the moving target defense (MTD) 
[3]. While there are many facets of MTD, for computer 
networks, one can broadly interpret MTD as the fact that the 
network constantly changes its configuration to increase the 
difficulty of intrusion as well as maintain illegally acquired 
privileges for long. By changing a system’s configuration 
proactively, it can also avoid a number of key obstacles 
that have made the traditional approaches less effective, such 
as zero-day vulnerabilities and false positive from intrusion 
detection systems (IDS). While promising, little research 
has been done to show that MTDs can work effectively in 
realistic networked systems. 

There are a number of challenges to make an MTD system 
work for computer networks. First and foremost, while a 
network’s configuration can be made more dynamic through 
constant changing, legitimate users still need to locate and 
access needed services. The design of an MTD system must 
ensure that even with the possibility of locating services 

through compromised components, the overall attack surface 
is still significantly reduced. 

Typical security hardening measures focus on reducing 
the size of the attack surface. However, alternative ways 
to increase security include 1) increasing the “exploration 
surface” by moving the attack surface and 2) adapting the 
system’s attack surface by changing system components. 
The larger the exploration surface and the smaller the attack 
surface, the more difficult it will be for an attacker to 
successfully penetrate a system. Both the frequency of these 
adaptation and which aspects of the systems can be modified 
determine the effectiveness of the moving target defense. 
Ideally a set of objective analytical models and metrics, 
parameterized by the above factors can be used to predict the 
effectiveness of MTD systems to protect computer networks. 
Such metrics would be difficult to calculate without a 
detailed design of the MTD system, since they are highly 
dependent on the runtime adaptation approaches used. 

This paper presents a preliminary design for a moving-
target defense system for computer networks. After present­
ing the preliminary design in Section II, we show simulation 
results of three different sets of experiments that show the 
efficacy of our design in Section III. We then discuss these 
results in Section IV followed by related work in Section V 
and our final conclusions in Section VI. 

II. MOV I N G TA R G E T DE F E N S E SY S T E M OV E RV I E W 

The high-level architecture of our proposed MTD system 
that adapts in a purely randomly fashion is shown inside the 
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dashed box in Figure 1. This system produces random adap­
tations that do not inhibit correct system operation. The key 
to making these random adaptations is that they are based 
on a Logical Mission Model, which captures an abstract 
view of the Physical Network’s current configuration along 
with the functional requirements of the network. The driver 
is the Adaption Engine, which orders random adaptations 
to the network configuration at random intervals. These 
adaptations are implemented by the Configuration Manager, 
which controls the configuration of the Physical Network. 

The architecture of an intelligent MTD system is the 
complete system shown in Figure 1. The basic operation of 
the random adaptation remains the same; however, we have 
added an Analysis Engine that takes real-time events from 
the Physical Network and the current configuration from the 
Configuration Manager to determine possible vulnerabilities 
and on-going attacks. The Adaptation Engine is extended 
to look at the network’s current state along with its security 
state, as captured in the Logical Security Model. The Logical 
Security Model also consists of two runtime models: a goal 
model and a model of system vulnerabilities. The goal model 
captures the system’s security goals while the vulnerability 
model is in the form of a novel Conservative Attack Graph 
(CAG), which captures both known and unknown system 
vulnerabilities and how an attacker might move through the 
system to gain specific privileges. 

A. Resource Mapping System 

A significant problem with a “moving” system is how to 
ensure that components in the system can locate other com­
ponents they depend upon for functionality, given constant 
adaptations. We propose a Resource Mapping System (RMS) 
to solve this problem. An RMS is ideally implemented as a 
system communication enforcement component and knows 
the location of all the other components that this component 
depends upon. The RMS interacts with the Configuration 
Manager, which pushes the up-to-date location information 
of the various resources to the corresponding RMS’s. 

