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Abstract – Access control typically requires translating policies 
or rules given in natural language into a form such as a 
programming language or decision table, which can be 
processed by an access control system. Once rules have been 
described in machine-processable form, testing is necessary to 
ensure that the rules are implemented correctly. This paper 
describes an approach based on combinatorial test methods for 
efficiently testing access control rules, using the structure of 
attribute based access control (ABAC) to detect a large class of 
faults without a conventional test oracle.  
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         NOMENCLATURE 

Ri = antecedent of ith grant rule 
Tj = conjunction of attributes in a rule antecedent 
k = maximum number of attributes in any term 
m = number of grant rules 
n = number of attributes 
p = average number of attributes in terms 
v = number of attribute values for an attribute 
C = correct term within a rule antecedent 
F = faulty term within a rule antecedent 
N = number of rows in covering array 
P = policy as specified 
P’ = policy as implemented 

I. INTRODUCTION - ABAC 
Attribute based access control (ABAC) [1] is a 

method of controlling authorization using rules that include a 
subject’s attributes, along with attributes of system 
resources, and conditions in the environment.  For example, 
a rule may allow access to a database if the subject’s 
attributes include employee and US_citizen, where the rule 
for accessing a resource requires these attributes.  This 
approach can be more flexible than traditional models such 
as role-based access control, because it is not necessary to 
develop a structure of users and resources in advance. The 
tradeoff for such flexibility is that it may be difficult or 
impossible to know, at a point in time, which users have 
access to which resources.  ABAC policies can also be 
highly complex, with hundreds of attributes and a large 
number of rules. Although ABAC policies can be quite large, 
their rules have a regular structure – checking for the 
presence of specified sets of attribute values – that makes it 
possible to apply combinatorial methods to reduce the effort 

required for high-assurance testing. The need for testing can 
be especially acute in cases where the protected application 
is hosted by a third party, such as a cloud service provider, 
and the data owner cannot directly inspect the software used 
in the access control system.  

  This paper describes a method of testing for ABAC 
systems that is pseudo-exhaustive, which we define as 
exhaustive testing of all combinations of attribute values on 
which an access control decision is dependent.  This 
approach is analogous to pseudo-exhaustive methods for 
testing combinational circuits [2], where the verification 
problem is reduced by exhaustively testing only the subset 
of inputs on which an output is dependent, or by partitioning 
the circuit and exhaustively testing each segment. To test 
ABAC systems [1][3], we can use the basic principle of 
testing only subsets of attributes on which a decision is 
dependent, although the partitioning is done in a different 
manner than for combinational circuits.  The structure of the 
access control problem, ABAC in particular, makes it 
possible to apply the same principle by rendering the 
conditions for each grant in disjunctive normal form, then 
considering each term separately.   

For an ABAC system, a rule with attributes 
employment_status and time_of_day might be, “If subject is 
an employee and the hour is between 9 am and 5 pm, then 
allow entry.”  The problem with this approach is that n 
boolean attributes or variables result in potentially 2n rules. 
Many such rules may be included in written policy 
documents, and rules may include a variety of attributes. For 
any combination of attribute values, the system must 
implement rules that accurately reflect the written policy. 
The structure of such rules is typically as follows, where Ri 
are boolean conditions evaluating the values of one or more 
attributes: 

R1    →  grant 
R2     →  grant 
… 
Rm     →  grant  
else  →  deny 

 
which is equivalent to: 

R1    →  grant 
R2     →  grant 
… 
Rm     →  grant 
(~R1) (~R2)… (~Rm) →  deny 

Example:  Suppose we have an access rule as shown below: 



 

     if (a && (c && !d ||e))  grant(); 
     else if (!a && b && !c)  grant(); 
     else deny(); 

 
This code can be mapped to the following expression: 

 
(a(cd̅ +e) → grant) 
(a̅bc̅ → grant) 
((∼(a(cd̅ +e)))(∼(a̅bc̅)) → deny) 

 
In a typical ABAC installation, the boolean literals 

could be conditions, such as age>18, or boolean attributes 
such as employee, but the structure will be as shown in the 
example. That is, a series of expressions specifying subsets 
of attribute conditions that must be true for access to be 
granted, followed by a default deny-access rule when none 
of the attribute expressions have been instantiated to true.   

