
United States Government work. Not subject to U.S. copyright.

Pseudo-exhaustive Testing of
Attribute Based Access Control Rules

D. Richard Kuhn1, Vincent Hu1, David F. Ferraiolo1, Raghu N. Kacker1, Yu Lei2

1 National Institute of
Standards and Technology

Gaithersburg, MD 20899, USA
{kuhn,vhu,david.ferraiolo,raghu.kacker}@nist.gov

2Computer Science & Engineering
University of Texas at Arlington

Arlington, TX, USA
ylei@uta.edu

Abstract – Access control typically requires translating policies
or rules given in natural language into a form such as a
programming language or decision table, which can be
processed by an access control system. Once rules have been
described in machine-processable form, testing is necessary to
ensure that the rules are implemented correctly. This paper
describes an approach based on combinatorial test methods for
efficiently testing access control rules, using the structure of
attribute based access control (ABAC) to detect a large class of
faults without a conventional test oracle.

Keywords- access control; attribute based access control;
combinatorial testing; t-way testing; test automation

 NOMENCLATURE

Ri = antecedent of ith grant rule
Tj = conjunction of attributes in a rule antecedent
k = maximum number of attributes in any term
m = number of grant rules
n = number of attributes
p = average number of attributes in terms
v = number of attribute values for an attribute
C = correct term within a rule antecedent
F = faulty term within a rule antecedent
N = number of rows in covering array
P = policy as specified
P’ = policy as implemented

I. INTRODUCTION - ABAC
Attribute based access control (ABAC) [1] is a

method of controlling authorization using rules that include a
subject’s attributes, along with attributes of system
resources, and conditions in the environment. For example,
a rule may allow access to a database if the subject’s
attributes include employee and US_citizen, where the rule
for accessing a resource requires these attributes. This
approach can be more flexible than traditional models such
as role-based access control, because it is not necessary to
develop a structure of users and resources in advance. The
tradeoff for such flexibility is that it may be difficult or
impossible to know, at a point in time, which users have
access to which resources. ABAC policies can also be
highly complex, with hundreds of attributes and a large
number of rules. Although ABAC policies can be quite large,
their rules have a regular structure – checking for the
presence of specified sets of attribute values – that makes it
possible to apply combinatorial methods to reduce the effort

required for high-assurance testing. The need for testing can
be especially acute in cases where the protected application
is hosted by a third party, such as a cloud service provider,
and the data owner cannot directly inspect the software used
in the access control system.

 This paper describes a method of testing for ABAC
systems that is pseudo-exhaustive, which we define as
exhaustive testing of all combinations of attribute values on
which an access control decision is dependent. This
approach is analogous to pseudo-exhaustive methods for
testing combinational circuits [2], where the verification
problem is reduced by exhaustively testing only the subset
of inputs on which an output is dependent, or by partitioning
the circuit and exhaustively testing each segment. To test
ABAC systems [1][3], we can use the basic principle of
testing only subsets of attributes on which a decision is
dependent, although the partitioning is done in a different
manner than for combinational circuits. The structure of the
access control problem, ABAC in particular, makes it
possible to apply the same principle by rendering the
conditions for each grant in disjunctive normal form, then
considering each term separately.

For an ABAC system, a rule with attributes
employment_status and time_of_day might be, “If subject is
an employee and the hour is between 9 am and 5 pm, then
allow entry.” The problem with this approach is that n
boolean attributes or variables result in potentially 2n rules.
Many such rules may be included in written policy
documents, and rules may include a variety of attributes. For
any combination of attribute values, the system must
implement rules that accurately reflect the written policy.
The structure of such rules is typically as follows, where Ri
are boolean conditions evaluating the values of one or more
attributes:

R1 → grant
R2 → grant
…
Rm → grant
else → deny

which is equivalent to:

R1 → grant
R2 → grant
…
Rm → grant
(~R1) (~R2)… (~Rm) → deny

Example: Suppose we have an access rule as shown below:

 if (a && (c && !d ||e)) grant();
 else if (!a && b && !c) grant();
 else deny();

This code can be mapped to the following expression:

(a(cd̅ +e) → grant)
(a̅bc̅ → grant)
((∼(a(cd̅ +e)))(∼(a̅bc̅)) → deny)

In a typical ABAC installation, the boolean literals

could be conditions, such as age>18, or boolean attributes
such as employee, but the structure will be as shown in the
example. That is, a series of expressions specifying subsets
of attribute conditions that must be true for access to be
granted, followed by a default deny-access rule when none
of the attribute expressions have been instantiated to true.