For clarity, we use the terms roles to refer to network 
services such as web servers, db servers, etc., and resources 
to refer to the physical system components such as a host 
with a concrete network address. Our initial design of the 
RMS’s use in MTDs is shown in Figure 2. We assume each 
mission-critical role is executed on a unique virtual machine 
(VM), which has a dedicated RMS component to support 
communications with other roles. 

The limitation of the RMS becomes evident if attackers 
compromise a critical role or VM. In this case, roles with 
which the compromised role initiates communications can 
be easily located and attacked since the compromised role’s 
RMS knows their location. However, the attacker must 
follow the exact communication pattern defined by the 
Logical Mission Model; communication outside the pre­
defined paths can be easily detected. In addition, adaptation 
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can come to the rescue as, eventually, the VM of the 
compromised role will be refreshed and the attacker will 
lose any gained privilege. 

B. Adaptation Engine 

In traditional adaptive systems, the adaptation algorithm 
would attempt to provide optimal or near optimal config­
urations [4]. The objective of this component is to pro­
duce effective configurations that are significantly different 
in some aspect while limiting the costs of adaptation, or 
essentially maximizing the entropy of the configurations. 
Effective configurations must be functionally correct and 
consistent, as well as having an tolerable impact on network 
performance; the physical network and logical mission mod­
els are designed to allow the adaptation engine to predict 
these impacts based on the capabilities of the resources 
assigned to the system roles. 

While the use of intelligent adaptations allows the MTD 
to react to suspected intrusions instead of simply adapting 
randomly, using intelligent adaptations in conjunction with 
purely random adaptations allows the MTD to effectively 
mitigate unpredicted attacks as well as mask the actions 
of the intelligent control system. While the use of random 
adaptations may not keep an attacker from learning all 
aspects of how the MTD system responds, we predict 
that it will make the learning process more difficult and 
time consuming. Additionally, by incorporating responses to 
suspected intrusions into adaptations, the system can react 
to suspected intrusions much sooner than a normal intrusion 
response system since even responses to false positives 
will leave the system in an operational state with no more 
overhead expended than for a random adaptation. 

Since the Adaptation Engine is the main decision making 
apparatus for the MTD, it must be able to control the various 
modifiable aspects of the system such as the assignment of 
roles to resources, IP addresses and ports, firewall settings, 
applications (types, versions, etc.), VM types, and protocols 
between roles. 
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C. Analysis Engine 

The purpose of the Analysis Engine is to infer the most 
critical vulnerabilities and most likely attack activities so the 
Adaptation Engine can make intelligent adaptation choices. 
The key output of the Analysis Engine is the CAG that 
captures known and unknown vulnerabilities and indicates 
paths the attacker might take in attacking the system. 

To analyze the effect of an MTD on computer networks, 
we propose to use a conservative attack graph (CAG). 
Assuming unknown vulnerabilities in CAG actually reduces 
the size of the state model and makes it easier to apply 
stochastic analysis. Modeling an attacker both gaining and 
losing knowledge and privileges in CAG invalidates the 
typical monotonicity assumption [5] of most attack-graph 
work and requires a state-machine model, rather than tra­
ditional dependency attack graphs [6], [7], [8]. Previous 
state-enumeration attack graphs [9], [10] have encountered 
scalability challenges when applied to large networks [8]; 
however, these issues should be minimized due to the smaller 
size of a CAG. 

As an example, Figure 3 shows the CAG for the mission 
planning system used in this paper. The topology of the 
conservative attack graph is partially derived from the logical 
mission model (not shown), where dependencies between 
roles are explicitly captured. In normal operation, valid users 
log in from the internet through the Authorizer node and 
interact with the Planner node. The Planner node interacts 
with the user by using data from the three database nodes, 
GeoDB, TargetDB, and AssetDB. The only legitimate access 
paths in the system are (1) from the Internet to the Autho­
rizer, (2) from the Authorizer to the Planner and (3) from the 
Planner to the three database servers (AssetDB, TargetDB, 
and GeoDB). The conservative attack graph captures these 
logical access paths. 

