
A better-than-3n lower bound for the circuit complexity of an
explicit function∗

Magnus Gausdal Find1, Alexander Golovnev2, Edward A. Hirsch3, and Alexander S. Kulikov3

1National Institute of Standards and Technology, magnus.find@nist.gov

2New York University, alexgolovnev@gmail.com

3Steklov Institute of Mathematics at St. Petersburg, Russian Academy of Sciences,

{hirsch,kulikov}@pdmi.ras.ru

October 31, 2015

Abstract

1We consider Boolean circuits over the full binary basis. We prove a (3 +)n − o(n) lower 86
bound on the size of such a circuit for an explicitly defined predicate, namely an affine disperser
for sublinear dimension. This improves the 3n − o(n) bound of Norbert Blum (1984). The proof
is based on the gate elimination technique extended with the following three ideas. We generalize
the computational model by allowing circuits to contain cycles, this in turn allows us to perform
affine substitutions. We use a carefully chosen circuit complexity measure to track the progress
of the gate elimination process. Finally, we use quadratic substitutions that may be viewed as
delayed affine substitutions.

∗ Research is partially supported by NSF (grant 1319051) and the Government of the Russian Federation (grant
14.Z50.31.0030). A full version of this text is available as ECCC Technical Report 15-166 and attached to this extended
abstract.

magnus.find@nist.gov
alexgolovnev@gmail.com
{hirsch,kulikov}@pdmi.ras.ru

1 Introduction

In this paper we consider Boolean circuits over the full binary basis. A simple counting argument
[Sha49] shows that most Boolean functions require circuits of exponential size. However, showing
superpolynomial lower bounds for explicitly defined functions (for example, for functions from
NP) remains a hopelessly difficult task. (In particular, such lower bounds would imply P = NP.)
Moreover, even superlinear bounds are unknown for functions in ENP . Superpolynomial bounds are
known for MAEXP (exponential-time Merlin-Arthur games) [BFT98], and arbitrary polynomial
lower bounds are known for O2 (the oblivious symmetric second level of the polynomial hierarchy)
[CR06].

People started to tackle the problem in the 60s. Kloss and Malyshev [KM65] proved a lower
bound of 2n − O(1). Schnorr [Sch74] proved a 2n − O(1) lower bound for a class of functions
with certain structure. Stockmeyer [Sto77] proved a 2.5n − O(1) bound for certain symmetric
functions. Paul [Pau77] proved a 2.5n − o(n) lower bound for a variant of the storage access
functions. Eventually, Blum [Blu84] extended Paul’s argument and proved a 3n − o(n) bound.

Mysteriously, Blum’s bound remained unbeaten for more than thirty years. Recently, Demenkov
and Kulikov [DK11] showed a similar bound for affine dispersers. Their proof is much simpler (if
one assumes the existence of explicitly defined dispersers for granted), but that does not improve the
bound (actually, the o(n) term in [DK11] is worse than that in [Blu84]). In this paper we eventually
improve the bound for affine dispersers to (3 + 1)n − o(n), which is stronger than Blum’s bound. 86

Other models. The exact complexity of computational problems is different in different models
of computation: for example, switching from multitape to single-tape Turing machines squares the
time complexity; random access machines are even more efficient. Boolean circuits over the full
binary basis make a very robust computational model. Using a different constant-arity basis only
changes the constants in the complexity. A fixed set of gates of arbitrary arity (for example, ANDs,
ORs and XORs) still preserves the complexity in terms of the number of wires. After all, finding
a function hard for Boolean circuits can be viewed as a combinatorial problem, in a contrast to
lower bounds for uniform models. Therefore, breaking the linear barrier for Boolean circuits can be
viewed as an important milestone on the way to stronger complexity lower bounds.

For the basis U2 consisting of all binary Boolean functions except for parity (xor) and its
complement, Schnorr [Sch76] proved that the circuit complexity of the parity function is 3n − 3.
Zwick [Zwi91] gave a 4n − O(1) lower bound for certain symmetric functions, Lachish and Raz
[LR01] showed a 4.5n − o(n) lower bound for a strongly two-dependent function (a function that
has exactly four subfunctions with respect to any two variables and remains so after sufficiently
many substitutions). Iwama and Morizumi [IM02] improved this bound to 5n − o(n). Demenkov et
al. [DKMM15] gave a simpler proof of a 5n − o(n) lower bound for a function with o(n) outputs as
well as presented a 7n − o(n) lower bound for a function with n outputs.

While we do not have nonlinear bounds for constant-arity Boolean circuits, stronger bounds are
known for weaker models, including monotone circuits (Razborov [Raz85]), circuits of constant depth
with no XOR (Yao and H̊astad [Yao85, H̊as86]), circuits of polylogarithmic depth over infinite fields
(Shoup and Smolensky [SS91]), formulas (Subbotovskaya [Sub61], Khrapchenko [Khr71], [Nec66],
Andreev [And87], Impagliazzo and Nisan [IN93], Paterson and Zwick [PZ93], H̊astad [H̊as98] and
Tal [Tal14]). These bounds, however, do not translate to superlinear lower bounds for general
constant-arity Boolean circuits.

Connections to CircuitSAT algorithms. A recent promising direction initiated by Williams
[Wil13] connects the complexity of circuits to the complexity of algorithms for CircuitSAT (this is

1

the problem of checking whether a given circuit has a satisfying assignment, that is, a substitution of
inputs by constants that forces the circuit to output one). Namely, the existence of better-than-2n

algorithms for CircuitSAT for a particular circuit model implies exponential lower bounds for these
circuits for functions in large classes like NEXP. This way unconditional exponential lower bounds
have been proved for ACC0 circuits (constant-depth circuits with unbounded-arity OR, AND, NOT,
and arbitrary modular gates) [Wil14]. Ben-Sasson and Viola [BV14] have demonstrated that in
order to prove a specific linear lower bound for a function in ENP it suffices to lower the base of the
exponent in the 3-SAT complexity down to an appropriate constant. It should be noted, however,
that currently available algorithms for the satisfiability problem for general circuit classes are not
sufficient for proving new lower bounds.

Also techniques similar to the ones used in proving circuit lower bounds algorithms are employed
in a number of algorithms for CircuitSAT and FormulaSAT, see e.g. [Nur09, Sav14, San10, ST13,
KRT13, CKK+15, CK15].

Our methods. Almost all previous lower bounds have been proved using a simple gate elimination
technique: one gradually simplifies the function (for example, by substituting variables one by one)
showing that every simplification step eliminates a certain number of gates. A crucial idea [Sch74] is
to keep the function in the same class. Following [DK11], we prove lower bounds for affine dispersers,
that is, functions that are non-constant on affine subspaces of certain dimensions: Ben-Sasson and
Kopparty [BK12] gave an explicit construction of affine dispersers for sublinear dimensions.

Feeding an appropriate constant to a non-linear gate (for example, AND) makes this gate
constant and therefore eliminates subsequent gates, which helps to eliminate more gates than in the
case of a linear gate (for example, XOR). On the other hand, linear gates, when stacked together,
sometimes allow to reorganize the circuit. Then affine restrictions can kill such gates while keeping
the properties of an affine disperser. This idea has been used in [Pau77, Sto77, Blu84, ST13, DK11].

Thus, it is natural to consider a circuit as composed of linear circuits connected by non-linear
gates. In our case analysis we make affine substitutions but not restrictions. That is, instead of
just saying that x1 ⊕ x2 ⊕ x3 ⊕ x9 = 0 and removing all gates that become constant, we make
sure to replace all occurrences of x1 by x2 ⊕ x3 ⊕ x9. Since a gate computing such a sum might
be unavailable and we do not want to increase the number of gates, we “rewire” some parts of
the circuit, which, however, may potentially introduce cycles. This is the first ingredient of our
proof: cyclic circuits. That is, the linear components of our “circuits” may now have directed cycles;
however, we require that the values computed in the gates are still uniquely determined. Cyclic
circuits have already been considered in [Riv77, DC89, NTW04, RB12] (the last reference contains
an overview of previous work on cyclic circuits).