II. TESTING ABAC IMPLEMENTATIONS
Testing an ABAC system requires showing that the

policy specified, P, is correctly implemented. The
implemented policy P’ must be shown to produce the same
response as P for any combination of attributes used as input.
That is, for input attributes x1,…,xn, P’(x1,…,xn) =
P(x1,…,xn).

1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
2 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1
3 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0
4 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1
5 1 0 0 0 1 0 0 1 0 0 1 1 1 1 0
6 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0
7 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1
8 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1
9 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1

10 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0
11 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1
12 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0
13 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1
14 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1
15 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
16 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1
17 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0
18 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0
19 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0
20 1 1 1 1 0 0 1 0 0 1 1 1 0 1 1
21 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0
22 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1

 Figure 1. 3-way covering array of 15 boolean parameters

How should an ABAC system be tested? Confirming
that access will be granted for users with the right attributes
is easy: we can simply read off the attribute conditions for
each grant expression and verify that the access control
system returns an authorization in each case. The number of
such tests is linear in the number of grant conditions.
However, it is much more difficult to ensure that no invalid
combination of attributes will result in authorization. With n
boolean attributes or variables there are 2n possible
combinations of attributes. For example, it would not be

unusual to have 50 boolean attributes, resulting in 250 ≈
1015 combinations, but it must be shown that no
combination will improperly allow access.

To make testing tractable, we take advantage of
combinatorial methods [4][5]. To see the advantages of a
combinatorial approach, refer to Figure 1, which shows a
covering array of 15 boolean variables. A covering array is
an N x k array of N rows and k variables. In every N x t
subarray, each t-tuple occurs at least once. In software
testing, each row of the covering array represents a test, with
one column for each parameter that is varied in testing.
Collectively, the rows of the array include every t-way
combination of parameter values at least once. For example,
Figure 1 shows a covering array that includes all 3-way
combinations of binary values for 15 parameters. Each
column gives the values for a particular parameter. It can be
seen that any three columns in any order contain all eight
possible combinations of the parameter values. Collectively,
this set of tests will exercise all 3-way combinations of input
values in only 22 tests, as compared with 32,768 for
exhaustive coverage. The size of a t-way covering array of n
variables with v values each is proportional to vt log n [6][7].
For the example described in Sect. I, with five attributes and
two possible decisions, there are 25 = 32 possible rules.
However, a covering array of all 3-way combinations
contains only 12 rows. The number of variables for which all
settings are guaranteed to be covered in a covering array is
referred to as the strength; a 3-way array is of strength 3.
 We will use covering arrays of attributes, in association
with ABAC policies that have been converted to k-DNF
form. k-DNF refers to disjunctive normal form where no
term contains more than k literals. Recall that a term is a
conjunction of one or more literals within the disjunction.
For example, abc + de contains two terms, one with three
literals and one with two, so the expression is in 3-DNF
form. The covering array does not contain all possible input
configurations, but it will contain all k-way combinations of
variable values. Where an expression is in k-DNF, any term
containing k literals that is resolved to true will clearly result
in the full expression being evaluated to true. For example,
an ABAC rule in 2-DNF form could be: “if employee
&& US_citizen || auditor then grant”. This rule
contains one term of two attributes and one term of one
attribute, so it is 2-DNF. Because a covering array of
strength k contains every possible setting of all k-tuples and
i-tuples for i < k, it contains every combination of values of
any k literals.
 Covering array generation tools, such as ACTS [5][6],
make it possible to include constraints that prevent the
inclusion of variable combinations that meet criteria
specified in a first order logic style syntax. For example, if
we are testing applications that run on various combinations
of operating systems and browsers, we may include a
constraint such as ‘OS = “Linux” => browser !=
“IE”’. Constraints are typically used in situations such as
this, where certain combinations do not occur in practice,
and therefore should not be included in tests. Modern

constraint solvers such as Choco [8] and Z3 [9] make it
possible to process very complex constraint sets, converting
logic expressions into combinations that are invalid and can
be screened from the final array.

