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Radiative damping in waveguide-based ferromagnetic resonance measured via analysis
of perpendicular standing spin waves in sputtered permalloy films
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The damping α of the spin-wave resonances in 75, 120, and 200 nm thick permalloy films is measured via
vector-network-analyzer ferromagnetic resonance (VNA-FMR) in the out-of-plane geometry. Inductive coupling
between the sample and the waveguide leads to an additional radiative damping term. The radiative contribution
to the over-all damping is determined by measuring perpendicular standing spin waves (PSSWs) in the permalloy
films, and the results are compared to a simple analytical model. The damping of the PSSWs can be fully
explained by three contributions to the damping: the intrinsic damping, the eddy-current damping, and the
radiative damping. It was not necessary to invoke any additional damping contributions to explain the data.
Furthermore, a method to determine the radiative damping in FMR measurements with a single resonance is
suggested.
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I. INTRODUCTION

Excited magnetic moments relax towards their equilibrium
orientation due to damping. Several physical mechanisms
can cause damping. Many mechanisms, such as eddy-current
damping [1] in conducting ferromagnets, were already identi-
fied in the 1950s. More recently, enhanced damping due to spin
pumping [2] from a ferromagnet into an adjacent metallic layer
was identified, and remains a topic of ongoing investigation
[2–5]. Furthermore, wave-number-dependent contributions to
the damping caused by intralayer spin pumping have been
theoretically predicted [6,7] and currently are the subject of
experimental investigation [8,9]. Another damping process, re-
ferred to as radiative damping [10,11], has been known to exist
since the 1970s and is purely due to inductive coupling between
the sample and a microwave cavity in ferromagnetic resonance
(FMR) experiments. More recently, this phenomenon has been
further investigated in the context of strong magnon-photon
coupling experiments, with possible applications in quantum
information processing [12]. In these quantum-coherent ex-
periments, radiative damping was identified as a manifestation
of nonresonant magnon-photon coupling, when the FMR is
detuned from the cavity resonance, and it was determined that
such coupling [13] is indeed a source of extrinsic linewidth
in cavity-based FMR studies. When the FMR and cavity
resonance are coincident, the inductive coupling results in
much more complex behavior that is elucidated in Ref. [13].
In a radiative damping process, the time-varying magnetic
flux associated with the dynamic magnetization generates
microwave-frequency currents in the proximate conductor of
a microwave waveguide that carries the resultant power away
from the sample. This process is similar to that exploited in
eddy-current brakes and can be seen as a nonlocal counterpart
to the eddy-current damping in conductive ferromagnets.
To determine the magnitude of radiative damping in mag-
netic thin films, we used broadband vector-network-analyzer
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ferromagnetic resonance (VNA-FMR) to measure damping
in Ni0.8Fe0.2 permalloy (Py) films with thicknesses δ varying
between 75 nm and 200 nm. By use of the geometry sketched in
Fig. 1(a), we determine the total damping for each mode αn as
a sum of intrinsic damping αint, eddy-current damping αeddy,
and radiative damping αrad

n . We then perform a quantitative
analysis of the PSSW resonance fields, amplitudes, and
damping to extract the different contributions to αn. We find
that eddy-current damping is only significant for the lowest
order mode, the radiative damping strongly affects the first
five modes, and no additional contributions to the damping
are needed to explain the damping for spin waves up to
k = 1.75 × 106 cm−1. This last finding is in contrast with
reports of exchange mediated damping in both nanostructures
[9] and thin films [8].

II. DAMPING MODELS

According to Faraday’s law, the time-varying flux of a
precessing magnetic moment generates an ac voltage in any
conducting material that passes through the flux. As shown
in Fig. 1, spin-wave precession in a conducting ferromagnet
on top of a coplanar waveguide (CPW) induces ac currents
both in the ferromagnet and the CPW. The dissipation of
these eddy currents in the sample and the flow of energy
away in the CPW give rise to two contributions to magnetic
damping. Historically, the damping caused by eddy currents
in the ferromagnet αeddy is called eddy-current damping, while
the damping caused by the eddy currents in the waveguide is
called radiative damping αrad

n .
Eddy-current damping has been recognized since the 1950s

[1,14]. For the lowest order mode in FMR,

αeddy = C

16

γμ2
0Msδ

2

ρ
, (1)

with resistivity ρ, saturation magnetization Ms , vacuum
permeability μ0, gyromagnetic ratio γ , and sample thickness
δ (see the derivation in Appendix Sec. B). We introduce a
correction factor C to account for details of the eddy-current
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FIG. 1. (Color online) Schematic of the radiative damping pro-
cess. (a) M is the dynamic magnetization, H0 the applied external
field and B is the magnetic inductance due to the x component
mx of the dynamic magnetization. W is the width of the center
conductor, l the length of the sample on the waveguide, δ the thickness
of the sample, and d the spacing between sample and waveguide.
(b) Simplified depiction of the PSSW eigenfunctions qn for mode
numbers n = 0,1,2,3. We exemplarily used boundary conditions that
are completely pinned on one side and completely unpinned on the
other side. The origin of the coordinate system is indicated.

spatial profile. As shown in a later section, αeddy for all higher
order PSSW modes investigated in this study is much smaller
than that of the lowest order mode.

We now turn to the radiative damping αrad
n . We consider the

experimental geometry sketched in Fig. 1(a). A ferromagnetic
sample with thickness δ and length l is placed on top of the
center conductor of a coplanar waveguide with width W . The
sample dimension along x is much larger than W . The sample
and CPW are separated by a gap of height d. An external
dc magnetic field H0 is applied perpendicular to the sample
plane, and the spin-wave resonances (SWRs) are driven by
microwaves in the CPW at resonance frequency f . A fraction
of the ac magnetic induction B due to the dynamic component
of the magnetization mx

n(H0,I ; z) wraps around the center
conductor.