Thus we are able to make affine substitutions. We try to make such a substitution in order to
make the topmost (i.e., closest to the inputs) non-linear gate constant. This, however, does not seem
to be enough. The second ingredient in our proof is a complexity measure that manages difficult
situations (bottlenecks) by allowing to perform an amortized analysis: we count not just the number
of gates, we compute a linear combination of the number of gates and the number of bottlenecks.
Such measures were previously considered by several authors. For example, Zwick [Zwi91] counted
the number of (internal) gates minus the number of inputs of outdegree 1. The same measure
was later used by Lachish and Raz [LR01] and by Iwama and Morizumi [IM02]. Kojevnikov and
Kulikov [KK10] used a measure assigning different weights to linear and non-linear gates to show
that Schnorr’s 2n − O(1) lower bound [Sch76] can be strengthened to 7n/3 − O(1). Carefully chosen
complexity measures are also used to estimate the progress of splitting algorithms for NP-hard
problems [Kul99, KK06, FGK09].

2

2

Our main bottleneck (called “troubled gate”) is shown in Figure 1 on page 15. (All gates have
outdegrees exactly as shown on the picture, i.e., two inputs of degree 2 feed a gate of outdegree 1
that computes (x ⊕ a)(y ⊕ b) ⊕ c where a, b, c ∈ {0, 1} are constants.)

Sometimes in order to fight a troubled gate, we have to make a quadratic substitution, which
is the third ingredient of our proof. This happens if the gate below G is a linear gate fed by a
variable z; in the simplest case a substitution z = xy kills G, the linear gate, and the gate below
(actually, we show it kills much more). However, quadratic substitutions may make affine dispersers
constant, so we consider a special type of quadratic substitutions. Namely, we consider quadratic
substitutions as a form of delayed affine substitutions (in the example above, if we promise to
substitute later a constant either to x or to y, the substitution can be considered affine). In order to
maintain this, instead of affine subspaces (where affine dispersers are non-constant by definition) we
consider so-called read-once depth-2 quadratic sources (essentially, this means that all variables in
the right-hand sides of the quadratic substitutions that we make are pairwise distinct free variables).
We show that an affine disperser for a sublinear dimension remains non-constant for read-once
depth-2 quadratic sources of a sublinear dimension.

Definitions

Gates and notation. A circuit is an acyclic directed graph in which incoming edges are numbered
for every node. The nodes are called gates. A gate may have either indegree zero (in which case it
is called an input gate, or a variable) or indegree two (in which case it is called an internal gate).
Every internal gate is labelled by a Boolean function g : {0, 1} × {0, 1} → {0, 1}, and the set of all
the sixteen such functions is denoted by B2. We call these binary functions operations in order to
distinguish them from functions of n variables computed in the gates. The size of a circuit is the
number of internal gates.

We say that an operation is of and-type if it computes g(x, y) = (c1 ⊕ x)(c2 ⊕ y) ⊕ c3 for some
constants c1, c2, c3 ∈ {0, 1}, and of xor-type if it computes g(x, y) = x ⊕ y ⊕ c1 for some constant
c1 ∈ {0, 1}. Similarly, we call gates and-type and xor-type. If a gate computes an operation
depending on precisely one of its inputs, we call it passing.

If an (internal) gate computes a constant operation, we call it trivial (note that it still has
two incoming edges). If a substitution forces some gate G to compute a constant, we say that it
trivializes G. (For example, for a gate computing the operation g(x, y) = x ∧ y, the substitution
x = 0 trivializes it.)

We denote by out(G) the outdegree of the gate G. If out(G) = k, we call G a k-gate. If
out(G) ≥ k, we call it a k+-gate. We adopt the same terminology for variables (so we have
0-variables, 1-variables, 2+-variables, etc.).

One gate of outdegree zero is designated as the output.
A toy example of a circuit is shown in Figure 2 on page 15. For input gates, the corresponding

variables are shown inside. For an internal gate, we show its operation inside and its label near the
gate. As figure shows, a circuit corresponds to a simple program for computing a Boolean function:
each instruction of the program is a binary Boolean operation whose inputs are input variables or
the results of the previous instructions.

An affine disperser for dimension d(n) is a family of functions fn : Fn → F2 such that for all 2
sufficiently large n, fn is non-constant on any affine subspace of dimension at least d(n). There
exist polynomial-time computable affine dispersers for sublinear dimensions d(n) = o(n) [BK12,
Yeh11, Li11, Sha11, Li15].

3

2.1 Generalizations of circuits

Cyclic circuits. In this paper we use generalizations of circuits that simplify circuit transforma
tions. These generalized circuits may contain cycles; however, the underlying graphs are still not
arbitrary labelled directed graphs.

A cyclic circuit is a directed (not necessarily acyclic) graph where all vertices have indegree
either 0 or 2. We adopt the same terminology for its nodes (input and internal gates) and its size as
for ordinary circuits. We restrict our attention to cyclic xor-circuits, where all gates compute affine
operations. While the most interesting internal gates compute either ⊕ or ≡, for technical reasons
we also allow passing gates and trivial gates. We will be interested in multioutput cyclic circuits, so,
in contrast to our definition of ordinary circuits, several gates may be designated as outputs, and
they may have nonzero outdegree.

A circuit, and even a cyclic circuit, naturally corresponds to a system of equations over F2, where
internal gates correspond to variables of the system and variables of the (cyclic) circuit are counted
in the constants of the system (that is, we formally have a separate system for every assignment to
the input gates, but all these systems share the same matrix). For a gate G fed by gates F and
H and computing some operation 8, we write the equation G ⊕ (F 8 H) = 0. A more specific
clarifying example would be a gate G computing F ⊕ x ⊕ 1, where x is an input gate; then the line
in the system would be G ⊕ F = x ⊕ 1, where G and F contribute two 1’s to the matrix, and x ⊕ 1
contributes to the constant vector.

For a cyclic xor-circuit, this is a linear system with a square matrix. We call a cyclic xor-circuit
fair if this matrix has full rank. It follows that for every assignment of the inputs, there exist unique
values for the gates such that these values are consistent with the circuit (that is, for each gate its
value is correctly computed from the values in its inputs). Thus, similarly to an ordinary circuit,
every gate in a fair circuit computes a function of the values fed into its input gates (clearly, it is
an affine function). A simple example of a fair cyclic xor-circuit is shown in Figure 3 on page 15.
Note that if we additionally impose the requirement that the graph is acyclic, we arrive at ordinary
linear circuits (that is, circuits consisting of xor-type gates, passing gates, and constant gates).

Semicircuits. We introduce the following notion, called semicircuits, a generalization of both
Boolean circuits and cyclic xor-circuits.

A semicircuit is a composition of a cyclic xor-circuit and an (ordinary) circuit. Namely, its nodes
are split into two sets, X and C. The nodes in the set X form a cyclic xor-circuit. The nodes in the
set C form an ordinary circuit (if wires going from X to C are replaced by variables). There are no
wires going back from C to X. A semicircuit is called fair if X is fair. In what follows we abuse
the notation by using the word “circuit” to mean a fair semicircuit.

3 Lower bound

3.1 Overview

In this section we prove the main theorem. The proof goes by induction. We start with an affine
disperser and a circuit computing it on {0, 1}n . Then we gradually shrink the space where it is
computed by adding equations (“substitutions”) for variables. This allows us to simplify the circuit
by reducing the number of gates (and other parameters counted in the complexity measure) and
eliminating the variable we have just substituted.

In Section 3.2 we show how to make substitutions in fair semicircuits, and how to simplify them
afterwards. We also introduce “troubled” gates, special “unwanted” fragments of circuits that we

4

count in the complexity measure. We check that the simplification methods we use do not increase
the number of these gates too much.