II. TESTING ABAC IMPLEMENTATIONS 
Testing an ABAC system requires showing that the 

policy specified, P, is correctly implemented. The 
implemented policy P’ must be shown to produce the same 
response as P for any combination of attributes used as input. 
That is, for input attributes x1,…,xn, P’(x1,…,xn) = 
P(x1,…,xn).    

 
1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 
2 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 
3 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 
4 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 
5 1 0 0 0 1 0 0 1 0 0 1 1 1 1 0 
6 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 
7 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 
8 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 
9 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 

10 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 
11 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 
12 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 
13 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 
14 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 
15 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 
16 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 
17 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 
18 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 
19 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 
20 1 1 1 1 0 0 1 0 0 1 1 1 0 1 1 
21 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 
22 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 

  Figure 1. 3-way covering array of 15 boolean parameters 
 

How should an ABAC system be tested?  Confirming 
that access will be granted for users with the right attributes 
is easy:  we can simply read off the attribute conditions for 
each grant expression and verify that the access control 
system returns an authorization in each case. The number of 
such tests is linear in the number of grant conditions. 
However, it is much more difficult to ensure that no invalid 
combination of attributes will result in authorization. With n 
boolean attributes or variables there are 2n possible 
combinations of attributes. For example, it would not be 

unusual to have 50 boolean attributes, resulting in 250 ≈
1015  combinations, but it must be shown that no 
combination will improperly allow access.  

To make testing tractable, we take advantage of 
combinatorial methods [4][5]. To see the advantages of a 
combinatorial approach, refer to Figure 1, which shows a 
covering array of 15 boolean variables. A covering array is 
an N x k array of N rows and k variables. In every N x t 
subarray, each t-tuple occurs at least once. In software 
testing, each row of the covering array represents a test, with 
one column for each parameter that is varied in testing. 
Collectively, the rows of the array include every t-way 
combination of parameter values at least once. For example, 
Figure 1 shows a covering array that includes all 3-way 
combinations of binary values for 15 parameters. Each 
column gives the values for a particular parameter. It can be 
seen that any three columns in any order contain all eight 
possible combinations of the parameter values. Collectively, 
this set of tests will exercise all 3-way combinations of input 
values in only 22 tests, as compared with 32,768 for 
exhaustive coverage. The size of a t-way covering array of n 
variables with v values each is proportional to vt log n [6][7]. 
For the example described in Sect. I, with five attributes and 
two possible decisions, there are 25 = 32 possible rules. 
However, a covering array of all 3-way combinations 
contains only 12 rows. The number of variables for which all 
settings are guaranteed to be covered in a covering array is 
referred to as the strength; a 3-way array is of strength 3.  
        We will use covering arrays of attributes, in association 
with ABAC policies that have been converted to k-DNF 
form.  k-DNF refers to disjunctive normal form where no 
term contains more than k literals. Recall that a term is a 
conjunction of one or more literals within the disjunction.  
For example, abc + de contains two terms, one with three 
literals and one with two, so the expression is in 3-DNF 
form. The covering array does not contain all possible input 
configurations, but it will contain all k-way combinations of 
variable values. Where an expression is in k-DNF, any term 
containing k literals that is resolved to true will clearly result 
in the full expression being evaluated to true. For example, 
an ABAC rule in 2-DNF form could be:  “if employee 
&& US_citizen || auditor then grant”. This rule 
contains one term of two attributes and one term of one 
attribute, so it is 2-DNF. Because a covering array of 
strength k contains every possible setting of all k-tuples and 
i-tuples for i < k, it contains every combination of values of 
any k literals. 
        Covering array generation tools, such as ACTS [5][6], 
make it possible to include constraints that prevent the 
inclusion of variable combinations that meet criteria 
specified in a first order logic style syntax. For example, if 
we are testing applications that run on various combinations 
of operating systems and browsers, we may include a 
constraint such as ‘OS = “Linux” => browser != 
“IE”’. Constraints are typically used in situations such as 
this, where certain combinations do not occur in practice, 
and therefore should not be included in tests. Modern 



 

constraint solvers such as Choco [8] and Z3 [9] make it 
possible to process very complex constraint sets, converting 
logic expressions into combinations that are invalid and can 
be screened from the final array.  
 