To derive a quantitative expression for αrad
n , we start by

calculating hx(I ; x,z), the x component of the driving field
hmw that is generated by an excitation current I in the center
conductor. We assume hx(I ; x,z) is uniform along y, but we
allow for variation along x and z. To estimate hx(I ; x,z) we

use the Karlqvist equation [15],

hx(I ; x,z)

= I

2πW

[
arctan

(
x + W/2

z

)
− arctan

(
x − W/2

z

)]
. (2)

This microwave field can excite PSSWs in the sample.
Schematic mode profiles for the fundamental mode (n = 0)
and the first three PSSW modes are shown in Fig. 1(b), where
we use unpinned boundary conditions at the top surface and
pinned boundary conditions at the bottom surface. As shown
in Fig. 1(b), the mode profiles describe a z dependence of the
dynamic magnetization components mx and my . In the perpen-
dicular geometry used here, |mx | = |my | everywhere, i.e., the
precession is circular. In what follows, we will only discuss
mx , the dynamics of which are inductively detected in the
measurement. For a PSSW with mode number n, m̃x

n(x,z) =
qn(z)χn〈qn(z)hx(I ; x,z)〉 where 〈 〉 denotes spatial averaging
in x and z directions, as defined in the Appendix, χn = χxx

n

is the diagonal component of the magnetic susceptibility of
the nth order mode, and −1 � qn(z) � 1 is the normalized
mode profile (eigenmode), an example of which is sketched
in Fig. 1(b) for n = 3. The mode inductance Ln is given by
Ln = χnL̃n, where, as detailed in the Appendix, we define a
normalized mode inductance L̃n for the nth PSSW mode,

L̃n = μ0l

I 2
〈qn(z)hx(I ; x,z)〉2Wδ. (3)

L̃n, as explained in the Appendix, no longer has any depen-
dence on magnetic field or excitation frequency. In the simplest
case of a uniform magnetization profile q0(z) = 1 (FMR
mode) and uniform excitation field hx(I ; x,z) = hx(I ; 0,0) =
I/(2W ), the normalized inductance is L̃n = μ0δl/(4W ).

The x component of the dynamic magnetization mx
n(x,z)

produces a net flux �n = χnI L̃n that threads around CPW
center conductor, leading to a power dissipation

Pn = ω2

2Z0
(χnI L̃n)2, (4)

where Z0 is the waveguide impedance (in our case Z0 = 50 
)
and ω is the angular frequency of the magnetization precession.
With Eq. (4), the power dissipation rate ( 1

T1
)
n

= Pn/En can be
calculated, where En is the energy of the dynamic component
of the magnetization derived in the Appendix. This power
flow from the sample to the waveguide leads to the radiative
damping contribution

αrad
n = 1

2ω

(
1

T1

)
n

= ηγμ0Ms

L̃n

Z0
, (5)

where η = δ/(4
∫ δ

0 dz|qn(z)|2) is a dimensionless parameter
that accounts for the actual mode profile in the sample; see
Appendix Sec. A. In the case of sinusoidal PSSWs, η = 1/2,
and for a completely uniform mode profile, i.e., qn(z) = 1,
η = 1/4. From Eq. (5), it is evident that αrad

n is proportional
to L̃n for n > 0. In the simplest case of uniform driving field
hx = I/(2W ), the radiative contribution is given by

αrad
0 = ηγμ0Ms

Z0
L̃n

∼= ηγMsμ
2
0δl

2Z0W
. (6)
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Note that the radiative damping thus depends on the sample
and waveguide dimensions, in particular linearly on the sample
thickness. Unlike eddy-current damping, αrad

n is independent
of the conductivity of the ferromagnet, hence this damping
mechanism is also operative in ferromagnetic insulators.

III. SAMPLES AND METHOD

We deposit Ta(3)/Py(δ)/Si3N4(3), Ta(3)/Py(δ)/Ta(5),
Ta(3)/Py(δ), and Py(δ) layers on 100 μm thick glass substrates
by dc magnetron sputtering at a Ar pressure of 0.7 Pa
(≈5 × 10−3 Torr) in a chamber with a base pressure of
less than 5 × 10−6 Pa (≈4 × 10−8 Torr); where δ = 75 nm,
120 nm and, 200 nm is the permalloy thickness. The Py
thickness was calibrated by x-ray reflectivity. We estimate that
the damping enhancement due to spin pumping into the Ta
layer is two orders of magnitude smaller than the intrinsic
damping of the permalloy layer for permalloy samples of
these thicknesses. We utilized a wide variety of capping and
seed layer combinations as a test of the robustness of the
radiative damping analysis to sample structure details. Prior to
deposition, the substrates are cleaned by Ar plasma sputtering.
The samples are coated with approximately 150 nm of PMMA

in order to avoid electrical shorting when samples are placed
directly on the CPW. The CPW has a center conductor width of
W = 100 μm. The SWR are characterized using field-swept
VNA-FMR [16–18] in the out-of-plane geometry (see Fig. 1)
with an external static magnetic field H0 applied perpendicular
to the sample plane. The excitation microwave field hx(x,y)
is applied over a frequency range of 10 to 30 GHz. A VNA
is used to measure the complex S21 transmission parameter
(the ratio of voltage applied at one end of the CPW to the
voltage measured at the other end) for the waveguide-sample
combination. The change in S21 due to the FMR of the
sample is then fitted with a linear superposition of complex
susceptibility tensor components χn,

�S21
n (H0) =

N∑
n=0

Anχn(H0)eiφn + linear background (7)

with the mode number n, phase φn, and dimensionless mode
amplitude An, as defined in the Appendix. A complex linear
background and offset is included in the fit. The susceptibility
components are derived from the Landau-Lifshitz equation
for the perpendicular geometry; in the fixed-frequency, swept-
field configuration, we obtain [19]

χ (H0)n = Ms
(
H0 − Meff

n − H ex
n

)
(
H0 − Meff

n − H ex
n

)2 − (H eff)2 − i�Hn

(
H0 − Meff

n − H ex
n

) (8)

with H eff = ω/(γμ0) and Meff
n = Ms − Hk , where Hk is the

perpendicular anisotropy, H ex
n is the exchange field (defined

below), and �Hn is the linewidth. An example of the resulting
fits for the complex S21 data is shown in Figs. 2(a) and 2(b).

IV. EXPERIMENT

We detect both even and odd PSSW modes. If we assume
a uniform excitation field and Dirichlet boundary conditions
(completely pinned), only odd modes would be detected.
Alternatively if we assume Neumann boundary conditions
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FIG. 2. (Color online) Measured S21 transmission parameter
(black circles) at 20 GHz and the multipeak-susceptibility fit (red
line) for the (a) real part and (b) imaginary part obtained with
the Ta(3)-Py(200)-Si3N4(3) sample. The first six modes are shown.
(c) The exchange field H ex

n (black squares) and exchange field fit,
from Eqs. (9) and (10) (red crosses) for all 13 detected modes plotted
as a function of the fitted wave numbers kn.

(completely unpinned), only the fundamental mode would be
detected.

Two effects can contribute to our ability to detect all the
PSSW modes. First, the excitation field profile might not
be uniform due to eddy-current shielding [20,21]. Second,
the interfacial boundary conditions might be asymmetrical,
as alluded to above. According to the criterion in Ref. [21],
the threshold sheet resistance for the onset of eddy-current
shielding at 20 GHz is 0.065 
/�. We estimate that the sheet
resistance for our 200 nm is in excess of 0.345 
/�, so we
conclude that the eddy current shielding is relatively weak for
our samples.