In order to eliminate troubled gates, sometimes we use quadratic substitutions. In Section 3.3
we describe formally subsets of points of {0, 1}n resulting from all kinds of the substitutions we
make and show that affine dispersers are non-constant on such subsets. In Section 3.4 we define the
circuit complexity measure and formulate the main result: we can always reduce the measure by an
appropriate amount by shrinking the space; the lower bound follows.

Finally, Section 3.5 proves the main result by going through a number of cases.

3.2 Cyclic circuit transformations

In this section we consider several types of substitutions. It is straightforward how to substitute a
constant to an input:

Proposition 1. Let C be a circuit with input gates x1, . . . , xn, and let c ∈ {0, 1} be a constant. For
every gate G fed by x1 replace the operation g(x1, t) computed by G with the operation g'(x1, t) = g(c, t)
(thus the result becomes independent of x1). This transforms C into another circuit C ' (in particular,
it is still a fair semicircuit) such that it has the same number of gates, the same topology, and for
every gate H that computes a function h(x1, . . . , xn) in C, the corresponding gate in the new circuit
C ' computes the function h(c, x2, . . . , xn).

We call this transformation a substitution by a constant.
A more complicated type of a substitution is when we replace an input x with a function

computed in a different gate G. In this case in each gate fed by x, we replace wires going from x by
wires going from G. We call this transformation a substitution by a function.

Proposition 2. Let C be a circuit with input gates x1, . . . , xn, and let g(x2, . . . , xn) be a function
computed in a gate G. Consider the construction C ' obtained by substituting a function g to x1 (it has
the same number of gates as C). Then if G is not reachable from x1 by a directed path in C, then C '

is a fair semicircuit, and for every gate H that computes a function h(x1, . . . , xn) in C, except for x1,
the corresponding gate in the new circuit C ' computes the function h(g(x2, . . . , xn), x2, . . . , xn).

In what follows, however, we will also use substitutions that do not satisfy the hypothesis of this
proposition: substitutions that create cycles. We defer this construction to Section 3.2.2.

3.2.1 Normalization and troubled gates

In order to work with a circuit, we are going to assume that it does not contain obvious inefficiencies
(such as trivial gates, etc.), in particular, those created by substitutions. We describe certain
normalization rules below; however, while normalizing we need to make sure the circuit remains
within certain limits: in particular, it must remain fair and compute the same function. We need to
check also that we do not “spoil” a circuit by introducing “bottleneck” cases. Namely, we are going
to prove an upper bound on the number of newly introduced unwanted fragments called “troubled”
gates.

We say that an internal gate G is troubled if it satisfies the following three criteria: G is an
and-type gate of fanout 1, the gates feeding G are input gates, and both input gates feeding G have
fanout 2. See also Figure 1 on page 15. From now on, we denote all and-type gates by ∧, and all
xor-type gates by ⊕.

We always make substitutions consciously and thus can count the number of troubled gates
that can possible emerge. However, what if a gate is killed because of simplifications? We limit the

5

process of removing gates to normalization rules, and make sure that we never get more than four
new troubled gates per killed gate. We say that a circuit is normalized if none of the following rules
is applicable to it. Each rule eliminates a gate G whose inputs are gates I1 and I2. (Note that I1

and I2 can be inputs or internal nodes, and, in rare cases, they can coincide with G itself). Figure 4
on page 16 illustrates the rules.

Rule 1: If G has no outgoing edges and is not marked as an output, then remove it. Note also
that it could not happen that the only outgoing edge of G feeds itself, because this would make a
trivial equation and violate the circuit fairness.
Rule 2: If G is trivial, i.e., it computes a constant operation c, remove G and “embed” this
constant to the next gates. That is, for every gate H fed by G, replace the operation h(g, t) computed
in this gate (where g is the input from G and t is the other input) by the operation h ' (g, t) = h(c, t).
(Clearly, h ' depends on at most one argument, which is not optimal, and in this case after removing
G one typically applies Rule 3 or Rule 2 to its successors.)
Rule 3: If G is passing, i.e., it computes an operation depending only on one of its inputs, remove
G by reattaching its outgoing wires to that input. This may also require changing the operations
computed at its successors (the corresponding input may be negated; note that an and-type gate
(xor-type gate) remains an and-type gate (xor-type gate)).

If G feeds itself and depends on another input, then the self-loop wire (which would now go
nowhere) is dropped. (Note that if G feeds itself it cannot depend on the self-loop input.)

If G has no outgoing edges it must be an output gate (otherwise it would be removed by Rule 0).
In this special case, we remove G and mark the corresponding input of G (or its negation) as the
output gate.
Rule 4: If G is a 1-gate that feeds a single gate Q, Q is distinct from G itself, and Q is also fed by
one of G’s inputs, then replace in Q the incoming wire going from G by a wire going from the other
input of G (this might also require changing the operation at Q); then remove G. We call such a
gate G useless.
Rule 5: If the inputs of G coincide (I1 and I2 refer to the same node) then we replace the binary
operation g(x, y) computed in G with the operation g ' (x, y) = g(x, x). Then perform the same
operation on G as described in Rule 3 or 2.

Proposition 3. Each of the Rules 1–5 removes one internal gate, introduces at most four new
troubled gates. None of the rules change the functions of n input variables computed in the gates
that are not removed. A fair semicircuit remains a fair semicircuit.

3.2.2 Affine substitutions

In this subsection, we show how to make substitutions that do create cycles. This will be needed
in order to make affine substitutions. Namely, we take a gate computing an affine function e
x1 ⊕ i∈I xi ⊕ c (where c ∈ {0, 1} is a constant) and “rewire” a circuit so that this gate is
replaced by a trivial gate computing a constant b ∈ {0, 1}, while x1 is replaced by an internal gate.
The resulting circuit over x2, . . . , xn may be viewed as the initial circuit under the substitution e
x1 ← i∈I xi ⊕ c ⊕ b. The “rewiring” is formally explained below; however, before that we need to
prove a structural lemma (which is trivial for acyclic circuits) that guarantees its success.

For an xor-circuit, we say that a gate G depends on a variable x if G computes an affine function
in which x is a term. Note that in a circuit without cycles this means that precisely one of the
inputs of G depends on x, and one could trace this dependency all the way to x, therefore there
always exists a path from x to G. The following lemma states that it is always possible to find such
a path in a fair cyclic circuit too. However, it may be possible that some nodes on this path do not

6

depend on x. Note that dependencies in cyclic circuits are sometimes counterintuitive. For example,
in Figure 3 on page 15, gate G2 is fed by x4 but does not depend on it.

Lemma 1. Let C be a fair cyclic xor-circuit, and let the gate G depend on the variable x. Then
there is a path from x to G.

We now come to rewiring. The sketch in Figure 5 on page 16 shows the main idea.

Lemma 2. Let C be a fair semicircuit with input gates x1, . . . , xn and internal gates G1, . . . , Gm.
Let G be a gate not reachable by a directed path from any and-type gate. Assume that G computes e
the function x1 ⊕ i∈I xi ⊕ c, where I ⊆ {2, . . . , n}. Let b ∈ {0, 1} be a constant. Then one can

' ' transform C into a new circuit C with the following properties: 1) graph-theoretically, C has
the same gates as C, plus a new internal gate Z; some edges are changed, in particular, x1 is
disconnected from the circuit; 2) the operation in G is replaced by the constant operation b; 3)
inC, (Z) = 2, outC, (G) = outC (G) + 1, outC, (x1) = 0. outC, (Z) = outC (x1) − 1. 4) The indegrees

' ' and outdegrees of all other gates are the same in C and C . 5) C is fair. 6) all gates common for e
C ' and C compute the same functions on the affine subspace defined by x1 ⊕ i∈I xi ⊕ c ⊕ b = 0,
that is, if f(x1, . . . , xn) is the function computed by an internal gate in C and f ' (x2, . . . , xn) is the e
function computed by its counterpart in C ' , then f(i∈I xi ⊕ c ⊕ b, x2, . . . , xn) = f ' (x2, . . . , xn). e
The gate Z computes the function i∈I xi ⊕ c ⊕ b (which on the affine subspace equals x1).