Method:  Let R = rule antecedents (left hand side of an 
implication rule such as p in p → q) of one or more policy 
rules being tested in k-DNF, and Ti are terms (conjuncts of 
one or more attributes) in R. For the example included in the 
introduction, terms Ti of R would be acd̅, ae, and a̅bc̅.  R is 
not necessarily the complete policy; it may be the set of 
rules associated with a particular resource that we wish to 
test, for example.  
 
Positive testing:  Generate a test set GTEST for which every 
test should produce a response of grant. It must be shown 
that for all possible inputs, where some combination of k 
input values matches a grant condition, a decision of grant 
is returned.  Construct test set GTEST with one test for each 
term of R as follows: 
 

GTESTi =  𝑇𝑇𝑖𝑖 � ~𝑇𝑇𝑗𝑗𝑗𝑗≠𝑖𝑖  
 
The construction ensures that each term in P is verified to 
independently produce a response of grant. Negating each 
term Tj, i ≠ j, prevents masking of a fault in the presence of 
other combinations that would return the same result.  For 
example, if a rule condition is ab + cd →grant, inputs of 
1100, 1101, 1110 could be used for testing ab →grant. 
However, input 1111 would not detect the fault if the 
system ignores variable a or b, because the condition cd 
would cause a grant decision, and no other grant predicates 
would be evaluated. One such test is required for each term 
in a grant rule, so for m rules with an average of p terms 
each, the number of tests required is proportional to mp.  
 
Negative testing: Generate a test set DTEST for which every 
test should produce a response of deny.  It must be shown 
that for all possible inputs, where no combination of k input 
values matches a grant condition, a decision of deny is 
returned.   
 

DTEST = covering array of strength k, for the set of 
attributes included in R, with constraints specified 
by ~R.  

 
Note that the structure of the access control rule evaluation 
makes it possible to use a covering array for DTEST, 
compressing a large number of test conditions into a few 
tests. Because a deny is issued only after all grant 
conditions have been evaluated, masking of one 
combination by another can only occur for DTEST when a 
test produces a response of grant. In such a case, an error 
has been discovered, which can be repaired before running 
the test set again. Since DTEST is a covering array, the 

number of tests will be proportional to vk log n, for v values 
per attribute (normally v=2 since most will be boolean 
conditions), and n attributes. For m rules, the number of 
tests is multiplied by the constant m. 
 
Example: Table 1 gives a set of boolean attributes a 
through e, where each row defines values for the attributes 
that determine a decision, either grant or deny. Thus a 
covering array for the antecedent R of a rule in 3-DNF such 
as (acd̅ + a̅bc̅ → grant) is given in Table 1. The total 
number of 3-way combinations covered is the number of 
settings of three binary variables multiplied by the number 
of ways of choosing three variables from five, i.e., 23 �5

3
� =

80.   
     Table 2 shows a covering array for this set of variables 
generated using ~ R as a constraint. That is, the two terms of 
the rule, acd̅ and a̅bc̅,  have been excluded from the array, 
but all other 1-, 2-, and 3-way combinations can be found in 
the array. Because acd̅ and a̅bc̅ are the only conditions 
under which access should be granted, the array in Table 2 
should result in a deny response from the access control 
system for every test. Collectively, the tests include all 78 3-
way settings of attributes that will not instantiate the access 
control rule to true.   

 
 a b c d e 
1 0 0 0 0 0 
2 0 0 1 1 1 
3 0 1 0 1 0 
4 0 1 1 0 1 
5 1 0 0 1 1 
6 1 0 1 0 0 
7 1 1 0 0 1 
8 1 1 1 1 0 
9 1 1 0 0 0 
10 0 0 1 1 0 
11 0 0 0 0 1 
12 1 1 1 1 1 

       Table 1. 3-way covering array 
  

 a b c d e 
1 0 0 0 0 0 
2 0 0 1 1 1 
3 0 1 1 0 0 
4 1 0 0 1 0 
5 1 0 1 1 0 
6 1 1 0 0 1 
7 1 1 1 1 1 
8 0 0 1 0 1 
9 1 1 0 1 0 

10 0 0 0 1 1 
11 1 0 0 0 0 
12 0 1 1 1 0 
13 1 0 0 0 1 
14 0 1 1 0 1 

Table 2. 3-way covering array with constraint ~R 



 

III. FAULT DETECTION 
     Now consider the faults that this method can detect. 
Suppose that some combination of attributes exists that 
produces a different response than required by the policy P 
in k-DNF form. Tests contained in GTEST and DTEST will 
detect a large class of missing terms, added terms, or altered 
terms containing k or fewer attributes.  In this section we 
analyze faults that will be detected, and the underlying 
conditions in these faults. Table 3 illustrates the fault types 
and detection conditions for each.  
 