Method: Let R = rule antecedents (left hand side of an
implication rule such as p in p → q) of one or more policy
rules being tested in k-DNF, and Ti are terms (conjuncts of
one or more attributes) in R. For the example included in the
introduction, terms Ti of R would be acd̅, ae, and a̅bc̅. R is
not necessarily the complete policy; it may be the set of
rules associated with a particular resource that we wish to
test, for example.

Positive testing: Generate a test set GTEST for which every
test should produce a response of grant. It must be shown
that for all possible inputs, where some combination of k
input values matches a grant condition, a decision of grant
is returned. Construct test set GTEST with one test for each
term of R as follows:

GTESTi = 𝑇𝑇𝑖𝑖 � ~𝑇𝑇𝑗𝑗𝑗𝑗≠𝑖𝑖

The construction ensures that each term in P is verified to
independently produce a response of grant. Negating each
term Tj, i ≠ j, prevents masking of a fault in the presence of
other combinations that would return the same result. For
example, if a rule condition is ab + cd →grant, inputs of
1100, 1101, 1110 could be used for testing ab →grant.
However, input 1111 would not detect the fault if the
system ignores variable a or b, because the condition cd
would cause a grant decision, and no other grant predicates
would be evaluated. One such test is required for each term
in a grant rule, so for m rules with an average of p terms
each, the number of tests required is proportional to mp.

Negative testing: Generate a test set DTEST for which every
test should produce a response of deny. It must be shown
that for all possible inputs, where no combination of k input
values matches a grant condition, a decision of deny is
returned.

DTEST = covering array of strength k, for the set of
attributes included in R, with constraints specified
by ~R.

Note that the structure of the access control rule evaluation
makes it possible to use a covering array for DTEST,
compressing a large number of test conditions into a few
tests. Because a deny is issued only after all grant
conditions have been evaluated, masking of one
combination by another can only occur for DTEST when a
test produces a response of grant. In such a case, an error
has been discovered, which can be repaired before running
the test set again. Since DTEST is a covering array, the

number of tests will be proportional to vk log n, for v values
per attribute (normally v=2 since most will be boolean
conditions), and n attributes. For m rules, the number of
tests is multiplied by the constant m.

Example: Table 1 gives a set of boolean attributes a
through e, where each row defines values for the attributes
that determine a decision, either grant or deny. Thus a
covering array for the antecedent R of a rule in 3-DNF such
as (acd̅ + a̅bc̅ → grant) is given in Table 1. The total
number of 3-way combinations covered is the number of
settings of three binary variables multiplied by the number
of ways of choosing three variables from five, i.e., 23 �5

3
� =

80.
 Table 2 shows a covering array for this set of variables
generated using ~ R as a constraint. That is, the two terms of
the rule, acd̅ and a̅bc̅, have been excluded from the array,
but all other 1-, 2-, and 3-way combinations can be found in
the array. Because acd̅ and a̅bc̅ are the only conditions
under which access should be granted, the array in Table 2
should result in a deny response from the access control
system for every test. Collectively, the tests include all 78 3-
way settings of attributes that will not instantiate the access
control rule to true.

 a b c d e
1 0 0 0 0 0
2 0 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 0 0 1 1
6 1 0 1 0 0
7 1 1 0 0 1
8 1 1 1 1 0
9 1 1 0 0 0
10 0 0 1 1 0
11 0 0 0 0 1
12 1 1 1 1 1

 Table 1. 3-way covering array

 a b c d e
1 0 0 0 0 0
2 0 0 1 1 1
3 0 1 1 0 0
4 1 0 0 1 0
5 1 0 1 1 0
6 1 1 0 0 1
7 1 1 1 1 1
8 0 0 1 0 1
9 1 1 0 1 0

10 0 0 0 1 1
11 1 0 0 0 0
12 0 1 1 1 0
13 1 0 0 0 1
14 0 1 1 0 1

Table 2. 3-way covering array with constraint ~R

III. FAULT DETECTION
 Now consider the faults that this method can detect.
Suppose that some combination of attributes exists that
produces a different response than required by the policy P
in k-DNF form. Tests contained in GTEST and DTEST will
detect a large class of missing terms, added terms, or altered
terms containing k or fewer attributes. In this section we
analyze faults that will be detected, and the underlying
conditions in these faults. Table 3 illustrates the fault types
and detection conditions for each.