On the other hand, all modes are in principle detectable if
we assume asymmetric interfacial anisotropy. For the sake
of simplicity of the analysis, we will assume interfacial
anisotropy for a single interface, then use an optimization
approach to determine the wave number of the modes that
is consistent with such a hypothesis. However we must
emphasize that this approach does not provide a unique fit for
the measured distribution of resonance fields for the PSSW
spectrum, but simply allows us to accommodate the wave
number values required to be consistent with the measured
spectrum. As such, the fitted value for Ks is to be interpreted
as no more than a self-consistent value associated with only
one of many possible scenarios.

If we assume negligible magnetocrystalline perpendicular
anisotropy Hk, H res

n is related to the exchange field via

H res
n = H ex

n + Ms,

with H ex
n = 2Aex

μ0Ms
k2
n.

(9)
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Here, kn is the spin-wave wave vector, and Aex is the
exchange energy that is related to the spin-wave stiffness D

via D = 2AexgμB

Ms
. On the other hand, if we want to include

interfacial anisotropy for a single interface in our analysis, we
can numerically solve the transcendental equation [22](

−1

2
kna + Ks

2Aexkn

+ 1

)
tan(knδ) = Ks

2Aexkn

, (10)

where Ks is the interfacial anisotropy, and a = 0.3547 nm is
the lattice constant [23]. We minimize the residue of the fit
of Eq. (9) to H res

n with the fitting parameters Ms, Aex, and Ks

from Eq. (10) by use of a Levenberg-Marquardt optimization
algorithm. This yields the pairs (kn, H ex

n ) shown in Fig. 2(c)
for all modes.

From the fit, we obtain a saturation magnetization of
μ0Ms = 1.02 ± 0.01 T, in agreement with that determined
by magnetometry. The exchange stiffness constant of D =
3.22 ± 0.04 meV nm2 is close to a value of D ≈ 3.1 meV nm2

reported by Maeda et al. [24].
The exchange fit also yields a single surface anisotropy

Ks that depends on the cap and seed layer configura-
tions. For the Ta(3)-Py(δ)-Si3N4(3) sample series, Ks =
(5.1 ± 0.8) × 10−4 J/m2, while all the other samples have a
higher Ks of (7 ± 1) × 10−4 J/m2. All values for Ks are in the
range of other reported interface anisotropies for permalloy
layers of these thicknesses [25].

We now turn to the linewidth �Hn and the amplitude An

for the individual modes. The Gilbert damping parameter αn is
extracted from the slope of the linewidth vs frequency f plot
[9] shown in Fig. 3(a) via

�Hn = 4παnf

|γ |μ0
+ �H 0

n , (11)

where �H 0
n is the inhomogeneous broadening that gives rise

to a nonzero linewidth in the limit of zero frequency excitation.
The normalized inductance of the modes L̃n is extracted in a
similar fashion from the dependence of the mode amplitude
An on the frequency f ; see Fig. 3(b) and Eq. (A24) in the
Appendix:

An = 2πf
L̃n

Z0
+ A0

n, (12)

where A0
n is an offset for each mode. A0

n is a phenomenological
fitting parameter, which is not yet fully understood.

We plot αn and L̃n as a function of mode number n in
Fig. 3(c). The damping and the normalized mode inductance
are found to be proportional. In order to explore this correla-
tion, we plot αn vs L̃n in Fig. 4(a). Here, the data for αn vs
L̃n are linearly correlated for all modes except for n = 0, as
seen by the linear fit (line) to the data for n � 1. This is as
expected for the radiative damping model, as summarized in
Eq. (5). The additional damping of the fundamental mode is
interpreted as the result of eddy current damping, as quantified
in Eq. (1). In Fig. 4(b), we plot the residual �αn of the linear
fit shown in Fig. 4(a) for all modes. �αn is negligible for all
modes except for n = 0. We extract �αn=0 for all the samples
and plot �αn=0 vs δ2 in Fig. 4(c).

It appears that �αn=0 for all the samples scales linearly
with δ2, as expected from Eq. (1) for eddy current damping.
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FIG. 3. (Color online) Parameter extraction for the first 5 PSSWs
of the Ta(3)-Py(200)-Si3N4(3) sample. (a) Extraction of α from the
linewidth μ0�H (data points) via linear fits (lines). The data sets
in (a) have been vertically staggered to avoid overlap and improve
clarity. (b) Extraction of the normalized mode inductance L̃n (data
points) from the resonance amplitude An(f ) via linear fits (lines).
(c) αn (black squares) and L̃n (red crosses) for each PSSW.

Simultaneous weighted fits of all the data to Eq. (1) yields C =
0.4 ± 0.1. This value suggests a localization of eddy currents,
since C corrects for the eddy current distribution in the sample.

For the n � 1 modes, it can be shown [26] that α
eddy
n ∝

1/k2
n. The calculated wave vectors from Eq. (10) for the n = 1

mode of all the samples is at least a factor three larger than that
of the n = 0 mode and, therefore, the eddy current damping of
the n = 1 mode is predicted to be approximately one order of
magnitude smaller than the eddy current damping of the n = 0
mode. Thus, the eddy current damping of the n � 1 modes is
negligible to within the error bars, i.e., α

eddy
n ≈ 0 for n � 1.

This supports the analysis of the data in Ref. [8], which also
neglects the eddy current damping in higher order modes.

V. EXTRACTION OF THE RADIATIVE
CONTRIBUTION TO THE DAMPING

By use of Eq. (1) and our fitted value of C = 0.4, we
subtract the eddy current contribution to the damping of all
the n = 0 modes to obtain a corrected damping value α′

n=0,
where α′

n=0 = αn=0 − αeddy(C = 0.4). The corrected data for
all the modes are plotted in Fig. 5.

Figures 5(a)–5(c) group all data obtained for a set of
samples with identical Py thickness δ. The lines are linear
fits to Eq. (5). For each thickness δ, we observe a significant
correlation of αn and L̃n for all seed and cap layer configura-
tions, as expected for a radiative damping mechanism.

Furthermore, by use of Eq. (6) for the n = 0 mode of the
75 nm thick sample, using a value of η ≈ 0.46 as determined
in the Appendix, we estimate αrad

0 ≈ 0.00023
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The experimentally determined value is αrad
0 ≈ 0.00035 ±

0.0001. The deviance from the calculated value is possibly
due to nonuniformities of both the excitation field and
magnetization profile in Eq. (6), that requires the solution of
the integral in Eq. (A11). Nevertheless the estimated value for
αrad

0 is of the correct order of magnitude.
We determine the intrinsic damping αint from the L̃n =

0 intercept of the linear fits in Fig. 5. We plot αint for the
three values of δ in Fig. 6 (right scale). We find that αint

is approximately constant to within ±5% for all samples. In
addition the average value over all the film thicknesses is in
reasonable agreement with the previously reported value of
αint = 0.006 (dotted red line) [27].