The conservative attack graph can also be viewed as a 
state-transition system. Each arrow is annotated with a label 
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describing the activities involved to move from one state 
to the next. The effort involved in the activities can be 
measured in various ways. For example, one can ascribe a 
success-likelihood to time diagram to indicate how much 
time it will take the attacker to reach a certain success 
likelihood for a specific action. 

III . EX P E R I M E N T S 

To determine if our approach has merit, we developed 
three high-level simulations to reflect the MTD approach dis­
cussed above. The first simulation, which we call the RMS-
only Simulation, was developed to evaluate the effectiveness 
of our MTD approach using an existing network simulator 
called NeSSi2, an open-source, discrete-event based network 
security simulator with support for complex application-level 
scenarios based on a simulated TCP/IP protocol stack [11]. 
In this simulation, we assumed the attacker had full knowl­
edge of the logical system configuration and only attacked 
through the systems RMS system. In the second and third 
simulations (which we term broad attack simulations), while 
the attacker still has full knowledge of the logical system 
configuration, the attacker also attempts attacks between 
nodes not directly connected via the RMS system. For these 
broad attack simulations, we developed a unique event-
driven simulator based on the experience of building our 
first NeSSi2-based simulator. In the first two simulations, we 
assumed only a basic MTD system that adapted randomly 
at a specified time interval. However, in the last simulation, 
we upgraded the MTD to an intelligent MTD system that 
could detect when attacks were attempted outside the RMS 
system. 

An overview of the simulated network is shown in the 
simplified CAG of Figure 4. The edges in the graph (with 
the exception of the Internet to Authorizer edge) show the 
valid paths supported by the RMS. In normal operation, 
valid users log in through the Authorizer node and interact 
with the Planner node. The Planner node interacts with the 
user by using data from the three database nodes, GeoDB, 
TargetDB, and AssetDB. We assume the attacker is located 
at the Internet node and wishes to attack the TargetDB. We 
made several assumptions to simplify our simulations. 

1) Adaptations are applied at a specified time interval and 
are random in nature (which is extended in the third 



simulation to include intelligent adaptation). 
2) Adaptations are limited to VM refreshing. 
3) All VMs assigned to play a given role have the same 

configuration except for its ID and IP address. 
4) Once a node is compromised, the attacker can imme­

diately use the RMS to attack the next node. 
5) Attack is restricted to the VMs playing the five roles. 
6) The attacker knows immediately when a VM it has 

compromised has been refreshed. 

While these assumptions make the simulation easier, they 
are also tilted toward the attacker since we do not use 
advanced variability techniques (software versions, operating 
systems, etc.), which would make compromises more diffi­
cult, and we assume the attacker knows the system design 
and can immediately compromise the RMS. 

A. RMS-only Attack Simulation 

The three main components of the RMS-only testbed in­
clude the Defense component, the Attack component and the 
Ground Truth component. The Defense component contains 
the Configuration Manager, three physical resources (hosts) 
and five active VMs. These five VMs can be assigned to 
any hosts to play any of the five roles: Authorizer Planner, 
TargetDB, AssetDB, or GeoDB. The Configuration Manager 
is the core of the Defense component and combines the func­
tionality of the Configuration Manager and the Adaptation 
Engine from Figure 1. At each adaptation time interval, the 
Configuration Manager selects an adaptation by creating a 
new task, tnew = {role, host, vmid, ip}, by (1) randomly 
picking a role, (2) randomly picking a host, (3) generating a 
new unique VM ID, and (4) randomly picking an unassigned 
IP address. The Configuration Manager finds the associated 
old task, told = {role, host', vmid', ip'}, within its set of 
existing tasks, T , by matching role names. It then informs 
the old task’s current host, host', to shut down the vmid' 

VM and tells the new host, host, to start up a new VM 
at address ip to play the role. Finally, the Configuration 
Manager updates the Ground Truth component with the 
current configuration. 