 Term C=correct
term

F=faulty
term

GTEST detect
condition

DTEST detect
condition

notes

1 missing abc -- abc none
2 added -- ab none ab
3 abc a̅b none a̅bc, a̅bc̅
4 abc ab none abc ̅
5 ab abc -- -- no fault
6 altered abc abc̅ abc abc̅
7 abc ab none abc ̅
8 abc a̅b abc a̅bc, a̅bc̅

Table 3. Example faults and detection conditions.

k-DNF detection property: Collectively, tests from GTEST
and DTEST will detect added, deleted, or altered faults with
up to k attributes.

Proof outline: Three cases can be considered, for missing,
added, or altered terms in the policy. The analysis for each
case is keyed to the numbered examples in Table 3.

Missing term. (1) Fault detected by GTEST. If a term is
missing in the faulty implementation P’, then there is some
combination of attributes accepted in P that is not included
in P’. Since it is in P, GTEST will include the combination
and the fault will be detected.

Added term. If the system incorrectly issues a grant
response, then some combination F of attributes accepted in
P’ is not included in P. We consider three cases depending
on the number of attributes, j, in the added term.

j < k and F is not a subset of some other term (2, 3).
Detected by DTEST because the added term will be part
of the non-grant combinations in DTEST.

j < k and F is a subset of some other term (4). Detected
by DTEST. If the j attributes of the added term are a
subset of some term C in P, then because DTEST
contains all k-way combinations not excluded by R, it
will include all k-way combinations of the attributes in
F with settings different from C. For example, if F =
ab = 11, and C = abc = 110, then DTEST will include
other settings of abc, which will include abc = 111.
But because this term includes F, it will produce an
incorrect grant response, detecting the fault. Note that if

P contains both abc and abc̅, then the result of grant for
ab = 11 is in fact correct, since abc̅ + abc = ab.

j < k and there is some term C in P that is a subset of F
(5). In this case a fault does not exist because any input
that produces a grant response from P would produce a
grant response with F added, because F contains all
attributes of C.

Altered term. Three cases can be distinguished, based on
the number of attributes j in the incorrect term F as
compared with k.

j = k (6). Detected by GTEST because it includes a test
with the correct term, and no other combination of
attributes in that test will match any other term in P.

j < k and F is a subset of some other term (7). Detected
by DTEST if there is no other term in P’ that excludes
from DTEST F ∪ x, where x is one or more attributes in
C that are not in F. Example: if C = abc and F is ab,
then abc̅ is in DTEST, unless P’ also contains bc̅. Note
that if DTEST includes F ∪ x, because there is some
other term D in P where x ⊆ D, then there is no fault
because the disjunction of the altered term with the
other term would not accept any attribute sets not
accepted in P. Not detected by GTEST because any test
that contains the attributes of the correct term C will
contain all attributes of a subset of C.

j < k and F is not a subset of altered term C (8).
Detected by GTEST because it will include C, and P’
will not match C. □

If more than k attributes are included in the altered term,
some faults are still detected.

j > k and C is not a subset of F. Detected by GTEST
because C will be included in GTEST but will produce a
deny response.

j > k and C is a subset of F. Not detected by DTEST
because DTEST excludes C, and therefore excludes F
because it contains C. Not necessarily detected by
GTEST because the settings of attributes x in F but not C
may result in C ∪ x = F. This case can be resolved by
strengthening the covering array DTEST, using an array
of strength k+i to detect faulty terms with up to i
additional attributes.