This transformation does not introduce new troubled gates.
After we apply the transformation, we apply Rule 2 to G. Since the only troubled gates

introduced by this rule are the inputs of the removed gate, no troubled gates are introduced (and
one gate, G itself, is eliminated, thus the combination of Lemma 2 and Rule 2 does not increase the
number of gates).

3.3 Read-once depth-2 quadratic sources

We generalize affine sources as follows.

Definition 1. Let the set of variables {x1, . . . , xn} be partitioned into three disjoint sets F, L, Q ⊆
{1, . . . , n} (for free, linear, and quadratic). Consider a system of equalities that contains for
each variable xj with j ∈ Q, a quadratic equality of the form xj = (xi ⊕ ci)(xk ⊕ ck) ⊕ cj , where
i, k ∈ F and ci, ck, cj are constants; the variables from the right-hand side of all the quadratic
substitutions are pairwise disjoint. For each variable xj with j ∈ L, an affine equality of the form e e
xj = i∈Fj ⊆F xi ⊕ i∈Qj ⊆Q xi ⊕ cj for some constant cj . A subset R of {(x1, x2, . . . , xn) ∈ F2

n}
that satisfies these equalities is called a read-once depth-2 quadratic source (or rdq-source) of
dimension d = |F |.

An example of such a system is shown in Figure 6 on page 16. The variables from the right-hand
side of quadratic substitutions are called protected. Other free variables are called unprotected.

For this, we will gradually build a straight-line program (that is, a sequence of lines of the form
x = f(. . .), where f is a function depending on the program inputs (free variables) and the values
computed in the previous lines) that produces an rdq-source. We build it bottom-up. Namely,
we take an unprotected free variable xj and extend our current program with either a quadratic
substitution xj = (xi ⊕ ci)(xk ⊕ ck) ⊕ cj depending on free unprotected variables xi, xk or a linear e
substitution xj = i∈J xi ⊕ cj depending on any variables. It is clear that such a program can be
rewritten into a system satisfying Definition 1. In general, we cannot use protected free variables
without breaking the rdq-property. However, there are two special cases where this is possible: (1)

7

we can substitute a constant to a protected variable (and update the quadratic line accordingly: for
example, z = xy and x = 1 yield z = y and x = 1); (2) we can substitute one protected variable for
another variable (or its negation) from the same quadratic equation (for example, z = xy and x = y
yield z = y and x = y).

In what follows we abuse the notation by denoting by the same letter R the source, the straight-
line program defining it, and the mapping R : Fd

2 → Fn computed by this program that takes the d2
free variables and evaluates all other variables.

Let R ⊆ Fn be an rdq-source of dimension d, let the free variables be x1, x2, . . . , xd, and let 2
f : Fn → F2 be a function. Then f restricted to R, denoted f |R, is a function f |R : Fd

2 → F2, defined 2
by f |R(x1, . . . , xd) = f(R(x1, . . . , xd)). Note that affine sources are precisely rdq-sources with Q = ∅.
We define dispersers for rdq-sources similarly to dispersers for affine sources: A family of functions
fn : Fn → F2 is an rdq-disperser for dimension d(n) if for all sufficiently large n, for every rdq-source 2
R of dimension at least d(n), fn|R is non-constant. The following proposition shows that affine
dispersers are also rdq-dispersers for related parameters. By setting one protected variable to 0 for
each quadratic restriction, we get that if R is an rdq-source of Fn of dimension d, Then R contains 2
an affine subspace of dimension at least d/2.1 In particular we have the following.

Corollary 1. An affine disperser for sublinear dimension is also an rdq-disperser for sublinear
dimension.

3.4 Circuit complexity measure

For a circuit C and a straight-line program R defining an rdq-source, we define the following circuit
complexity measure:

µ(C, R) = g + αQ · q + αT · t + αI · i ,

where g is the number of internal gates in C, q is the number of quadratic substitutions in R, t is
the number of troubled gates in C, and i is the number of influential input gates in C. We say that
an input is influential if it feeds at least one gate or is protected (recall that a variable is protected
if it occurs in the right-hand side of a quadratic substitution in R). The constants αQ, αT , αI > 0
will be chosen later.

Proposition 3 implies that when a gate is removed from a circuit by applying a normalization
rule the measure µ is reduced by at least β = 1 − 4αT . The constant αT will be chosen to be very
close to 0 (certainly less than 1/4), so β > 0.

In order to estimate the initial value of our measure, we need the following lemma.

Lemma 3. Let C be a circuit computing an affine disperser f : Fn → F2 for dimension d, then the 2
number of troubled gates in C is less than n + 52

d .2

We are now ready to formulate our main result.

Theorem 1. Let f : Fn → F2 be an rdq-disperser for dimension d and C be a fair semicircuit 2
computing f . Let αQ, αT , αI ≥ 0 be some constants, and αT ≤ 1/4. Then µ(C, ∅) ≥ δ(n − d − 2)
where

αI αQδ := αI + min 2 , 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β + , and β = 1 − 4αT .2

We defer the proof of this theorem to the next section. This theorem, together with Corollary 1,
implies a lower bound on the circuit complexity of affine dispersers.

1 This is obviously false for quadratic varieties: no Boolean function can be non-constant on all sets of common roots
of n−o(n) quadratic polynomials. For example, the system of n/2 quadratic equations x1x2 = x3x4 = . . . = xn−1xn = 1
defines a single point, so any function is constant on this set.

8

Corollary 2. Let δ, β, αQ, αT , αI be constants as above, then the circuit size of an affine disperser
for sublinear dimension is at least δ − αT n − o(n).2	 − αI

The maximal value of δ − αT − αI satisfying the condition from Corollary 2 is achieved when 2
1 65 2 39 3	 1αT	 = = 43 , αI = 6 + = 43 , δ = 9 + This gives a (3 +)n − o(n) lower bound for 43 , αQ 43 , β 43 . 86

an affine disperser for sublinear dimension.

3.5 Gate elimination

In order to prove Theorem 1 we first show that it is always possible to make a substitution and
decrease the measure by δ. The main theorem then follows by a simple induction proof.

Theorem 2. Let f : Fn → F2 be an rdq-disperser for dimension d, let R be an rdq-source of2
dimension s ≥ d + 2, and let C be an optimal (i.e., C with the smallest µ(C, R)) fair semicircuit

' computing the function f |R. Then there exist an rdq-source R ' of dimension s < s and a fair
semicircuit C ' computing the function f |R, such that µ(C ' , R ') ≤ µ(C, R) − δ(s − s ').

The proof of Theorem 2 is based on a careful consideration of a number of cases. Due to the
page limit restrictions, here we show a high-level picture of the case analysis only.

1 65We fix the values of constants αT , αQ, αI , β, δ to the optimal values: αT = , αQ = , αI = 43 43
6 2 39 9 3, β	 = , δ = Now it suffices to show that we can always make one substitution and 43 43 43 .
decrease the measure by at least δ = 9 3 First we normalize the circuit. By Proposition 3, during 43 .
normalization if we eliminate a gate then we introduce at most four new troubled gates, this means

39that we decrease the measure by at least 1 − 4αT = Therefore, normalization never increases 43 .
the measure.

We always make constant, linear or simple quadratic substitution to a variable. Then we remove
the substituted variable from the circuit, so that for each assignment to the remaining variables the
function is defined. It is easy to make a constant substitution x = c for c ∈ {0, 1}. We propagate the
value c to the inputs fed by x and remove x from the circuit, since it does not feed any other gates. e
An affine substitution x = i∈I xi ⊕ c is harder to make, because a straightforward way to eliminate e
x would be to compute i∈I xi ⊕ c elsewhere. Fortunately, Lemma 2 shows how to compute it on
the affine subspace defined by the substitution without using x and without increasing the number
of gates (after an extra gate introduced by this lemma is removed by normalization).