The Attack component simulates the attacker and uses the 
CAG shown in Figure 4 to allow it to know exactly where 
to attack to achieve its goal, the TargetDB. Since the only 
available attack path is to penetrate from Internet to the 
Authorizer, the Authorizer to the Planner, and then from 
Planner to TargetDB. The edge values in the CAG denote 
the attacker’s probability of attack success between nodes 
assuming both nodes remain static. As shown, the attacker 
has a 40% chance of compromising the TargetDB if (1) it has 
already compromised the Planner and (2) the Configuration 
Manager does not adapt either the Planner or the TargetDB 
during the time step. In a real system, these probabilities 
would be based on the current probability of unknown and 
known vulnerabilities of the roles. 
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Each simulated attack has several steps. First the current 
CAG is retrieved from the Ground Truth component. Next, 
after waiting Δt time intervals (which simulates the time 
required to launch an attack), an updated version of the 
CAG is retrieved and used to determine whether the attack 
has succeeded or not. To determine attack success, we first 
generate a random value and check to see if it’s less than 
the CAG edge value for the current attack. If it does, the 
simulation determines if the VMs on either the attacker’s 
current node or the attacked node have been refreshed; if 
either of them has been refreshed, the attack fails. If the 
attacker’s current node was the VM that was refreshed, the 
attacker is pushed back to its previous node. If neither were 
refreshed, the attack succeeds. 

The Ground Truth component maintains the current CAG. 
The Ground Truth component receives adaptation informa­
tion from Configuration Manager and updates the CAG as 
required. It also supplies the current CAG to the Attack 
component when requested. The Attack component, Defense 
component, and Ground Truth component are implemented 
as NeSSi2 components along with the three host resources: 
hostA, hostB, and hostC. These six components are loaded 
onto the corresponding nodes as shown in Figure 5. 

1) RMS-only Attack Simulation Results: We conducted 
two different experiments (denoted 1a and 1b) to see how the 
frequency of system adaptation would impact attack success. 
Within each experiment, we included a control scenario 
where no adaptation occurred. Attacks were launched from 
the Internet towards the TargetDB. Each attack consisted 
of single step attacks from the Internet to the Authorizer, 
the Authorizer to the Planner, and from the Planner to the 
TargetDB. Once the TargetDB was compromised, the attack 
was counted as a successful. If a single step attack failed, 
the attacker remained at its the current VM and retried the 
attack until successful or the MTD system refreshed the VM. 
In each experiment, we performed 1000 single step attacks 
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with a fixed Δt between each single step attack of 100 
time intervals. We ran the 1000 single step attacks against 
an MTD system using 5 different time intervals (20, 50, 
100, 200 and ∞) between each adaptation. Note that an ∞ 
adaptation interval corresponds to a static system. 

In the experiment 1a, we assumed that in order to stop 
a single step attack from succeeding, either a randomly 
generated probability value is greater than the single step 
edge associated probability in CAG, or the MTD must 
refresh either the node under attack or the node from which 
the attack was launched during the attack (100 time inter­
vals). Therefore, if there was a single step attack occurring 
from the Planner to the TargetDB, it could be stopped if 
either a randomly generated probability value is greater than 
0.4, or the Planner, or TargetDB roles were refreshed by 
the MTD system during the attack. However, the attacker 
would remain on the network unless the actual VM it was 
residing on was refreshed. The green bars in Figure 6 shows 
the ability of the MTD to deter a successful attack from 
the Internet through the Authorizer and the Planner to the 
TargetDB. When the configuration is static, the number 
of successful attacks (of each round of 1000 single step 
attacks) is 183. Essentially, since no refreshing was going 
on, this is maximum number of successful attacks given 
the probabilities of single step attack success. Once the 
MTD system is activated, the number of successful attacks 
decreases. With an adaptation interval of 200, the number 
of successful attacks is reduced to 123, while an interval 
of 100 reduces it to 57, and an interval of 20 eliminates 
all successful attacks against the TargetDB. Figure 6 clearly 
shows that as the adaptation interval is reduced, the effect 
of the MTD defense is clearly visible. 