IV. TRADEOFFS AND PRACTICAL CONSIDERATIONS
The process scales easily to systems with a large number of
attributes that must be included in access decisions. Because
the number of rows in a covering array grows only with log
n for n variables/attributes at a given number of attributes

and values, a larger policy specification, involving many
more attributes, requires only a few additional tests. For
example, it is possible to cover all 3-way combinations of
100 boolean variables with 45 tests, increasing only to 57
tests for 300 variables.
 The most significant limitation for this approach occurs
where terms in access control rules contain a large number
of attribute values per attribute. Although covering array
size grows only with log n, the value of k for the k-DNF
form of rules is an exponent in the number of combinations
that must be covered, and consequently the number of rows
increases with vk, for v attribute values. If terms in the rules
contain more than six or seven attributes, it may not be
practical to generate covering arrays, given the limitations
of today’s algorithms. However, a large number of tests is
not a barrier, because the structure of the solution resolves
the oracle problem by ensuring that every test in GTEST
should produce a response of grant and every test in DTEST
should produce a response of deny. This means that tests can
be fully automated, making it possible to execute a large
number of tests.
 Table 5 shows test set sizes for a variety of
configurations, assuming a value of p = 4 terms per rule.
The column N tests gives the size N of a covering array for
k-way combinations of n attributes with v values each. The
size of DTEST is m × N, since there will be one covering
array per rule tested. Note that the test time for even a large
test set of more than 600,000 tests would be roughly 10
minutes, assuming a time of 1 ms per test. In addition, since
the tests are independent, testing can be divided among as
many processors as are available, so even millions of tests
could be tractable.

k v n m N tests #GTEST #DTEST
3 2 50 20 36 80 720

50 200 1800
100 20 45 80 900

50 200 2250
4 50 20 306 80 6120

50 200 15300
100 20 378 80 7560

50 200 18900
6 50 20 1041 80 20820

50 200 52050
100 20 1298 80 25960

50 200 64900
4 2 50 20 98 80 1960

50 200 4900
100 20 125 80 2500

50 200 6250
4 50 20 1821 80 36420

50 200 91050
100 20 2337 80 46740

50 200 116850
6 50 20 9393 80 187860

50 200 469650
100 20 12085 80 241700

50 200 604250
Table 4. Test set sizes.

V. HIPAA PRIVACY EXAMPLE
The following text is an excerpt from Health Insurance
Portability and Accountability Act (HIPAA) rules that
specify when a health care organization must treat a
patient’s personal representative of as the individual [10].
(This policy fragment has been used in previous work on
formal specification of natural language policies [11].)
Typical cases include a parent making decisions on behalf
of a child.

(g)(1) Standard: Personal representatives. As
specified in this paragraph, a covered entity must,
except as provided in paragraphs (g)(3) and (g)(5)
of this section, treat a personal representative as
the individual for purposes of this subchapter.

(2) Implementation specification: adults and
emancipated minors. If under applicable law a
person has authority to act on behalf of an
individual who is an adult or an emancipated
minor in making decisions related to health care, a
covered entity must treat such person as a personal
representative under this subchapter, with respect
to protected health information relevant to such
personal representation.

(3)(i) Implementation specification: unemancipated
minors. If under applicable law a parent, guardian,
or other person acting in loco parentis has
authority to act on behalf of an individual who is
an unemancipated minor in making decisions
related to health care, a covered entity must treat
such person as a personal representative under this
subchapter, with respect to protected health
information relevant to such personal
representation, except that such person may not be
a personal representative of an unemancipated
minor, and the minor has the authority to act as an
individual, with respect to protected health
information pertaining to a health care service, if:

(A) The minor consents to such health care service;
no other consent to such health care service is
required by law, regardless of whether the consent
of another person has also been obtained; and the
minor has not requested that such person be
treated as the personal representative; (B) The
minor may lawfully obtain such health care service
without the consent of a parent, guardian, or other
person acting in loco parentis, and the minor, a
court, or another person authorized by law
consents to such health care service; or (C) A
parent, guardian, or other person acting in loco
parentis assents to an agreement of confidentiality
between a covered health care provider and the
minor with respect to such health care service.