The other fitting parameter η, extracted from the slope of αn

vs L̃n, as an average of all cap and seed layer configurations
for one thickness, is also plotted in Fig. 6 (left scale). The
fitted η displays robustness towards variation of the interface
conditions. For antisymmetric boundary conditions, η = 1/2
is expected, whereas for the uniform mode, η = 1/4.

We see that the fitted values lie exclusively within these
extremes, within error bars. The dependence of η on δ still
requires further investigation, but is beyond the scope of this
work.

There have been recent reports of a nonzero, wave-number-
dependent component of damping for both localized eigen-
modes in magnetic nanostructures [9] and PSSWs in thick
permalloy films [8]. Such exchange-mediated damping of the
form αex := Aexk

2 was originally predicted by Baryakhtar
based on symmetry alone [7]. Nembach et al. [9], obtained
a value of Aex = 1.4 nm2, whereas Li et al. [8], found
a much smaller value of 0.09 nm2. To determine whether
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FIG. 4. (Color online) Damping αn and inductance L̃n for the
Ta(3)-Py(200)-Si3N4(3) sample. (a) Linear fit of α to Eq. (5) where
the fit is constrained to the n= 1, 2, 3, 4 modes. (b) The residual
of the linear fit, showing enhanced damping for the zeroth-order
mode (black). We attribute the enhanced damping to an eddy
current contribution. (c) Enhanced zeroth-order mode damping for
all samples. The red line is a fit of the data points to the eddy current
damping model from Eq. (1).

wave-number-dependent damping is apparent in our data, we
examined the residual damping after subtraction of both the
intrinsic damping αint and the radiative damping αrad

n from all
the modes, as well as subtraction of the eddy current damping
from the n = 0 mode. The residual damping αres is plotted in
Fig. 7(b). Within the scatter of ∼= ± 0.001, αres does not have
any clear dependence on k. Thus, we obtain an upper bound of
Aex � 0.045 nm2 for this particular system, given the sensitiv-
ity of our measurements. For comparison, and to ensure that
the subtraction of αint, αrad

n , and αeddy did not hide a potential
k2 contribution, the measured damping of the Ta(3)-Py(200)-
Si3N4(3) sample up to the n = 10 mode is shown in Fig. 7(a).
For n � 5 the measured damping scatters around the deter-
mined intrinsic damping αint for the 200 nm samples and no
trend for higher mode numbers (larger k values) is discernible.

Tserkovnyak, et al., calculated the damping coefficient Aex

in terms of a microscopic model for the diffusive transport
of dissipative transverse spin current within a ferromagnetic
metal [6]. The theory in Ref. [6] framed the exchange-
mediated damping in terms of a so-called transverse spin
conductivity σ⊥,

Aex =
(

γ

Ms

)(
�

2e

)2

σ⊥, (13)
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FIG. 5. (Color online) Dependence of damping α on the nor-
malized mode inductance L̃n after correction for the eddy current
damping �α0 of the fundamental mode, plotted for all sample
configurations and different thicknesses: (a) δ = 200 nm, (b) δ =
120 nm, and (c) δ = 75 nm. The red lines are weighted linear fits to
the data by use of Eq. (5), that describes the radiative component of
the damping.
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the value of 1/2 for sinusoidal PSSWs with antisymmetric boundary
conditions (dashed black line) and the value of 1/4 for the uniform
mode (both dashed black lines). The intrinsic damping is close to
αint = 0.006 (dotted red line).

where

σ⊥ :=
(σ

τ

)(
τ⊥

(1 + (ωexτ⊥)2)

)
, (14)

with the exchange splitting �ωex, the conductivity σ , the spin
scattering time τ , and transverse spin scattering time τ⊥. Given
that �ωex ≈ 1 eV for permalloy, the maximum value for Aex

predicted by the transverse spin current theory is 0.001 nm2.
Insofar as we are not able to observe any such wave-number-
dependent damping down to the level of 0.045 nm2, our results
are consistent with the predictions of the microscopic theory.

While the theory in Ref. [6] is specific to the microscopic
mechanism of transverse spin accumulation in a metallic ferro-
magnet, the phenomenology of exchange mediated damping,
as described in Ref. [7], is not limited to such a microscopic
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FIG. 7. (a) The measured damping for the first 11 PSSW modes
of the Ta(3)-Py(200)-Si3N4(3) sample. The enhanced damping due to
inductive coupling to the waveguide and eddy currents in the sample
only affects the first five modes at wave vectors �7 × 105 cm−1.
(b) The residual damping for all detected modes for all samples is
plotted against their respective wave vector k. Within the scatter, no
dependence of the residual damping on k is observed.

mechanism. As such, it remains plausible that extrinsic
material-specific parameters that have not yet been identified
could be responsible for the previously reported values for
k2 damping. For example the presence of anti-symmetric
exchange at interfaces, i.e.,the Dzyaloshinskii-Moriya interac-
tion (DMI) could enhance the coupling between magnons and
Stoner-excitations insofar as the DMI gives rise to exotic spin
textures [28] with nanometer length scales, that are comparable
to the wavelength of low-energy Stoner excitations [29]. Thus,
the results of Ref. [9] could be a manifestation of interfacial
enhancement for Aex

n , insofar as the magnetic films used in
Ref. [9] are only 10 nm thick.

In another experiment, we further validate the presence of
radiative damping and demonstrate an alternative method to
determine αrad

n by varying the distance d in Eq. (2) between the
sample and waveguide. To this end, we insert a d = 200 μm
glass spacer between the sample and waveguide. By comparing
h(0,0) to h(0,200 μm) via Eq. (2), we estimate that the
insertion of the spacer decreases the microwave magnetic
field by about a factor of 6.25. Referring to Eq. (3), the
normalized mode inductance L̃n decreases by a factor of ∼=40.
To determine the effect of the reduced inductive coupling on
the radiative damping, we used VNA-FMR to measure the first
four modes for the Ta(3)-Py(120) sample with and without
the spacer. The effect of the spacer can be seen in the raw
data, reducing the linewidth of the first two modes measured
at 10 GHz in the 120 nm samples by approximately 0.6 mT,
well outside error bars. The fitted values of L̃n are shown in
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FIG. 8. (Color online) Measurement of the first four PSSWs of
the Ta(3)-Py(120) sample with and without a spacer inserted between
sample and CPW. (a) Inductance L̃n determined for the sample
directly on the CPW (black squares) and for a 200 μm spacer between
sample and CPW (red circles). (b) The resulting damping constants
for both measurements (same symbols and colors). The red line is
the previously extracted intrinsic damping αint. (c) The difference
between the damping with and without the spacer (black squares) is
in good agreement with the radiative damping from Fig. 5(b) (gray
line).
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Fig. 8(a). Indeed, L̃n decreases on average for all modes by
a factor of ∼=50 after inserting the spacer, in good agreement
with the predictions of Eqs. (2) and (3). Thus, we will assume
that αrad