Thus, in this sketch we will be making arbitrary affine substitutions for sums that are computed
in gates without saying that we need to run the reconstruction procedure first. Also, we will make a
simple quadratic substitution z = (x⊕c1)(y ⊕c2)⊕c3 only if the gates fed by z are cancelled out after
the substitution, so that we do not need to propagate this quadratic value to other gates. We want
to stay in the class of rdq-sources, therefore we cannot make an affine substitution to a variable x if
it already has been used in the right-hand side of some quadratic restriction z = (x ⊕ c1)(y ⊕ c2) ⊕ c3

(that is, x is protected), also we cannot make quadratic substitutions that overlap in the variables.
In this proof sketch we ignore these two issues, but they are addressed in the full version of the
paper.

Let A be a topologically minimal and-type gate (i.e., an and-type gate that is not reachable
from any and-type gate), let I1 and I2 be the inputs of A (I1 and I2 can be variables or internal
gates). Now we consider the following cases (see Figure 7 on page 17).

1.	 At least one of I1, I2 (say, I1) is an internal gate of outdegree greater than one. There is a
constant c such that if we assign I1 = c, then A becomes constant. (For example, if A is an
and, then c = 0, if A is an or, then c = 1 etc.) When A becomes constant it eliminates all the
gates it feeds. Therefore, if we assign the appropriate constant to I1, we eliminate I1, two of

9

the gates it feeds (including A), and also a successor of A, four gates total, and we decrease
the measure by at least αI + 4β = 929 > δ.43

2.	 At least one of I1, I2 (say, I1) is a variable of outdegree one. We assign the appropriate
constant to I2. This eliminates I2, A, a successor of A, and I1. This assignment eliminates at
least two gates and two variables, so the measure decrease is at least 2αI + 2β = 1339 > δ.43

3.	 I1 and I2 are internal gates of outdegree one. Then if we assign the appropriate constant to I1,
we eliminate I1, A, a successor of A, and I2 (since I2 does not feed any gates). We decrease
measure by at least αI + 4β > δ.

4.	 I1 is an internal gate of outdegree one, I2 is a variable of outdegree greater than one. Then
we assign the appropriate constant to I2. This assignment eliminates I2, at least two of its
successors (including A), a successor of A, and I1 (since it does not feed any gates). Again,
we decrease the measure by at least αI + 4β > δ.

5.	 I1 and I2 are variables of outdegree greater than one.

(a)	 I1 or I2 (say, I1) has outdegree at least three. By assigning the appropriate constant to
I1 we eliminate at least three of the gates it feeds and a successor of A, four gates total.

(b)	 I1 and I2 are variables of degree two. If A is a 2+-gate we eliminate at least four gates
by assigning I1 so in what follows we assume that A is a 1-gate. In this case A is a
troubled gate. We want to make the appropriate substitution and eliminate I1 (or I2),
its successor, A, and A’s successor.

i.	 If this substitution does not introduce new troubled gates, then we eliminate a
variable, three gates and decrease the number of troubled gates by one. Thus, we
decrease the measure by αI + 3 + αT = 9 3 = δ.43

ii.	 If the substitution introduces troubled gates, then we consider which normalization
rule introduces troubled gates. The full case analysis is presented in the full paper,
here we demonstrate just one case of the analysis. Let us consider the case when a
new troubled gate is introduced when we eliminate the gate fed by A (see Figure 7
on page 17, the variable z will feed a new troubled gate after assignments x = 0 or
y = 0). In such a case we make a different substitution: z = (x⊕c1)(y ⊕c2)⊕c3. This
substitution eliminates gates A, D, E, F and a gate fed by F . Thus, we eliminate
one variable, five gates, but we introduce a new quadratic substitution, and decrease
the measure by at least αI + 5β − αQ = 9 3 = δ.43

It is conceivable that when we count several eliminated gates, some of them coincide, so that we
actually eliminate fewer gates. Usually in such cases we can prove that some other gates become
trivial. This and other degenerate cases are handled in the full version of the paper.

10

References

[And87] Alexander E. Andreev. On a method for obtaining more than quadratic effective lower
bounds for the complexity of π-schemes. Moscow Univ. Math. Bull., 42(1):63–66, 1987.

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations.
In CCC-98, 1998.

[BK12] Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials.
SIAM J. Comput., 41(4):880–914, 2012.

[Blu84] Norbert Blum. A Boolean function requiring 3n network size. Theor. Comput. Sci.,
28:337–345, 1984.

[BV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Javier
Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copen
hagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in
Computer Science, pages 163–173. Springer, 2014.

[CK15] Ruiwen Chen and Valentine Kabanets. Correlation bounds and #sat algorithms for small
linear-size circuits. In Dachuan Xu, Donglei Du, and Dingzhu Du, editors, Computing
and Combinatorics - 21st International Conference, COCOON 2015, Beijing, China,
August 4-6, 2015, Proceedings, volume 9198 of Lecture Notes in Computer Science,
pages 211–222. Springer, 2015.

[CKK+15] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David
Zuckerman. Mining circuit lower bound proofs for meta-algorithms. Computational
Complexity, 24(2):333–392, 2015.

[CR06] Venkatesan T. Chakaravarthy and Sambuddha Roy. Oblivious symmetric alternation. In
Bruno Durand and Wolfgang Thomas, editors, STACS 2006, 23rd Annual Symposium
on Theoretical Aspects of Computer Science, Marseille, France, February 23-25, 2006,
Proceedings, volume 3884 of Lecture Notes in Computer Science, pages 230–241. Springer,
2006.

[DC89] Patrick W. Dymond and Stephen A. Cook. Complexity theory of parallel time and
hardware. Inf. Comput., 80(3):205–226, 1989.

[DK11] Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n − o(n) lower
bound on the circuit complexity of affine dispersers. In Filip Murlak and Piotr Sankowski,
editors, Mathematical Foundations of Computer Science 2011 - 36th International
Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, volume
6907 of Lecture Notes in Computer Science, pages 256–265. Springer, 2011.

[DKMM15]	 Evgeny Demenkov, Alexander S. Kulikov, Olga Melanich, and Ivan Mihajlin. New lower
bounds on circuit size of multi-output functions. Theory Comput. Syst., 56(4):630–642,
2015.

[FGK09]	 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach
for the analysis of exact algorithms. J. ACM, 56(5), 2009.

11

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,
editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May
28-30, 1986, Berkeley, California, USA, pages 6–20. ACM, 1986.

[H̊as98] Johan H̊astad. The shrinkage exponent of de Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n − o(n) for Boolean
circuits. In Krzysztof Diks and Wojciech Rytter, editors, Mathematical Foundations of
Computer Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland,
August 26-30, 2002, Proceedings, volume 2420 of Lecture Notes in Computer Science,
pages 353–364. Springer, 2002.

[IN93] Russell Impagliazzo and Noam Nisan. The effect of random restrictions on formula size.
Random Struct. Algorithms, 4(2):121–134, 1993.

[Khr71] Valeriy M. Khrapchenko. A method of determining lower bounds for the complexity of
π-schemes. Math. Notes of the Acad. of Sci. of the USSR, 10(1):474–479, 1971.

[KK06] Arist Kojevnikov and Alexander S. Kulikov. A new approach to proving upper bounds
for MAX-2-SAT. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages
11–17. ACM Press, 2006.

[KK10] Arist Kojevnikov and Alexander S. Kulikov. Circuit complexity and multiplicative
complexity of Boolean functions. In Fernando Ferreira, Benedikt Löwe, Elvira Mayor
domo, and Lúıs Mendes Gomes, editors, Programs, Proofs, Processes, 6th Conference
on Computability in Europe, CiE 2010, volume 6158 of Lecture Notes in Computer
Science, pages 239–245. Springer, 2010.

[KM65] Boris M. Kloss and Vadim A. Malyshev. Estimates of the complexity of certain classes
of functions. Vestn.Moskov.Univ.Ser.1, 4:44–51, 1965. In Russian.