Step 1: Review the text to identify attributes or variables
that must be considered in access rules. Attributes in statutes
may represent existence of various documents signed by the
parties, among other basic attributes such as age,
citizenship, etc. For this example, we consider the rules
specified in (g)(3)(i)(A), for cases in which a minor has the
authority to act as an individual. Each attribute is given a
short mnemonic name in the covering array. These are
shown below by bracketing each attribute, with a variable
name annotation:

(A) The {minor consents : mc} to such health care service; no
{other consent : oc} to such health care service is required by law,
regardless of whether the consent of another person has also
been obtained; and the minor has not {requested that such
person be treated as the personal representative : mr}; (B) The
{minor may lawfully obtain : lo} such health care service without
the consent of a parent, guardian, or other person acting in loco
parentis, and the {minor : mc}, a {court : cc}, or {another person
: oc} authorized by law consents to such health care service; or
(C) A {parent, guardian, or other person acting in loco parentis
assents to an agreement of confidentiality : pc} between a
covered health care provider and the minor with respect to such
health care service.

Step 2: Convert the text description to rules in k-DNF form,
in this case, 3-DNF. This mapping is as shown in Table 5.
Note that the “or” connector prior to clause (C) indicates a
disjunction of the three clauses.

Text Attributes
(A) The {minor consents : mc} to such health
care service; no {other consent : oc} to such
health care service is required by law, regardless
of whether the consent of another person has
also been obtained; and the minor has not
{requested that such person : mr} be treated as
the personal representative;

expression:
mc && ~oc && ~mr

attribute sets:
{mc, ~oc, ~mr}

(B) The {minor may lawfully obtain : lo} such
health care service without the consent of a
parent, guardian, or other person acting in loco
parentis, and the {minor : mc}, a {court : cc}, or
{another person : oc} authorized by law consents
to such health care service;

expression:
lo && (mc||cc||oc)
= lo && mc || lo &&
cc || lo && oc
attribute sets:
{lo, mc}, {lo, cc},
{lo, oc}

(C) A {parent, guardian, or other person acting
in loco parentis assents to an agreement of
confidentiality : pc}

expression: pc
attribute sets:
{pc}

Table 5. Mapping of text to attributes.

Step 3: Determine the maximum number of AND
connectives in access rule conditions. In the HIPAA
example, three attributes are conjoined in Sect. (g)(3)(i)(A):
“minor consents ...; no other consent to such health care
service is required by law, ...; and the minor has not
requested that such person be treated as the personal
representative”. Because the expression above is in 3-DNF,

with a maximum of three attributes in conjunction, a 3-way
covering array is sufficient to consider all relevant
combinations of attribute values. Note that other practical
cases may involve more than 3-way combinations of
attributes in terms, but the process would be the same as in
this illustrative example. Combining these terms, we have:

mc && ~oc && ~mr || lo && (mc || cc || oc) || pc → grant
=
mc && ~oc && ~mr || lo&&mc || lo&&cc || lo&&oc || pc → grant

Step 4:
GTEST: Generate tests for GTEST, with one test for each term
and other terms false. Tests are shown in Figure 2.

 mc oc mr lo cc pc
1 1 0 0 0 0 0
2 1 0 1 1 0 0
3 0 1 0 1 0 0
4 0 0 0 1 1 0
5 0 0 0 0 0 1

 mc oc mr lo cc pc
1 0 0 0 0 0 0
2 0 0 1 1 0 0
3 0 1 0 0 1 0
4 0 1 1 0 0 0
5 1 0 1 0 1 0
6 1 1 0 0 0 0
7 1 1 1 0 1 0
8 0 0 0 1 0 0
9 0 0 0 0 1 0

10 1 0 1 0 0 0
11 1 1 0 0 1 0
12 0 1 1 0 1 0

GTEST DTEST
Figure 2. Completed GTEST and DTEST arrays.

DTEST: Compute a covering array for DTEST for the value of
t determined in Step 2, using ~R as a constraint. For
illustration purposes, we include a covering array of the six
variables without constraints in Figure 3, followed by a
covering array computed with the expression above as a
constraint. Note that no terms from the expression above
can be found in the constrained array. For example, because
array (1) includes all 3-way combinations, mc && ~oc &&
~mr is present, but in (2) it is not found, although all other
3-way combinations of these variables are present in the
array (2).

 mc oc mr lo cc pc
1 0 0 0 0 0 0
2 0 0 1 1 1 1
3 0 1 0 1 0 1
4 0 1 1 0 1 0
5 1 0 0 1 1 0
6 1 0 1 0 0 1
7 1 1 0 0 1 1
8 1 1 1 1 0 0
9 1 1 0 0 0 0