n is negligible when the spacer is used. The data for the
damping αn of the first four modes, both with and without the
spacer, are plotted in Fig. 8(b). Indeed, the damping determined
from the measurement with the spacer layer (circles) is consis-
tently lower than that found without the spacer layer (squares).
The line in Fig. 8(b) is the previously determined intrinsic
damping. Under the assumption that the radiative damping
contribution is given by αrad

n = αn(d = 0) − αn(d = 200 μm),
we plot αrad

n vs L̃n(d = 0) in Fig. 8(c). The line is the calculated
αrad

n , where we used Eq. (5) with η = 0.35 and δ = 120 nm,
as determined from the fits in Fig. 5. Good agreement between
the calculated and measured values for αrad

n are obtained,
which demonstrates the self-consistency of our analysis. Of
great importance is that the spacer-layer approach can also be
used to determine the radiative contribution to the damping
in the absence of PSSWs (single resonance). By measuring
α for varying distance d between sample and waveguide and
extrapolating α to d → ∞, both the intrinsic value for the
damping and the radiative contribution can be determined,
under conditions where eddy-current damping is negligible.

VI. SUMMARY

In summary, we identified three contributions to the damp-
ing in PSSWs: intrinsic damping αint, eddy-current damping
αeddy, and radiative damping αrad

n . The latter exhibits a linear
dependence on the normalized sample inductance L̃n in a
waveguide based FMR measurement. We attribute this linear
dependence to radiative losses that stem from the inductive
coupling between the sample and the waveguide. The radiative
damping term is inherent to the measurement process and is
thus present in all FMR measurements. The radiative damping
constitutes up to 40% of the total damping of the spin-wave
modes in our 200 nm thick permalloy films. Furthermore, the
radiative damping can be already important for much lower
film thicknesses, in materials with small intrinsic damping.

As an example, the radiative damping calculated from
Eq. (6) for a 20 nm thick and 1 cm long sample of yttrium-
iron-garnet (YIG), measured on a 100 μm wide wave guide is
αrad

0 ≈ 1.26 × 10−4. When compared to the reported value for
the damping of α = 2.3 × 10−4 [30], we see that the radiative
part of the damping, among others [31], can substantially
influence the determination of αint. As such, careful analysis
of α vs inductance is required to isolate the radiative damping
contribution.
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APPENDIX A: DERIVATION OF αrad
n

In this section, we derive model equations for the nor-
malized mode inductance L̃n, mode amplitude An and the
radiative damping αrad

n . We are restricting our analysis to the
case of ideal perpendicular standing spin-wave modes that only

vary through the film thickness without any lateral variation.
It is assumed that the excitations are in the perpendicular
geometry with the magnetization saturated out of the film
plane. As such, the response to the z-coordinate component
of the microwave excitation field above the waveguide can be
neglected. In addition, the magnetization precession is always
circular. As such, the magnetization dynamics in the x and y

coordinates in response to the microwave field generated by
the waveguide are degenerate, outside of a phase factor of π/2.
This eliminates the need to explicitly consider the full Polder
susceptibility tensor in the calculation of the sample response
to the excitation field. The sample dimensions are l along the
waveguide direction, δ in thickness, but infinite in the lateral
direction.

We begin by introducing the concepts of a spin-wave
mode susceptibility χn, and the dimensionless, normalized
spin-wave amplitude qn(z) for the nth spin-wave mode, such
that the magnetic excitation of amplitude in the x direction
m̃x

n(H0,I ; z) that results from the application of a microwave
magnetic field of amplitude hx(I ; x,z), given in Eq. (2), driven
by an ac current I = Vin/Z0 in an applied field H0 is given by

m̃x
n(H0,I ; z) := m̃x

n(z) = qn(z)χn(H0)〈qn(z)hx(I ; x,z)〉,
(A1)

where the quantity in brackets is simply the overlap integral of
the excitation field and the spatial profile of the nth spin-wave
mode. The magnetic excitation of amplitude in the y direction
m̃

y
n(z) can be written in a similar way. In the trivial case of

a uniform excitation field and uniform spin-wave mode, we
recover the usual relation between the excitation field and the
magnetization dynamics via the Polder susceptibility tensor
component, χxx . However, if the product of the mode profile
and excitation field has odd spatial symmetry, dynamics are
not excited, as we expect. The overlap integral is nothing more
than the spatial average of the mode-excitation-product:

〈qn(z)hx(I ; x,z)〉 = 1

Wδ

∫ ∞

−∞
dx

∫ δ+d

d

dz qn(z)hx(I ; x,z).

(A2)

First, the power transferred to the waveguide via inductive
coupling with the spin-wave dynamics is given by

Pn = |∂t�n(H0,I )|2
2Z0

, (A3)

where

∂t�n(H0,I ) = μ0�

∫ ∞

−∞
dx

∫ δ+d

d

dz[∂tm
x
n(z)]h̃x(x,z), (A4)

with h̃x(x,z) = hx(I ; x,z)/I .
It is important to recognize at this point that the power

dissipation is not constant with time, given that Pn is
proportional only to ∂tm

x
n. As such, the damping associated

with the re-radiation of the microwave energy back into the
waveguide is best characterized with an anisotropic damping
tensor, to be elaborated upon more fully later in this appendix.
To calculate the energy of the spin-wave mode, we start by
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defining a spatially averaged spin-wave excitation density [32],

〈
μ2

n(H0,I )
〉 =

∫ ∞
−∞ dx

∫ δ+d

d
dz

{[
∂tm

x
n(z)

][
m

y
n(z)

]∗ − [
∂tm

y
n(z)

][
mx

n(z)
]∗}

4ωδW
. (A5)

We can then calculate the magnon density Nn associated with the nth spin wave excitation as

Nn =
〈
μ2

n(H0,I )
〉

2gμBMs

. (A6)

The total energy associated with the spin-wave mode is given by

En = ω
〈
μ2

n(H0,I )
〉

γMs

δ�W. (A7)

The energy dissipation rate (1/T1)n for the nth mode is therefore

(
1

T1

)
n

= Pn

En

= 2μ0�ωM

Z0

∣∣ ∫ ∞
−∞ dx

∫ δ+d

d
dz

[
∂tm

x
n(z)

]
h̃x(x,z)

∣∣2

∫ ∞
−∞ dx

∫ δ+d

d
dz

{[
mx

n(z)
][

m
y
n(z)