In the experiment 1b, we assumed that in order to stop an 
attack from succeeding, the MTD could refresh any node on 
the path to the node being attacked during the attack (100 
time intervals). Thus in this version, if there was an single 
step attack occurring from the Planner to the TargetDB, 
it could be stopped if either the Authorizer, Planner, or 
TargetDB roles were refreshed during the attack. The gold 

Figure 7. Attack Success Probabilities in Broad Attack Simulation 
(dashed lines have a probability of p/65,536 where p is the probability 
of successfully attacking the role through the RMS) 

bars in Figure 6 shows the ability of the MTD to deter a 
completed attack from the Internet through the Authorizer 
and the Planner to the TargetDB. When the configuration is 
static, the number of completed attacks (out of 1000) is 168, 
while an adaptation interval of 200 reduces that number to 
107, 100 reduces it to 41, and an adaptation interval of 20 
again eliminates all successful attacks against the TargetDB. 
Again, Figure 6 clearly shows that as the adaptation interval 
is reduced, the effect of the MTD defense is obvious. 

B. Broad Attack Simulation System 

In the broad attack simulation, the TargetDB is again 
the attacker’s goal. However, we assume a more aggressive 
attacker who automatically attacks each available node in the 
network from each compromised VM using either the RMS 
or by guessing an address and port of an available node. 
Thus, the attacker is not limited to the RMS routes and the 
attack routes form a completely bidirectionally connected 
graph (except for the Internet node) as shown in Figure 7. 
However, since we assume that the RMS is designed to not 
respond to standard requests for mapping information, this 
eliminates the attacker’s ability to automatically map the 
address space. 

The probabilities associated with each attack depend on 
the node from which the attack originates and the node 
being attacked. All attacks along the RMS maintain their 
probabilities as shown in Figure 7. However, the dashed 
lines, which denote attacks outside the RMS, have a much 
lower probability due to the fact that the attacker must 
guess the appropriate port for the attack to even have a 
chance to succeed. Therefore, each dashed line has an attack 
success probability of p/65, 536 where p is the probability 
of successfully attacking that node through the RMS and 
65536 is the port number space. Thus, all attacks against 
the TargetDB from any node but the Planner would have a 
0.4/65, 536 probability of success. While this might seem 
like a very low probability, we believe that it is actually the 
upper bound for such an attack. Since the VMs addresses 
are being modified over time, the attacker will also have to 



guess the VM address. However, since it is hard to determine 
the specific range over which the addresses be assigned, we 
assume the attacker can guess that in some way (again giving 
the benefit to the attacker as opposed to the MTD system). 

The simulation starts with the attacker at the Internet 
node. From the Internet node, the attacker attempts to attack 
each node in the network. The success of each attack is 
determined based on the probability of success of the attack 
and whether either the node being attacked or the node 
from which the attack originated was refreshed during the 
attack. If any of the attacks were successful, the newly 
compromised nodes are used to mount new attacks. Again, 
we assume we try to attack all uncompromised nodes from 
each newly compromised node. This process continues until 
the TargetDB becomes compromised, or the attacker has no 
compromised nodes in the network (other than the Internet). 

1) Broad Attack Simulation Results: We conducted 1000 
runs (as opposed to 1000 single step attacks used in the RMS 
only experiments) of the broad attack simulation against var­
ious frequencies of MTD adaptation to determine its impact 
against attack success. Each run consisted of a sequence of 
attacks starting with the initial attack from the Internet to the 
Authorizer node and continuing until either (1) the attacker 
did not have access to a compromised node in the network or 
(2) the attacker successfully compromised the TargetDB. As 
with the previous experiments, we included a static control 
scenario where no adaptation occurred. In each experiment, 
we again assumed a fixed time interval Δt = 100 between 
each single step attack, and we ran the 1000 runs using 5 
different adaptation intervals (20, 50, 100, 200 and ∞). 