  Term C=correct 
term 

F=faulty 
term 

GTEST detect 
condition 

DTEST detect 
condition 

notes 

1 missing abc -- abc none  
2 added -- ab none ab  
3  abc a̅b none a̅bc, a̅bc̅  
4  abc ab none abc ̅  
5  ab abc -- -- no fault 
6 altered abc abc̅ abc abc̅  
7  abc ab none abc ̅  
8  abc a̅b abc a̅bc, a̅bc̅  

Table 3. Example faults and detection conditions. 
 
k-DNF detection property: Collectively, tests from GTEST 
and DTEST will detect added, deleted, or altered faults with 
up to k attributes. 
  
Proof outline: Three cases can be considered, for missing, 
added, or altered terms in the policy. The analysis for each 
case is keyed to the numbered examples in Table 3.  
 
Missing term. (1) Fault detected by GTEST. If a term is 
missing in the faulty implementation P’, then there is some 
combination of attributes accepted in P that is not included 
in P’.  Since it is in P, GTEST will include the combination 
and the fault will be detected.  
 
Added term. If the system incorrectly issues a grant 
response, then some combination F of attributes accepted in 
P’ is not included in P. We consider three cases depending 
on the number of attributes, j, in the added term. 
 

j < k and F is not a subset of some other term (2, 3). 
Detected by DTEST because the added term will be part 
of the non-grant combinations in DTEST. 

 
j < k and F is a subset of some other term (4).  Detected 
by DTEST. If the j attributes of the added term are a 
subset of some term C in P, then because DTEST 
contains all k-way combinations not excluded by R, it 
will include all k-way combinations of the attributes in 
F with settings different from C.  For example, if F = 
ab = 11, and C = abc = 110, then DTEST will include 
other settings of abc, which will include abc = 111.  
But because this term includes F, it will produce an 
incorrect grant response, detecting the fault. Note that if 

P contains both abc and abc̅, then the result of grant for 
ab = 11 is in fact correct, since abc̅  + abc = ab.  
 
j < k and there is some term C in P that is a subset of F 
(5). In this case a fault does not exist because any input 
that produces a grant response from P would produce a 
grant response with F added, because F contains all 
attributes of C.  

 
Altered term.  Three cases can be distinguished, based on 
the number of attributes j in the incorrect term F as 
compared with k. 
 

j = k (6). Detected by GTEST because it includes a test 
with the correct term, and no other combination of 
attributes in that test will match any other term in P. 

 
j < k and F is a subset of some other term (7). Detected 
by DTEST if there is no other term in P’ that excludes 
from DTEST F ∪ x, where x is one or more attributes in 
C that are not in F. Example: if C = abc and F is ab, 
then abc̅ is in DTEST, unless P’ also contains bc̅. Note 
that if DTEST includes F ∪ x, because there is some 
other term D in P where x ⊆ D, then there is no fault 
because the disjunction of the altered term with the 
other term would not accept any attribute sets not 
accepted in P. Not detected by GTEST because any test 
that contains the attributes of the correct term C will 
contain all attributes of a subset of C.  
 
j < k and F is not a subset of altered term C (8).  
Detected by GTEST because it will include C, and P’ 
will not match C. □ 

 
If more than k attributes are included in the altered term, 
some faults are still detected.  
 

j > k and C is not a subset of F. Detected by GTEST 
because C will be included in GTEST but will produce a 
deny response.  
 
j > k and C is a subset of F. Not detected by DTEST 
because DTEST excludes C, and therefore excludes F 
because it contains C. Not necessarily detected by 
GTEST because the settings of attributes x in F but not C 
may result in C ∪ x = F. This case can be resolved by 
strengthening the covering array DTEST, using an array 
of strength k+i to detect faulty terms with up to i 
additional attributes. 