]∗ − [
∂tm

y
n(z)

][
mx

n(z)
]∗} , (A8)

where ωM = γμ0Ms . We then apply the Fourier transform
to move into the frequency domain, where ∂tm

x
n(H0,I ; z) ↔

iωm̃x
n(H0,I ; z), such that the energy relaxation rate (1/T1)xn for

magnetization oscillations along the x axis is(
1

T1

)x

n

= ωμ0�ωM

Z0
Kn, (A9)

where

Kn :=
∣∣ ∫ ∞

−∞ dx
∫ δ+d

d
dz

(
m̃x

n(z)
)
h̃x(x,z)

∣∣2

∫ ∞
−∞ dx

∫ δ+d

d
dz Im

{
m̃x

n(z)
[
m̃x

n(z)
]∗} (A10)

is a dimensionless inductive coupling parameter. In the limiting
case of the n = 0 (i.e., uniform) mode with a uniform excita-
tion field due to current flowing only through the waveguide
center conductor, and an infinitesimal spacing between the
waveguide and the sample, we have K0 = δ/4W . Substituting
Eq. (A1) into Eq. (A10), we obtain the general result

Kn =
∣∣ ∫ ∞

−∞ dx
∫ δ+d

d
dz qn(z)h̃x(x,z)

∣∣2

ε
∫ δ+d

d
dz|qn(z)|2

, (A11)

with ε = |m̃z
n|/|m̃x

n|.
Since the energy dissipation rate for the case of radiative

damping is anisotropic, it must be generally treated in the
damping tensor formalism, where the Gilbert damping torque
T is given by

Tk = εijkαij m̂i(∂t m̂)j . (A12)

The equation of motion is

∂t m̂ = −γμ0m̂ × H + T (A13)

and m̂ = M/Ms is the normalized magnetization. For the
coordinates in Fig 1, the only nonzero radiative damping
tensor components are αzx and αyx . For the perpendicular FMR
geometry, the relationship between the energy relaxation rate
and the Gilbert damping components is(

1

T1

)x

= αzxωx, (A14)

and (
1

T1

)y

= αzyωy, (A15)

where ωx and ωy are the respective stiffness frequencies,
defined as

ωi := γ

Ms

∂2Um

∂m̂i

(A16)

and Um is the magnetic free energy function. The frequency-
swept linewidth �ω = γμ0�H , where �H is the field-swept
linewidth in Eq. (11), is given by

�ω =
(

1
T1

)x + (
1
T1

)y

2
(A17)

= αzxωx + αzyωy (A18)

For perpendicular FMR, ωx = ωy = ω, and the specific
case of anisotropic radiative damping, αzx = αrad

n , αzy = 0,
and we obtain

αrad
n = 1

2ω

(
1

T1

)x

n

= μ0lωM

2Z0
Kn (A19)

and �ωrad
n = αrad

n ω. This is in contrast to the case of isotropic
damping processes, such as eddy currents and intrinsic
damping, where we obtain �ωiso

n = 2αiso
n ω instead. Thus, the

net damping due to the sum of anisotropic radiative damping,
and any other isotropic processes, is given by

αn = αint + αeddy
n + αrad

n

2
(A20)

where αn is the damping parameter in Eq. (11) for the field-
swept linewidth.

We use a vector network analyzer (VNA) to measure the
two-port S-parameter matrix element for the nth spin-wave
mode, �S21

n . The matrix element is defined as the ratio of
the voltage induced in the waveguide by the nth spin-wave
mode Vn(H0) in an applied magnetic field H0, and the
excitation voltage Vin,

�S21
n := Vn(H0)

Vin

. (A21)
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If we model the reactance of the nth spin-wave mode as
nothing more than a purely inductive element of inductance
Ln in series with an impedance matched transmission line, and
if we assume the sample inductance is much smaller than the
transmission line impedance, we can approximate �S21

n as

�S21
n (H0) ∼= − iωLn(H0)

Z0
, (A22)

where Ln(H0) = �n(H0,I )/I .
We define a normalized, field-independent mode inductance

L̃n as

L̃n := Ln(H0)

χn(H0)
, (A23)

and a dimensionless, field-independent mode-amplitude An,

An := iωL̃n

Z0
, (A24)

such that

�S21
n (H0) = −Anχn(H0). (A25)

Thus, An is the dimensionless amplitude parameter that we
obtain when fitting data for �S21

n (H0). By use of Eqs. (A4),
(A24), and (A23), we can rewrite the mode amplitude as

An := i
ωμ0l

WδZ0

(∫ ∞

−∞
dx

∫ δ+d

d

dz qn(z)h̃x(x,z)

)2

. (A26)

Remembering that the normalized mode inductance has a
factor identical to the numerator of Eq. (A11), we can rewrite
the radiative damping in terms of the normalized mode
inductance,

αrad
n

L̃n

= ωMηn

Z0
, (A27)

where

ηn := δ

4
∫ δ+d

d
dz|qn(z)|2

. (A28)

We emphasize that Eq. (A27) is a very general result,
regardless of the details of the excitation field profile. Thus,
even if the field profile is highly nonuniform due to the
combination of eddy-current and capacitive coupling effects
[21,33], there should still be a fixed scaling between the
radiative damping and the normalized inductance.

In the case of the uniform mode, η = 1/4 and Eq. (A27)
reduces to

αrad
n

L̃n

= ωM

4Z0
. (A29)

However, for a sinusoidal mode of the form

qn(z) = cos

(
(2n + 1)πz

2δ

)
(A30)

that is expected in the case of a pinned boundary condition
at one interface and an open boundary condition at the other
interface, as shown in Fig. 1(b), we obtain η = 1/2 and

αrad
n

L̃n

= ωM

2Z0
, (A31)
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FIG. 9. Dependence of calculated values for ηn on mode number
for the case of the spectral data presented in Figs. 2(c) and 5(a). Wave
numbers are extracted from those data via the procedure outlined in
the main text of the paper, based upon a model with a single surface
with interfacial anisotropy, and an unpinned boundary condition at
the other interface. Within the context of that particular model, and
the expected quadratic dependence of spin-wave resonance frequency
with wave number that it produces, we see that ηn has a weak depend-
ence on mode number, justifying our presumption that ηn can be
treated as a constant for the purposes of fitting the damping data.

For the case of the wave-number values extracted from the
data shown in Fig. 2(c) for a 200 nm Py film, we can determine
the value for ηn and the degree to which it can vary with mode
number. We use the form for the spin-wave profile

qn(z) = cos(knz), (A32)

consistent with our assumption, when extracting kn from our
PSSW data, that an unpinned boundary condition applies to
only one of the interfaces, i.e., at z = 0. Using these extracted
values for the wave number, we obtain values for ηn shown in
Fig. 9.