Figure 8 shows the ability of the MTD to deter an attack 
from the Internet through the network to the TargetDB. 
When the configuration is static, the number of completed 
attacks (out of 1000) is 588, which is close the expected 
60% rate given that the probability of compromising the 
Authorizer node from the Internet is 0.6. This is due to the 
fact that if the attacker compromised the Authorizer node on 
the first attack, with a static network, the attacker will remain 
on the Authorizer node attacking various network nodes until 
the TargetDB is eventually compromised. We also noted that 
no attacks outside the RMS actually succeeded, which was 
expected given the extremely low probability of success. 
When we introduced our random adaptations, we found 
that an adaptation interval of 200 reduced the number of 
successful attacks against the TargetDB to 421, an adaptation 
interval of 100 reduced that number to 57, an adaptation 
interval of 50 allowed only 24 successful attacks, and an 
adaptation interval of 20 totally eliminated the ability of the 
attacker to compromise the TargetDB. Once again, Figure 8 
clearly shows that as the adaptation interval is reduced, the 
effect of the MTD defense is clearly visible. 
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Figure 8. Attack Success Against TargetDB for Broad Attack Simulation 
Against Simple MTD 

C. Intelligent MTD Simulation System 

To help determine the effect of an intelligent MTD 
system, we again used our broad attack simulation where 
the attacker attempts to compromise the TargetDB. In fact, 
the experimental setup was the same as for the broad attack 
simulation presented above with one exception. To simulate 
an intelligent MTD system, we assumed that whenever the 
attacker attempted an attack outside the RMS, that such 
an attack could trigger an alert based on some probability 
of detection, pd. Since the RMS is set up to allow only 
communication from known nodes on exactly one port, we 
believe the implementation of such detectors would be both 
practical and efficient. When detected, alerts would be sent 
directly to the Adaptation Engine, which would request that 
Configuration Manager immediately refresh the VM from 
which the detected attack originated. In addition, random 
adaptations continued to occur at the same predetermined 
intervals Δt as used in the previous experiments. 

1) Intelligent MTD Simulation Results: The result of the 
intelligent MTD simulation is shown in Figure 9; note that 
the graph is logarithmic to show proper detail. Since the 
attacker indiscriminately attacks all nodes in the network 
without necessarily attempting to go through the RMS 
system, thus raising many alerts, the success rate of the 
attacker is reduced significantly. At a 100% probability of 
detection, the attacker is always immediately detected and 
removed from the system, thus the attack success rate is 
0%. However, even with lower pd values, the reduction in 
attack success is significant. Even in the static case, with 
a pd of 50%, the number of successful attacks is reduced 
from 616 (61.2%) to 32 (3.2%). We believe this shows the 
power of using an RMS with an intelligent MTD system. 
The RMS minimizes the attack surface to such a degree that 
attacks outside the RMS are easily detected and significantly 
decreases the attacker’s likelihood of success. 

When compared to the attack success rate of the simple 
MTD (shown by the pd = 0% line in Figure 9), the intelligent 
MTD performs significantly better. A slight data anomaly 
is evident at adaptation interval 20 when pd is 15% and 
25%; there is one successful attack while there are none 
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when pd = 0%. With more runs, we believe the data would 
normalized. This does show that while the probability is ex­
tremely low, the attacker can succeed. While not conclusive, 
this clearly shows the need for further research into the costs 
and benefits of intelligent MTD systems. 

IV. DI S C U S S I O N A N D FU T U R E WO R K 

This paper presents our initial results into understanding 
and quantifying the impact of MTD systems on computer 
networks. Our end goal is to develop objective analytical 
models to predict the effectiveness of MTD systems to 
protect networks, taking into account attacker models and 
the overhead of deploying the MTD system. The results 
presented are promising and warrant continued research. 