10 0 0 1 1 0 0
11 0 0 0 0 1 1
12 1 1 1 1 1 1

 mc oc mr lo cc pc
1 0 0 0 0 0 0
2 0 0 1 1 0 0
3 0 1 0 0 1 0
4 0 1 1 0 0 0
5 1 0 1 0 1 0
6 1 1 0 0 0 0
7 1 1 1 0 1 0
8 0 0 0 1 0 0
9 0 0 0 0 1 0

10 1 0 1 0 0 0
11 1 1 0 0 1 0
12 0 1 1 0 1 0

(1) Covering array
without constraint

(2) Covering array
with constraint

Figure 3. DTEST array compared with unconstrained array.

VI. RELATED WORK
A variety of methods have been introduced for testing
ABAC systems, particularly those implemented using the
Extensible Access Control Meta Language (XACML) [12].
Xu and Zhang provide a survey of these methods [16],
which have generally been based on a fault model with
mutation operators, or policy coverage. Popular tools for
fault model based testing include Margrave [19], which uses
a specialized model checker, and has been applied to
XACML policies. It has also been used as the foundation
for mutation-based test generators, including a redundant
rule checking tool called Cirg, which supports mutation
testing tool Targen, which has been shown to produce high
levels of structural coverage [17][15][18]. Another, the
Access Control Policy Testing tools ACPT [20], uses the
NuSMV language and model checker to support testing a
broad range of policies, including ABAC, role based access
control, and customized policies specified by users in the
ACPT tool. ACPT includes combinatorial coverage of
inputs for tests, a feature also provided by the Simple
Combinatorial Test Generation algorithm and its related
tools [22][23].

 Pseudo-exhaustive test methods for circuit testing have
an extensive history of application [2]. While our method is
not derived from these earlier approaches, it shares the basic
notion of determining dependencies, partitioning according
to these dependencies, and testing exhaustively the inputs on
which an output is dependent. We have previously applied
this notion to software testing in a more general form, using
the observation that faults depend on a small number of
inputs, by covering all 2-way to 6-way combinations of
inputs [24].

VII. CONCLUSIONS
Correct implementation of access control requires that
policies written in natural language are mapped to machine-
enforceable rules, and that these rules are correctly
implemented. If access control rules contain at most k
boolean attributes per conjunction, for an expression in k-
DNF, then a k-way covering array includes all possible
settings of such terms. Thus for any possible combination of
n inputs, only k, k < n, matter in determining the truth of the
expression. In most applications, the number of conditions
will be small. The number of rows in a k-way covering array
of boolean variables is proportional to 2k log n. Thus for any
given value of k, even a large number n of attributes
requires only a test set proportional to log n to determine
access for all possible inputs. The structure of the access
control problem makes it possible to construct two test sets,
GTEST and DTEST, for which the expected result is always
grant or deny respectively. This structure eliminates the
need for a conventional test oracle, so several hundred
thousand tests can be generated and run automatically in a
few minutes.

 The HIPAA worked example included in this paper
shows that this process is practical for real-world use. We
plan to continue developing the approach, extending it for
special cases such as priorities among rule conditions. As
ABAC becomes more widely used, the method may assist
developers in ensuring that policies are implemented
correctly, and meet organizational requirements.

Disclaimer: Products may be identified in this document, but identification
does not imply recommendation or endorsement by NIST, nor that the
products identified are necessarily the best available for the purpose.

REFERENCES
[1] V. C. Hu et al., Guide to Attribute Based Access Control (ABAC)

Definition and Considerations, NIST Special Publication 800-162,
January 2014.

[2] McCluskey, E. J. (1984). Verification Testing: A Pseudoexhaustive
Test Technique. Computers, IEEE Transactions on, 100(6), 541-546.

[3] Hu, V. C., Kuhn, D. R., Xie, T., & Hwang, J. (2011). Model checking
for verification of mandatory access control models and properties.
International Journal of Software Engineering and Knowledge
Engineering, 21(01), 103-127.

[4] Kuhn, D. R., Kacker, R. N., & Lei, Y. (2010). SP 800-142. Practical
Combinatorial Testing.