[KRT13] Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds for
demorgan formula size. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 588–597. IEEE
Computer Society, 2013.

[Kul99] Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. Theor.
Comput. Sci., 223(1-2):1–72, 1999.

[Li11] Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the
26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose,
California, June 8-10, 2011, pages 137–147. IEEE Computer Society, 2011.

[Li15] Xin Li. Extractors for affine sources with polylogarithmic entropy. Electronic Colloquium
on Computational Complexity (ECCC), 22:121, 2015.

[LR01] Oded Lachish and Ran Raz. Explicit lower bound of 4.5n − o(n) for Boolean circuits.
In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings
on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion,
Crete, Greece, pages 399–408. ACM, 2001.

12

[Nec66] Edward I. Nechiporuk.
169(4):765–766, 1966.

On a Boolean function. Doklady Akademii Nauk. SSSR,

[NTW04] Arfst Nickelsen, Till Tantau, and Lorenz Weizsäcker. Aggregates with component size
one characterize polynomial space. Electronic Colloquium on Computational Complexity
(ECCC), 028, 2004.

[Nur09] Sergey Nurk. An 20.4058m upper bound for Circuit SAT. Technical Report 10, Steklov
Institute of Mathematics at St.Petersburg, 2009. PDMI Preprint.

[Pau77] Wolfgang J. Paul. A 2.5n-lower bound on the combinational complexity of Boolean
functions. SIAM J. Comput., 6(3):427–443, 1977.

[PZ93] Mike Paterson and Uri Zwick. Shrinkage of de Morgan formulae under restriction.
Random Struct. Algorithms, 4(2):135–150, 1993.

[Raz85] Alexander A. Razborov. Lower bound on monotone complexity of
functions. Doklady Akademii Nauk. SSSR, 281(4):798–801, 1985.

some Boolean

[RB12] Marc D. Riedel and Jehoshua Bruck. Cyclic boolean circuits. Discrete Applied Mathe
matics, 160(13-14):1877–1900, 2012.

[Riv77] Ronald L. Rivest. The necessity of feedback in minimal monotone combinational circuits.
IEEE Trans. Computers, 26(6):606–607, 1977.

[San10] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and
QBF satisfiability. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 183–192.
IEEE Computer Society, 2010.

[Sav14] Sergey Savinov. Upper bounds for the Boolean circuit satisfiability problem. Master
Thesis defended at St.Peterburg Academic University of Russian Academy of Sciences,
2014. In Russian.

[Sch74] Claus-Peter Schnorr. Zwei lineare untere Schranken für die Komplexität Boolescher
Funktionen. Computing, 13(2):155–171, 1974.

[Sch76] Claus-Peter Schnorr. The combinational complexity of equivalence. Theor. Comput.
Sci., 1(4):289–295, 1976.

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems
Technical Journal, 28:59–98, 1949.

[Sha11] Ronen Shaltiel. Dispersers for affine sources with sub-polynomial entropy. In Rafail
Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 247–256. IEEE
Computer Society, 2011.

[SS91] Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation and
interpolation problems. In 32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, 1-4 October 1991, pages 378–383. IEEE Computer
Society, 1991.

13

[ST13] Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hardness
for formulas over the full binary basis. Computational Complexity, 22(2):245–274, 2013.

[Sto77] Larry J. Stockmeyer. On the combinational complexity of certain symmetric Boolean
functions. Mathematical Systems Theory, 10:323–336, 1977.

[Sub61] Bella A. Subbotovskaya. Realizations of linear functions by formulas using +, ·, −.
Doklady Akademii Nauk. SSSR, 136(3):553–555, 1961.

[Tal14] Avishay Tal. Shrinkage of de Morgan formulae by spectral techniques. In Foundations
of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 551–560.
IEEE, 2014.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.
SIAM J. Comput., 42(3):1218–1244, 2013. Extended abstract appeared in Proc. STOC
2010.

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. JACM, 61(1), 2014. Extended
abstract appears in Proc. CCC-2011.

[Yao85] Andrew C. Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In FOCS, pages 1–10. IEEE Computer Society, 1985.

[Yeh11] Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256,
2011.

[Zwi91] Uri Zwick. A 4n lower bound on the combinational complexity of certain symmetric
Boolean functions over the basis of unate dyadic Boolean functions. SIAM J. Comput.,
20(3):499–505, 1991.

14

x y

∧G

Figure 1: “Troubled gate”

B = (z ∨ x)x yz t

∧A

⊕D

∨B

≡ C

∧ E

A = (x ∧ y)
D = (B ⊕ A)
C = (A ≡ t)
E = (D ∧ C)

Figure 2: An example of a circuit and the program it computes.

G1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G2 = x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
⊕G5

⊕G6

⊕G7

⊕ G2

⊕ G3

⊕ G4

⊕
G1

⊕

⊕ G9

x7

x8

x1

x4

x3

x2

x5

x6

G3 = x1 ⊕ x2 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G4 = x1 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G5 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x8

G6 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6

G7 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6

G8 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x8

G9 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8

G8

⎤⎡⎤⎡⎤⎡
G1 = G9 ⊕ x5 1 0 0 0 0 0 0 0 1 G1 x5 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 1 0 0 1 1 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G2

G3

G4

G5

G6

G7

G8

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4

x3

x2

x7

x8

x1

0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G2 = G1 ⊕ x4

G3 = G2 ⊕ x3

G4 = G3 ⊕ x2

G5 = G1 ⊕ x7

G6 = G5 ⊕ x8

G7 = G6 ⊕ x1

G8 = G4 ⊕ G7

G9 = G8 ⊕ x6 0 0 0 0 0 0 0 1 1 G9 x6

Figure 3: A simple example of a cyclic xor-circuit. In this case all the gates are labeled with ⊕.
The affine functions computed by the gates are shown to the right of the circuit. The bottom row
shows the program computed by the circuit as well as the corresponding linear system.

15

I1 I2 I1 I2 I1 I2 I1 I2

G G c

Normalization Rule 1 Normalization Rule 2

I2 I1 I2

G
I1 I2 I1 I2 I1

G
Q Q

Normalization Rule 3 Normalization Rule 4

Figure 4: Illustration of the normalization rules

A0 A0
⊕

⊕

⊕

Z
x1

⊕

⊕

T1 A1 G1 T1A1 G1
Z = G1 ⊕ T1G1 = x1 ⊕ T1
G1 = G2 ⊕ T2T2 A2 G2 T2G2 = G1 ⊕ T2 A2 G2
Gk−1 = Gk ⊕ TkGk = Gk−1 ⊕ Tk . . .

⊕

b

. Gk = b . .
Tk−1 Ak−1 Gk−1 Tk−1Ak−1 Gk−1

⊕

⊕
Tk Ak Gk TkAk Gk

Figure 5: This figure illustrates the transformation from Lemma 2. We use ⊕ as a generic label for
xor-type gates. That is, in the picture, gates labelled ⊕ may compute the function ≡.

x1 x2 x3 x4 x5 x6 x7 x8

∧x9 ∧ x10 ∧x11

⊕x12 ⊕x13 ⊕ x14

Figure 6: An example of an rdq-source. Note that a variable can be read just once by an and-type
gate while it can be read many times by xor-gates.

16

I1 I2 I2 I1x I2 I1 x
∧AA ∧ A ∧ A ∧

Case 1 Case 2 Case 3 Case 4

x B

x y

∧A

D ⊕

x y

∧

y

A A z

E ∧ F

∧

Case 5a Case 5(b)i

Case 5(b)ii

Figure 7: Gate elimination process in Theorem 2.