To quantify the effect of MTD on the attack and explo­
ration surfaces, we perform a simple analysis using only 
IP address and ports. In the static system where each VM 
instance performs a single function using a single port, 
the minimum attack surface size would be 5. With our 
MTD system, we add a host each for the Configuration 
Manager and Adaptation Engine and open an extra port on 
each VM for RMS and VM interactions. Thus, the attack 
surface increases to (5 × 2) + (2 × 1) = 12. If we assume 
our subnet has 256 addresses and each VM has 65,536 
available ports, then the maximum exploration surface size 
is 256 × 65, 536 = 16, 777, 216. The MTD’s exploration 
surface size is equivalent to this maximum size. A static 
system’s exploration area is much smaller as it uses standard 
ports and thus database services can be identified by probing 
around two dozen ports per VM; this reduces the effective 
exploration surface size to 256 × 24 = 6, 144. Thus, the 
increase in the exploration surface for a MTD system would 
be 272,966%. Even with the increase in attack surface size, 
the MTD’s vastly expanded exploration surface significantly 
increases an attacker’s effort to find and attack the system. 

A major issue that must be addressed is the cost of an 
MTD system. In our simulations, the biggest cost drivers 
were the cost of high quality detectors, in terms of pd, 
and the random adaptation interval, Δt. There seems to 
be a trade off between these two costs as, even with a 
high Δt, the intelligent MTD was effective when pd > 
50%. Other costs to be addressed include the overhead 
of actually adapting the system (e.g., refreshing VMs), 
automatic system configuration, and real time data collection 
of the system’s operational and security states. 

Another key issue is the design of the RMS system. We 
made several assumptions about how the RMS operates and 
what it will and will not allow. While no such system 
currently exists, there are possibilities such as the Self-
shielding Dynamic Network Architecture [12], [13]. 

Finally, our results only show a potential for MTD to 
be effective in stopping attacks against computer networks. 
Obviously, simulation can only provide insights based on the 
assumptions made. Therefore, we are currently developing 
an MTD testbed using OpenStack [14] to show that our 
MTD design can actually work. Building an MTD system in 
a cloud infrastructure will be instrumental in demonstrating 
the effectiveness of MTDs for computer networks as well 
as validating analytical models. 

Besides the security benefits discussed, using our MTD 
system in a cloud infrastructure may provide additional 
benefits. As the network expands, the system will know the 
exact configurations and service dependencies, which could 
significantly simplify life of the network administrator. 

V. RE L AT E D WO R K 

Most work on network-based MTDs focuses on low-level 
techniques such as IP address shifting and network routing 
and topology control. In the late 90s, BBN developed ap­
proaches to active network defense [15] that gave the illusion 
that the addresses and port numbers used by the network’s 



computers changed dynamically. While these techniques 
significantly increased the attacker’s effort by making it 
almost impossible to map the network [15], they required 
all trusted computers be shielded by special processes and 
had several application interoperability issues [16]. More 
recently, a network address space randomization scheme to 
thwart hit list worms [17], which configured DHCP servers 
to expire the leases of hosts at various intervals to support 
address randomization. In [18], an approach to dynamically 
changing network packet routes so that observable traffic 
patterns change was proposed to make network mapping 
more difficult and to make packet sniffing less effective. 

More recently, Al-Shaer has created a moving target 
approach named Mutable Networks (MUTE) [19], which 
also works by re-assigning host IP addresses randomly. 
However, instead of mapping messages between hosts via 
an RMS, MUTE synchronizes the address knowledge within 
the network using cryptographic functions and secret keys. 

VI. CO N C L U S I O N S 

This paper presented a preliminary moving-target defense 
system design. We conducted several experiments to study 
the effects of randomly adapting one aspect of the system 
(role to VM mapping) in reducing attacker’s success likeli­
hood. Our results showed, a reduction in attack success as 
the rate of adaptation increased. In addition, we conducted 
simulations that showed the effect of using knowledge about 
when and where to adapt based on detecting attacks outside 
the RMS. Even with less than perfect detectors, significant 
improvements in network security can be made. The results 
clearly show the potential for simple and intelligent MTD 
systems and are first steps toward a comprehensive evalua­
tion and analysis framework for MTD systems. 
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