[5] ACTS Home Page, http:// csrc.nist.gov/acts/
[6] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG: A

general strategy for t-way software testing. 14th international
conference on the engineering of computer-based systems, 2007, pp
549–556

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG System: An Approach toTesting Based on Combinatorial
Design,” IEEE Trans. Software Eng., 23(7):437-444,1997.

[8] Jussien, N., Rochart, G., & Lorca, X. (2008). Choco: an open source
java constraint programming library. In CPAIOR'08 Workshop on
Open-Source Software for Integer and Contraint Programming
(OSSICP'08) (pp. 1-10).

[9] De Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems
(pp. 337-340). Springer Berlin Heidelberg.

[10] United States Congress. Health Insurance Portability and
Accountability Act; Pub.L. 104–191, 110 Stat. 1936, enacted
August 21, 1996

[11] H. DeYoung, D. Garg, L. Jia, D. Kaynar, and A. Datta. Experiences
in the logical specification of the HIPAA and GLBA privacy laws. In
Proceedings of the 9th annual ACM Workshop on Privacy in the
Electronic Society (WPES), 2010. Full version: Carnegie Mellon
University Technical Report CMU-CyLab-10-007.

[12] The eXtensible Access Control Markup Language (XACML),
Version 3.0, OASIS Standard, January 22, 2013, <URL:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

[13] Bertolino, A., Lonetti, F., & Marchetti, E. (2010, September).
Systematic XACML request generation for testing purposes. In
Software Engineering and Advanced Applications (SEAA), 2010 36th
EUROMICRO Conference on (pp. 3-11). IEEE.

[14] Hu, V. C., Martin, E., Hwang, J., & Xie, T. (2007, July).
Conformance checking of access control policies specified in
XACML. In Computer Software and Applications Conference, 2007.
COMPSAC 2007. 31st Annual International (Vol. 2, pp. 275-280).
IEEE.

[15] Martin, E., & Xie, T. (2007, May). A fault model and mutation
testing of access control policies. In Proceedings of the 16th
international conference on World Wide Web (pp. 667-676). ACM.

[16] Xu, D., & Zhang, Y. (2014, June). Specification and Analysis of
Attribute-Based Access Control Policies: An Overview. In Software

Security and Reliability-Companion (SERE-C), 2014 IEEE Eighth
International Conference on (pp. 41-49). IEEE.

[17] Martin, E. (2006, October). Automated test generation for access
control policies. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications (pp. 752-753). ACM.

[18] Martin, E., & Xie, T. (2007, May). Automated test generation for
access control policies via change-impact analysis. In Proceedings of
the Third International Workshop on Software Engineering for
Secure Systems (p. 5). IEEE Computer Society.

[19] Fisler, K., Krishnamurthi, S., Meyerovich, L. A., & Tschantz, M. C.
(2005, May). Verification and change-impact analysis of access-
control policies. In Proceedings of the 27th international conference
on Software engineering (pp. 196-205). ACM.

[20] V. Hu, D.R. Kuhn, T. Xie, Property Verification for Generic Access
Control Models, IEEE/IFIP International Symposium on Trust,
Security, and Privacy for Pervasive Applications, Shanghai, China,
Dec. 17-20, 2008.

[21] ACPT Home Page,
http://csrc.nist.gov/groups/SNS/acpt/access_control_policy_testing.ht
ml

[22] Bertolino, A., Lonetti, F., & Marchetti, E. (2010, September).
Systematic XACML request generation for testing purposes. In
Software Engineering and Advanced Applications (SEAA), 2010 36th
EUROMICRO Conference on (pp. 3-11). IEEE.

[23] Bertolino, A., Daoudagh, S., Lonetti, F., & Marchetti, E. (2012,
April). Automatic XACML requests generation for policy testing. In
Software Testing, Verification and Validation (ICST), 2012 IEEE
Fifth International Conference on (pp. 842-849). IEEE.

[24] D. R. Kuhn, V. Okun, Pseudo-exhaustive Testing For Software, 30th
NASA/IEEE Software Engineering Workshop, April 25-27, 2006

[25] Working DRAFT Information technology - Next Generation Access
Control –Generic Operations and Data Structures (NGAC-GOADS)),
INCITS 499-2013, American National Standard for Information
Technology, American National Standards Institute, April 2014.