We see in Fig. 9 that the variation in ηn with varying mode
number is less than 10%. Thus, to within first order, we can
treat ηn as a constant for the purposes of fitting our data, i.e.,
ηn

∼= η.

APPENDIX B: DERIVATION OF αeddy

For the derivation of the eddy-current damping αeddy

uniform magnetization dynamics are assumed. The notation
stays the same as for the radiative damping.

Then the total flux passing through the magnetic film is

∂t� = μ0�δ(∂t m)x, (B1)

where (∂t m)x = x̂ · ∂t m. The electrical power dissipated by
the eddy currents is

Pind = 1

2

|∂t�|2( 2ρ�

δeffW

) (B2)

= C

8

μ2
0δ

3�W

ρ
|(∂t m)x |2, (B3)

with δeff := Cδ/2, where 0 � C � 1 is a phenomenological
parameter that accounts for details of the nonuniform eddy-
current distribution in the ferromagnet. Analogous to the
derivation of the radiative damping, we now need the energy
of the magnetic excitations. The number of magnons in the
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system is given by

Nmag = Ms

gμBω2
|∂t m|2. (B4)

Thus, the total magnon energy is

Emag = �ωNmagW�δ (B5)

= Ms

γω
|∂t m|2W�δ. (B6)

The rate of energy dissipation is then given by

1

T1
= Pind

Emag
= C

8

γωμ2
0Msδ

2

ρ

|(∂t m)x |2
|∂t m|2 . (B7)

The maximum energy decay rate occurs when (∂t m̂)x =
|∂t m̂|, in which case(

1

T1

)x

= C

8

γωμ2
0Msδ

2

ρ
, (B8)

where the superscript indicates that this is the maximum decay
rate for magnetization oscillations along the x axis. For the case
of a perpendicular applied field sufficient to saturate the static
magnetization out of the film plane, the damping process is
isotropic, i.e., (

1

T1

)y

= C

8

γωμ2
0Msδ

2

ρ
. (B9)

Therefore, analogous to Eq. (A16), the frequency-swept
linewidth �ω is simply

�ω =
(

1
T1

)x + (
1
T1

)y

2
(B10)

= 2αeddy ω, (B11)

then

αeddy = C

16

γμ2
0Msδ

2

ρ
. (B12)

[1] J. M. Lock, Br. J. Appl. Phys. 17, 1645 (1966).
[2] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev.

Lett. 88, 117601 (2002).
[3] Y. Tserkovnyak, A. Brataas, G. Bauer, and B. Halperin, Rev.

Mod. Phys. 77, 1375 (2005).
[4] C. T. Boone, H. T. Nembach, J. M. Shaw, and T. J. Silva,

J. Appl. Phys. 113, 153906 (2013).
[5] J. M. Shaw, H. T. Nembach, and T. J. Silva, Phys. Rev. B 85,

054412 (2012).
[6] Yaroslav Tserkovnyak, E. M. Hankiewicz, and Giovanni Vig-

nale, Phys. Rev. B 79, 094415 (2009).
[7] V. Baryakhtar, E. Krotenko, and D. Yablonsky, JETP 91, 921

(1986).
[8] Y. Li and W. E. Bailey, arXiv:1401.6467.
[9] H. T. Nembach, J. M. Shaw, C. T. Boone, and T. J. Silva, Phys.

Rev. Lett. 110, 117201 (2013).
[10] R. W. Sanders, D. Paquette, V. Jaccarino, and S. M. Rezende,

Phys. Rev. B 10, 132 (1974).
[11] G. Wende, Phys. Status Solidi A 36, 557 (1976).
[12] B. Bhoi, T. Cliff, I. S. Maksymov, M. Kostylev, R. Aiyar, N.

Venkataramani, S. Prasad, and R. L. Stamps, J. Appl. Phys. 116,
243906 (2014).

[13] L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu,
Phys. Rev. Lett. 114, 227201 (2015).

[14] P. Pincus, Phys. Rev. 118, 658 (1960).
[15] J. Mallinson, The Foundations of Magnetic Recording, 2nd ed.

(Academic Press, San Diego, 1993).
[16] Y. Ding, T. J. Klemmer, and T. M. Crawford, J. Appl. Phys. 96,

2969 (2004).
[17] S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L.

Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, J. Appl.
Phys. 99, 093909 (2006).

[18] I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G.
Gubbiotti, and C. Back, J. Magn. Magn. Mater. 307, 148 (2006).

[19] H. T. Nembach, T. J. Silva, J. M. Shaw, M. L. Schneider, M. J.
Carey, S. Maat, and J. R. Childress, Phys. Rev. B 84, 054424
(2011).

[20] M. Kostylev, J. Appl. Phys. 106, 043903 (2009).
[21] M. Bailleul, Appl. Phys. Lett. 103, 192405 (2013).
[22] R. F. Soohoo, Phys. Rev. 131, 594 (1963).
[23] S. Mathias, C. La-O-Vorakiat, P. Grychtol, P. Granitzka, E.

Turgut, J. M. Shaw, R. Adam, H. T. Nembach, M. E. Siemens,
S. Eich, C. M. Schneider, T. J. Silva, M. Aeschlimann, M. M.
Murnane, and H. C. Kapteyn, Proc. Natl. Acad. Sci. USA 109,
4792 (2012).

[24] T. Maeda, H. Yamauchi, and H. Watanabe, J. Phys. Soc. Jpn. 35,
1635 (1973).

[25] G. C. Bailey and C. Vittoria, Phys. Rev. B 8, 3247
(1973).

[26] C. Scheck, L. Cheng, and W. E. Bailey, Appl. Phys. Lett. 88,
252510 (2006).

[27] J. M. Shaw, T. J. Silva, M. L. Schneider, and R. D. McMichael,
Phys. Rev. B 79, 184404 (2009).

[28] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter,
K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science
341, 636 (2013).

[29] H. Ibach, Physics of Surface and Interfaces (Springer, Berlin,
2006).

[30] O. Allivy Kelly, A. Anane, R. Bernard, J. Ben Youssef, C. Hahn,
A. H. Molpeceres, C. Carretero, E. Jacquet, C. Deranlot, P.
Bortolotti, R. Lebourgeois, J.-C. Mage, G. de Loubens, O. Klein,
V. Cros, and A. Fert, Appl. Phys. Lett. 103, 082408 (2013).

[31] M. L. Schneider, T. Gerrits, A. B. Kos, and T. J. Silva, Appl.
Phys. Lett. 87, 072509 (2005).

[32] V. Lvov, Wave Turbulence Under Parametric Excitation
(Springer-Verlag, Berlin, Heidelberg, 1994).