IV. TRADEOFFS AND PRACTICAL CONSIDERATIONS 
The process scales easily to systems with a large number of 
attributes that must be included in access decisions. Because 
the number of rows in a covering array grows only with log 
n for n variables/attributes at a given number of attributes 



 

and values, a larger policy specification, involving many 
more attributes, requires only a few additional tests. For 
example, it is possible to cover all 3-way combinations of 
100 boolean variables with 45 tests, increasing only to 57 
tests for 300 variables.   
    The most significant limitation for this approach occurs 
where terms in access control rules contain a large number 
of attribute values per attribute.  Although covering array 
size grows only with log n, the value of k for the k-DNF 
form of rules is an exponent in the number of combinations 
that must be covered, and consequently the number of rows 
increases with vk, for v attribute values. If terms in the rules 
contain more than six or seven attributes, it may not be 
practical to generate covering arrays, given the limitations 
of today’s algorithms. However, a large number of tests is 
not a barrier, because the structure of the solution resolves 
the oracle problem by ensuring that every test in GTEST 
should produce a response of grant and every test in DTEST 
should produce a response of deny. This means that tests can 
be fully automated, making it possible to execute a large 
number of tests.  
     Table 5 shows test set sizes for a variety of 
configurations, assuming a value of p = 4 terms per rule. 
The column N tests gives the size N of a covering array for 
k-way combinations of n attributes with v values each.  The 
size of DTEST is m × N, since there will be one covering 
array per rule tested.  Note that the test time for even a large 
test set of more than 600,000 tests would be roughly 10 
minutes, assuming a time of 1 ms per test. In addition, since 
the tests are independent, testing can be divided among as 
many processors as are available, so even millions of tests 
could be tractable. 
 

k v n m N tests #GTEST #DTEST 
3 2 50 20 36 80 720 

50  200 1800 
100 20 45 80 900 

50  200 2250 
4 50 20 306 80 6120 

50  200 15300 
100 20 378 80 7560 

50  200 18900 
6 50 20 1041 80 20820 

50  200 52050 
100 20 1298 80 25960 

50  200 64900 
4 2 50 20 98 80 1960 

50  200 4900 
100 20 125 80 2500 

50  200 6250 
4 50 20 1821 80 36420 

50  200 91050 
100 20 2337 80 46740 

50  200 116850 
6 50 20 9393 80 187860 

50  200 469650 
100 20 12085 80 241700 

50  200 604250 
Table 4. Test set sizes. 

V. HIPAA PRIVACY EXAMPLE 
The following text is an excerpt from Health Insurance 
Portability and Accountability Act (HIPAA) rules that 
specify when a health care organization must treat a 
patient’s personal representative of as the individual [10].  
(This policy fragment has been used in previous work on 
formal specification of natural language policies [11].) 
Typical cases include a parent making decisions on behalf 
of a child.  
   

(g)(1) Standard: Personal representatives. As 
specified in this paragraph, a covered entity must, 
except as provided in paragraphs (g)(3) and (g)(5) 
of this section, treat a personal representative as 
the individual for purposes of this subchapter.  
 
(2) Implementation specification: adults and 
emancipated minors. If under applicable law a 
person has authority to act on behalf of an 
individual who is an adult or an emancipated 
minor in making decisions related to health care, a 
covered entity must treat such person as a personal 
representative under this subchapter, with respect 
to protected health information relevant to such 
personal representation.  
 
(3)(i) Implementation specification: unemancipated 
minors. If under applicable law a parent, guardian, 
or other person acting in loco parentis has 
authority to act on behalf of an individual who is 
an unemancipated minor in making decisions 
related to health care, a covered entity must treat 
such person as a personal representative under this 
subchapter, with respect to protected health 
information relevant to such personal 
representation, except that such person may not be 
a personal representative of an unemancipated 
minor, and the minor has the authority to act as an 
individual, with respect to protected health 
information pertaining to a health care service, if:  
 
(A) The minor consents to such health care service; 
no other consent to such health care service is 
required by law, regardless of whether the consent 
of another person has also been obtained; and the 
minor has not requested that such person be 
treated as the personal representative; (B) The 
minor may lawfully obtain such health care service 
without the consent of a parent, guardian, or other 
person acting in loco parentis, and the minor, a 
court, or another person authorized by law 
consents to such health care service; or (C) A 
parent, guardian, or other person acting in loco 
parentis assents to an agreement of confidentiality 
between a covered health care provider and the 
minor with respect to such health care service.  