17

C

A better-than-3n lower bound for the circuit complexity

of an explicit function

Magnus Gausdal Find1, Alexander Golovnev2, Edward A. Hirsch3, and

Alexander S. Kulikov3

1National Institute of Standards and Technology

2New York University

3Steklov Institute of Mathematics at St. Petersburg, Russian Academy of

Sciences

October 31, 2015

Abstract

1We consider Boolean circuits over the full binary basis. We prove a (3 +)n − o(n)86
lower bound on the size of such a circuit for an explicitly defined predicate, namely
an affine disperser for sublinear dimension. This improves the 3n − o(n) bound of
Norbert Blum (1984). The proof is based on the gate elimination technique extended
with the following three ideas. We generalize the computational model by allowing
circuits to contain cycles, this in turn allows us to perform affine substitutions. We
use a carefully chosen circuit complexity measure to track the progress of the gate
elimination process. Finally, we use quadratic substitutions that may be viewed as
delayed affine substitutions.

1

Contents

1 Introduction 2

2 Definitions 6
2.1 Generalizations of circuits . 7

3 Lower bound 8
3.1 Overview . 8

3.2 Cyclic circuit transformations . 10

3.2.1 Basic substitutions . 10

3.2.2 Normalization and troubled gates . 11

3.2.3 Affine substitutions . 13

3.3 Read-once depth-2 quadratic sources . 15

3.4 Circuit complexity measure . 17

3.5 Gate elimination . 20

3.5.1 Proof sketch . 20

3.5.2 Full proof . 23

1 Introduction

In this paper we consider Boolean circuits over the full binary basis, that is, directed acyclic
graphs where each internal node computes a binary Boolean operation {0, 1}×{0, 1} → {0, 1},
inputs are fed into nodes of indegree zero, and one node (or the negation of a node) is
designated as the output. The size of a circuit is the number of its internal nodes. A simple
counting argument [Sha49] shows that most Boolean functions require circuits of exponential
size. However, showing superpolynomial lower bounds for explicitly defined functions (for
example, for functions from NP) remains a hopelessly difficult task. (In particular, such
lower bounds would imply P = NP.) Moreover, even superlinear bounds are unknown for
functions in ENP . The smallest uniform complexity class for which superpolynomial bounds
are known is MAEXP (exponential-time Merlin-Arthur games) [BFT98], and the smallest
such class with arbitrary polynomial lower bounds is O2 (the oblivious symmetric second
level of the polynomial hierarchy) [CR06].

People started to tackle the problem in the 60s. Kloss and Malyshev [KM65] proved a
2n − O(1) lower bound for the function xixj . Schnorr [Sch74] proved a 2n − O(1)1≤i<j≤n
lower bound for functions that for any pair of variables x, y, have at least three different
subfunctions among the four functions obtained after substituting constants to x and y.
Stockmeyer [Sto77] proved a 2.5n − O(1) bound for certain symmetric functions. Paul
[Pau77] proved a 2n − o(n) lower bound for the storage access function and a 2.5n − o(n)
lower bound for a function combining several storage access functions using simple operations.
Eventually, Blum [Blu84] extended Paul’s argument and proved a 3n − o(n) bound.

Mysteriously, Blum’s bound remained unbeaten for more than thirty years. Recently,
Demenkov and Kulikov [DK11] showed a similar bound for affine dispersers. Their proof

2

is much simpler (if one assumes the existence of explicitly defined dispersers for granted),
but that does not improve the bound (actually, the o(n) term in [DK11] is worse than
that in [Blu84]). In this paper we eventually improve the bound for affine dispersers to

1(3 +
86)n − o(n), which is stronger than Blum’s bound.

Other models. The exact complexity of computational problems is different in different
models of computation: for example, switching from multitape to single-tape Turing machines
squares the time complexity; random access machines are even more efficient. For example, the
quadratic lower bound for recognizing palindromes by a single-tape Turing machine [HU69] is
worthless for stronger computational models. Boolean circuits over the full binary basis make
a very robust computational model. Using a different constant-arity basis only changes the
constants in the complexity. A fixed set of gates of arbitrary arity (for example, ANDs, ORs
and XORs) still preserves the complexity in terms of the number of wires. After all, finding a
function hard for Boolean circuits can be viewed as a combinatorial problem, in a contrast to
lower bounds for uniform models. Therefore, breaking the linear barrier for Boolean circuits
can be viewed as an important milestone on the way to stronger complexity lower bounds.

In this paper we consider single-output circuits (that is, circuits computing predicates).
It would be natural if allowing many outputs would lead us to non-linear bounds. However,
the only tool we have to transfer bounds from one output to several outputs is Lamagna
and Savage [LS73] argument showing that in order to compute simultaneously m different
functions requiring c gates each, one needs at least m + c − 1 gates. That is, we do not have
superlinear bounds for multioutput functions either.

For the basis U2 consisting of all binary Boolean functions except for parity (xor) and
its complement, Schnorr [Sch76] proved that the circuit complexity of the parity function is
3n − 3. Zwick [Zwi91] gave a 4n − O(1) lower bound for certain symmetric functions, Lachish
and Raz [LR01] showed a 4.5n − o(n) lower bound for a strongly two-dependent function
(a function that has exactly four subfunctions with respect to any two variables and remains
so after sufficiently many substitutions). Iwama and Morizumi [IM02] improved this bound
to 5n − o(n). Demenkov et al. [DKMM15] gave a simpler proof of a 5n − o(n) lower bound
for a function with o(n) outputs as well as presented a 7n − o(n) lower bound for a function
with n outputs.

While we do not have nonlinear bounds for constant-arity Boolean circuits, exponential
bounds are known for weaker models: one thread was initiated by Razborov [Raz85] for
monotone circuits, another one was started by Yao and H̊astad for constant-depth circuits
without XORs [Yao85, H̊as86]. Shoup and Smolensky [SS91] proved a superlinear lower
bound Ω(n log n/ log log n) for linear circuits of polylogarithmic depth over infinite fields.
Also, superlinear bounds for formulas are known for half a century. For de Morgan formulas
(i.e., formulas over AND, OR, NOT) Subbotovskaya [Sub61] proved an Ω(n1.5) lower bound for
the parity function using the random restrictions method. Khrapchenko [Khr71] showed an
Ω(n2) lower bound for parity. Applying Subbotovskaya’s random restrictions method to the
universal function by Nechiporuk [Nec66], Andreev [And87] proved an Ω(n2.5−o(1)) lower bound.
By analyzing how de Morgan formulas shrink under random restrictions, Andreev’s lower

3

bound was improved to Ω(n2.55−o(1)) by Impagliazzo and Nisan [IN93], then to Ω(n2.63−o(1)) by
Paterson and Zwick [PZ93], and eventually to Ω(n3−o(1)) by H̊astad [H̊as98] and Tal [Tal14].
For formulas over the full binary basis, Nechiporuk [Nec66] proved an Ω(n2−o(1)) lower bound
for the universal function and for the element distinctness function. These bounds, however,
do not translate to superlinear lower bounds for general constant-arity Boolean circuits.

Connections to CircuitSAT algorithms. A recent promising direction initiated by
Williams [Wil13] connects the complexity of circuits to the complexity of algorithms for
CircuitSAT (this is the problem of checking whether a given circuit has a satisfying assignment,
that is, a substitution of inputs by constants that forces the circuit to output one). Namely,
the existence of better-than-2n algorithms for CircuitSAT for a particular circuit model implies
exponential lower bounds for these circuits for functions in large classes like NEXP. This
way unconditional exponential lower bounds have been proved for ACC0 circuits (constant
depth circuits with unbounded-arity OR, AND, NOT, and arbitrary modular gates) [Wil14].
Ben-Sasson and Viola [BV14] have demonstrated that in order to prove a specific linear
lower bound for a function in ENP it suffices to lower the base of the exponent in the 3-SAT
complexity down to an appropriate constant.

It should be noted, however, that currently available algorithms for the satisfiability
problem for general circuit classes are not sufficient for proving new lower bounds. Current
techniques require upper bounds of the form O(2n/na) for circuits with n inputs and size nk ,
while for most classes only cg-time algorithms are available, where g is the number of the
gates and c > 1 is a constant.