[33] I. Maksymov and M. Kostylev, J. Appl. Phys. 113, 043927
(2013).

184417-10

http://dx.doi.org/10.1088/0508-3443/17/12/415
http://dx.doi.org/10.1088/0508-3443/17/12/415
http://dx.doi.org/10.1088/0508-3443/17/12/415
http://dx.doi.org/10.1088/0508-3443/17/12/415
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/RevModPhys.77.1375
http://dx.doi.org/10.1103/RevModPhys.77.1375
http://dx.doi.org/10.1103/RevModPhys.77.1375
http://dx.doi.org/10.1103/RevModPhys.77.1375
http://dx.doi.org/10.1063/1.4801799
http://dx.doi.org/10.1063/1.4801799
http://dx.doi.org/10.1063/1.4801799
http://dx.doi.org/10.1063/1.4801799
http://dx.doi.org/10.1103/PhysRevB.85.054412
http://dx.doi.org/10.1103/PhysRevB.85.054412
http://dx.doi.org/10.1103/PhysRevB.85.054412
http://dx.doi.org/10.1103/PhysRevB.85.054412
http://dx.doi.org/10.1103/PhysRevB.79.094415
http://dx.doi.org/10.1103/PhysRevB.79.094415
http://dx.doi.org/10.1103/PhysRevB.79.094415
http://dx.doi.org/10.1103/PhysRevB.79.094415
http://arxiv.org/abs/arXiv:1401.6467
http://dx.doi.org/10.1103/PhysRevLett.110.117201
http://dx.doi.org/10.1103/PhysRevLett.110.117201
http://dx.doi.org/10.1103/PhysRevLett.110.117201
http://dx.doi.org/10.1103/PhysRevLett.110.117201
http://dx.doi.org/10.1103/PhysRevB.10.132
http://dx.doi.org/10.1103/PhysRevB.10.132
http://dx.doi.org/10.1103/PhysRevB.10.132
http://dx.doi.org/10.1103/PhysRevB.10.132
http://dx.doi.org/10.1002/pssa.2210360216
http://dx.doi.org/10.1002/pssa.2210360216
http://dx.doi.org/10.1002/pssa.2210360216
http://dx.doi.org/10.1002/pssa.2210360216
http://dx.doi.org/10.1063/1.4904857
http://dx.doi.org/10.1063/1.4904857
http://dx.doi.org/10.1063/1.4904857
http://dx.doi.org/10.1063/1.4904857
http://dx.doi.org/10.1103/PhysRevLett.114.227201
http://dx.doi.org/10.1103/PhysRevLett.114.227201
http://dx.doi.org/10.1103/PhysRevLett.114.227201
http://dx.doi.org/10.1103/PhysRevLett.114.227201
http://dx.doi.org/10.1103/PhysRev.118.658
http://dx.doi.org/10.1103/PhysRev.118.658
http://dx.doi.org/10.1103/PhysRev.118.658
http://dx.doi.org/10.1103/PhysRev.118.658
http://dx.doi.org/10.1063/1.1774242
http://dx.doi.org/10.1063/1.1774242
http://dx.doi.org/10.1063/1.1774242
http://dx.doi.org/10.1063/1.1774242
http://dx.doi.org/10.1063/1.2197087
http://dx.doi.org/10.1063/1.2197087
http://dx.doi.org/10.1063/1.2197087
http://dx.doi.org/10.1063/1.2197087
http://dx.doi.org/10.1016/j.jmmm.2006.03.060
http://dx.doi.org/10.1016/j.jmmm.2006.03.060
http://dx.doi.org/10.1016/j.jmmm.2006.03.060
http://dx.doi.org/10.1016/j.jmmm.2006.03.060
http://dx.doi.org/10.1103/PhysRevB.84.054424
http://dx.doi.org/10.1103/PhysRevB.84.054424
http://dx.doi.org/10.1103/PhysRevB.84.054424
http://dx.doi.org/10.1103/PhysRevB.84.054424
http://dx.doi.org/10.1063/1.3187547
http://dx.doi.org/10.1063/1.3187547
http://dx.doi.org/10.1063/1.3187547
http://dx.doi.org/10.1063/1.3187547
http://dx.doi.org/10.1063/1.4829367
http://dx.doi.org/10.1063/1.4829367
http://dx.doi.org/10.1063/1.4829367
http://dx.doi.org/10.1063/1.4829367
http://dx.doi.org/10.1103/PhysRev.131.594
http://dx.doi.org/10.1103/PhysRev.131.594
http://dx.doi.org/10.1103/PhysRev.131.594
http://dx.doi.org/10.1103/PhysRev.131.594
http://dx.doi.org/10.1073/pnas.1201371109
http://dx.doi.org/10.1073/pnas.1201371109
http://dx.doi.org/10.1073/pnas.1201371109
http://dx.doi.org/10.1073/pnas.1201371109
http://dx.doi.org/10.1143/JPSJ.35.1635
http://dx.doi.org/10.1143/JPSJ.35.1635
http://dx.doi.org/10.1143/JPSJ.35.1635
http://dx.doi.org/10.1143/JPSJ.35.1635
http://dx.doi.org/10.1103/PhysRevB.8.3247
http://dx.doi.org/10.1103/PhysRevB.8.3247
http://dx.doi.org/10.1103/PhysRevB.8.3247
http://dx.doi.org/10.1103/PhysRevB.8.3247
http://dx.doi.org/10.1063/1.2216031
http://dx.doi.org/10.1063/1.2216031
http://dx.doi.org/10.1063/1.2216031
http://dx.doi.org/10.1063/1.2216031
http://dx.doi.org/10.1103/PhysRevB.79.184404
http://dx.doi.org/10.1103/PhysRevB.79.184404
http://dx.doi.org/10.1103/PhysRevB.79.184404
http://dx.doi.org/10.1103/PhysRevB.79.184404
http://dx.doi.org/10.1126/science.1240573
http://dx.doi.org/10.1126/science.1240573
http://dx.doi.org/10.1126/science.1240573
http://dx.doi.org/10.1126/science.1240573
http://dx.doi.org/10.1063/1.4819157
http://dx.doi.org/10.1063/1.4819157
http://dx.doi.org/10.1063/1.4819157
http://dx.doi.org/10.1063/1.4819157
http://dx.doi.org/10.1063/1.2031944
http://dx.doi.org/10.1063/1.2031944
http://dx.doi.org/10.1063/1.2031944
http://dx.doi.org/10.1063/1.2031944
http://dx.doi.org/10.1063/1.4789812
http://dx.doi.org/10.1063/1.4789812
http://dx.doi.org/10.1063/1.4789812
http://dx.doi.org/10.1063/1.4789812