 

Step 1:  Review the text to identify attributes or variables 
that must be considered in access rules. Attributes in statutes 
may represent existence of various documents signed by the 
parties, among other basic attributes such as age, 
citizenship, etc. For this example, we consider the rules 
specified in (g)(3)(i)(A), for cases in which a minor has the 
authority to act as an individual. Each attribute is given a 
short mnemonic name in the covering array. These are 
shown below by bracketing each attribute, with a variable 
name annotation: 
 
(A) The {minor consents : mc} to such health care service; no 
{other consent : oc} to such health care service is required by law, 
regardless of whether the consent of another person has also 
been obtained; and the minor has not {requested that such 
person be treated as the personal representative : mr}; (B) The 
{minor may lawfully obtain : lo} such health care service without 
the consent of a parent, guardian, or other person acting in loco 
parentis, and the {minor : mc}, a {court : cc}, or {another person 
: oc} authorized by law consents to such health care service; or 
(C) A {parent, guardian, or other person acting in loco parentis 
assents to an agreement of confidentiality : pc} between a 
covered health care provider and the minor with respect to such 
health care service. 
 
Step 2: Convert the text description to rules in k-DNF form, 
in this case, 3-DNF. This mapping is as shown in Table 5. 
Note that the “or” connector prior to clause (C) indicates a 
disjunction of the three clauses. 
 
 
Text Attributes 
(A) The {minor consents : mc} to such health 
care service; no {other consent : oc} to such 
health care service is required by law, regardless 
of whether the consent of another person has 
also been obtained; and the minor has not 
{requested that such person : mr} be treated as 
the personal representative; 

expression: 
mc && ~oc && ~mr 

attribute sets: 
{mc, ~oc,  ~mr} 

(B) The {minor may lawfully obtain : lo} such 
health care service without the consent of a 
parent, guardian, or other person acting in loco 
parentis, and the {minor : mc}, a {court : cc}, or 
{another person : oc} authorized by law consents 
to such health care service; 

expression: 
lo && (mc||cc||oc) 
= lo && mc || lo && 
cc || lo && oc 
attribute sets: 
{lo, mc}, {lo, cc},  
{lo, oc} 

(C) A {parent, guardian, or other person acting 
in loco parentis assents to an agreement of 
confidentiality : pc} 

expression: pc 
attribute sets: 
{pc} 

Table 5. Mapping of text to attributes. 
 

Step 3:  Determine the maximum number of AND 
connectives in access rule conditions. In the HIPAA 
example, three attributes are conjoined in Sect. (g)(3)(i)(A):  
“minor consents ...; no other consent to such health care 
service is required by law, ...; and the minor has not 
requested that such person be treated as the personal 
representative”. Because the expression above is in 3-DNF, 

with a maximum of three attributes in conjunction, a 3-way 
covering array is sufficient to consider all relevant 
combinations of attribute values. Note that other practical 
cases may involve more than 3-way combinations of 
attributes in terms, but the process would be the same as in 
this illustrative example. Combining these terms, we have: 
 
mc && ~oc && ~mr || lo && (mc || cc || oc) || pc → grant 
=  
mc && ~oc && ~mr || lo&&mc || lo&&cc || lo&&oc || pc → grant 
 
Step 4:  
GTEST: Generate tests for GTEST, with one test for each term 
and other terms false. Tests are shown in Figure 2.   

 

 mc oc mr lo cc pc 
1 1 0 0 0 0 0 
2 1 0 1 1 0 0 
3 0 1 0 1 0 0 
4 0 0 0 1 1 0 
5 0 0 0 0 0 1 

 

 mc oc mr lo cc pc 
1 0 0 0 0 0 0 
2 0 0 1 1 0 0 
3 0 1 0 0 1 0 
4 0 1 1 0 0 0 
5 1 0 1 0 1 0 
6 1 1 0 0 0 0 
7 1 1 1 0 1 0 
8 0 0 0 1 0 0 
9 0 0 0 0 1 0 

10 1 0 1 0 0 0 
11 1 1 0 0 1 0 
12 0 1 1 0 1 0 

GTEST DTEST 
Figure 2. Completed GTEST and DTEST arrays. 

 
DTEST: Compute a covering array for DTEST for the value of 
t determined in Step 2, using ~R as a constraint. For 
illustration purposes, we include a covering array of the six 
variables without constraints in Figure 3, followed by a 
covering array computed with the expression above as a 
constraint. Note that no terms from the expression above 
can be found in the constrained array.  For example, because 
array (1) includes all 3-way combinations, mc && ~oc && 
~mr is present, but in (2) it is not found, although all other 
3-way combinations of these variables are present in the 
array (2). 

 

 mc oc mr lo cc pc 
1 0 0 0 0 0 0 
2 0 0 1 1 1 1 
3 0 1 0 1 0 1 
4 0 1 1 0 1 0 
5 1 0 0 1 1 0 
6 1 0 1 0 0 1 
7 1 1 0 0 1 1 
8 1 1 1 1 0 0 
9 1 1 0 0 0 0 

10 0 0 1 1 0 0 
11 0 0 0 0 1 1 
12 1 1 1 1 1 1 

 

 mc oc mr lo cc pc 
1 0 0 0 0 0 0 
2 0 0 1 1 0 0 
3 0 1 0 0 1 0 
4 0 1 1 0 0 0 
5 1 0 1 0 1 0 
6 1 1 0 0 0 0 
7 1 1 1 0 1 0 
8 0 0 0 1 0 0 
9 0 0 0 0 1 0 

10 1 0 1 0 0 0 
11 1 1 0 0 1 0 
12 0 1 1 0 1 0 

(1) Covering array  
without constraint 

(2) Covering array  
with constraint 

Figure 3. DTEST array compared with unconstrained array.  



 

VI. RELATED WORK 
A variety of methods have been introduced for testing 
ABAC systems, particularly those implemented using the 
Extensible Access Control Meta Language (XACML) [12]. 
Xu and Zhang provide a survey of these methods [16], 
which have generally been based on a fault model with 
mutation operators, or policy coverage. Popular tools for 
fault model based testing include Margrave [19], which uses 
a specialized model checker, and has been applied to 
XACML policies. It has also been used as the foundation 
for mutation-based test generators, including a redundant 
rule checking tool called Cirg, which supports mutation 
testing tool Targen, which has been shown to produce high 
levels of structural coverage [17][15][18]. Another, the 
Access Control Policy Testing tools ACPT [20], uses the 
NuSMV language and model checker to support testing a 
broad range of policies, including ABAC, role based access 
control, and customized policies specified by users in the 
ACPT tool. ACPT includes combinatorial coverage of 
inputs for tests, a feature also provided by the Simple 
Combinatorial Test Generation algorithm and its related 
tools [22][23].   
 
     Pseudo-exhaustive test methods for circuit testing have 
an extensive history of application [2]. While our method is 
not derived from these earlier approaches, it shares the basic 
notion of determining dependencies, partitioning according 
to these dependencies, and testing exhaustively the inputs on 
which an output is dependent. We have previously applied 
this notion to software testing in a more general form, using 
the observation that faults depend on a small number of 
inputs, by covering all 2-way to 6-way combinations of 
inputs [24].  

VII. CONCLUSIONS 
Correct implementation of access control requires that 
policies written in natural language are mapped to machine-
enforceable rules, and that these rules are correctly 
implemented. If access control rules contain at most k 
boolean attributes per conjunction, for an expression in k-
DNF, then a k-way covering array includes all possible 
settings of such terms. Thus for any possible combination of 
n inputs, only k, k < n, matter in determining the truth of the 
expression. In most applications, the number of conditions 
will be small. The number of rows in a k-way covering array 
of boolean variables is proportional to 2k log n. Thus for any 
given value of k, even a large number n of attributes 
requires only a test set proportional to log n to determine 
access for all possible inputs. The structure of the access 
control problem makes it possible to construct two test sets, 
GTEST and DTEST, for which the expected result is always 
grant or deny respectively.  This structure eliminates the 
need for a conventional test oracle, so several hundred 
thousand tests can be generated and run automatically in a 
few minutes.   

     The HIPAA worked example included in this paper 
shows that this process is practical for real-world use. We 
plan to continue developing the approach, extending it for 
special cases such as priorities among rule conditions. As 
ABAC becomes more widely used, the method may assist 
developers in ensuring that policies are implemented 
correctly, and meet organizational requirements.   
 
Disclaimer: Products may be identified in this document, but identification 
does not imply recommendation or endorsement by NIST, nor that the 
products identified are necessarily the best available for the purpose. 
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