On the other hand, the techniques used in the cg-time algorithms for CircuitSAT are
somewhat similar to the techniques used for proving linear lower bounds for (general) Boolean
circuits over the full binary basis. In particular, an O(20.4058g)-time algorithm by Nurk [Nur09]
(and subsequently an O(20.389667g)-time algorithm by Savinov [Sav14]) use reconstruction of
the linear part of a circuit similar to the one suggested by Paul [Pau77]. These algorithms
and proofs use similar tricks in order to simplify circuits; however, at present no rigorous
statement is known that would connect these two complexities. The only cases where certain
types of algorithms for general complexity classes yield linear lower bounds for them are
average-case results for formulas [San10, ST13, KRT13, CKK+15] and circuits [CK15], which
are somewhat weaker than the current worst-case bounds.

Our methods. Almost all previous lower bounds have been proved using a simple gate
elimination technique: one gradually simplifies the function (for example, by substituting
variables one by one) showing that every simplification step eliminates a certain number of
gates. A crucial idea [Sch74] is to keep the function in the same class. Following [DK11],
we prove lower bounds for affine dispersers, that is, functions that are non-constant on
affine subspaces of certain dimensions: Ben-Sasson and Kopparty [BK12] gave an explicit
construction of affine dispersers for sublinear dimensions.

Feeding an appropriate constant to a non-linear gate (for example, AND) makes this gate
constant and therefore eliminates subsequent gates, which helps to eliminate more gates than

4

in the case of a linear gate (for example, XOR). On the other hand, linear gates, when stacked
together, sometimes allow to reorganize the circuit. Then affine restrictions can kill such
gates while keeping the properties of an affine disperser. Such linear reconstructions were
used for proving circuit lower bounds by Paul [Pau77], Stockmeyer [Sto77], and Blum [Blu84].
Seto and Tamaki [ST13] used it to prove upper bounds for satisfiability of formulas over the
full binary basis. Demenkov and Kulikov [DK11] used affine substitutions to prove a circuit
lower bound for affine dispersers.

Thus, it is natural to consider a circuit as composed of linear circuits connected by
non-linear gates. In our case analysis it is important that we make affine substitutions but
not restrictions. That is, instead of just saying that x1 ⊕ x2 ⊕ x3 ⊕ x9 = 0 and removing all
gates that become constant, we make sure to replace all occurrences of x1 by x2 ⊕ x3 ⊕ x9.
Since a gate computing such a sum might be unavailable and we do not want to increase
the number of gates, we “rewire” some parts of the circuit, which, however, may potentially
introduce cycles. This leads us to the first ingredient of our proof: cyclic circuits. That is,
the linear components of our “circuits” may now have directed cycles; however, we require
that the values computed in the gates are still uniquely determined (which is actually a
requirement on the rank of the corresponding linear system). Cyclic circuits were studied, e.g.,
by Rivest [Riv77], Dymond and Cook [DC89], Nickelsen, Tantau, and Weizsäcker [NTW04],
Riedel and Bruck [RB12] (the last reference also contains an overview of previous work on
cyclic circuits).

Thus we are able to make affine substitutions. We try to make such a substitution in order
to make the topmost (i.e., closest to the inputs) non-linear gate constant. This, however,
does not seem to be enough. The second ingredient in our proof is a complexity measure that
manages difficult situations (bottlenecks) by allowing to perform an amortized analysis: we
count not just the number of gates, we compute a linear combination of the number of gates
and the number of bottlenecks. Such measures were previously considered by several authors.
For example, Zwick [Zwi91] counted the number of (internal) gates minus the number of inputs
of outdegree 1. The same measure was later used by Lachish and Raz [LR01] and by Iwama
and Morizumi [IM02]. Kojevnikov and Kulikov [KK10] used a measure assigning different
weights to linear and non-linear gates to show that Schnorr’s 2n − O(1) lower bound [Sch76]
can be strengthened to 7n/3 − O(1). Carefully chosen complexity measures are also used to
estimate the progress of splitting algorithms for NP-hard problems [Kul99, KK06, FGK09].

Our main bottleneck (called “troubled gate”) is as follows:

x y
∧G

(All gates have outdegrees exactly as shown on the picture, i.e., two inputs of degree 2 feed a
gate of outdegree 1 that computes (x ⊕ a)(y ⊕ b) ⊕ c where a, b, c ∈ {0, 1} are constants.)

Sometimes in order to fight a troubled gate, we have to make a quadratic substitution,
which is the third ingredient of our proof. This happens if the gate below G is a linear gate
fed by a variable z; in the simplest case a substitution z = xy kills G, the linear gate, and

5

the gate below (actually, we show it kills much more). However, quadratic substitutions
may make affine dispersers constant, so we consider a special type of quadratic substitutions.
Namely, we consider quadratic substitutions as a form of delayed affine substitutions (in the
example above, if we promise to substitute later a constant either to x or y, the substitution
can be considered affine). In order to maintain this, instead of affine subspaces (where affine
dispersers are non-constant by definition) we consider so-called read-once depth-2 quadratic
sources (essentially, this means that all variables in the right-hand sides of the quadratic
substitutions that we make are pairwise distinct free variables). We show that an affine
disperser for a sublinear dimension remains non-constant for read-once depth-2 quadratic
sources of a sublinear dimension.

Open questions. An affine disperser for dimension d may be viewed as a function that
is not constant on any affine subspace of size at least 2d . A natural extension is to allow
similarly sized varieties defined by quadratic polynomials. As shown by Golovnev and Kulikov
[GK16], such dispersers with appropriate parameters must have circuit size at least 3.1n.
However, explicit constructions of such dispersers are currently unknown. There are known
constructions of dispersers for algebraic varieties for large finite fields [Dvi12], and known
constructions of such dispersers for F2 [CT15, Sha11] but with weaker parameters than needed
for the lower bound to work.

2 Definitions

Gates and notation. A circuit is an acyclic directed graph in which incoming edges are
numbered for every node. The nodes are called gates. A gate may have either indegree
zero (in which case it is called an input gate, or a variable) or indegree two (in which
case it is called an internal gate). Every internal gate is labelled by a Boolean function
g : {0, 1} × {0, 1} → {0, 1}, and the set of all the sixteen such functions is denoted by B2.
We call these binary functions operations in order to distinguish them from functions of n
variables computed in the gates. The size of a circuit is the number of internal gates.

We say that an operation is of and-type if it computes g(x, y) = (c1 ⊕ x)(c2 ⊕ y) ⊕ c3 for
some constants c1, c2, c3 ∈ {0, 1}, and of xor-type if it computes g(x, y) = x ⊕ y ⊕ c1 for some
constant c1 ∈ {0, 1}. Similarly, we call gates and-type and xor-type. If a gate computes an
operation depending on precisely one of its inputs, we call it passing.

If an (internal) gate computes a constant operation, we call it trivial (note that it still
has two incoming edges). If a substitution forces some gate G to compute a constant, we say
that it trivializes G. (For example, for a gate computing the operation g(x, y) = x ∧ y, the
substitution x = 0 trivializes it.)

We denote by out(G) the outdegree of the gate G. If out(G) = k, we call G a k-gate. If
out(G) ≥ k, we call it a k+-gate. We adopt the same terminology for variables (so we have
0-variables, 1-variables, 2+-variables, etc.).

One gate of outdegree zero is designated as the output.

6

x yz t

∧A

⊕D

∨B

≡ C

∧ E

B = (z ∨ x)
A = (x ∧ y)
D = (B ⊕ A)
C = (A ≡ t)
E = (D ∧ C)

Figure 1: An example of a circuit and the program it computes.

A toy example of a circuit is shown in Figure 1. For input gates, the corresponding
variables are shown inside. For an internal gate, we show its operation inside and its label
near the gate. As figure shows, a circuit corresponds to a simple program for computing
a Boolean function: each instruction of the program is a binary Boolean operation whose
inputs are input variables or the results of the previous instructions.

Affine dispersers. An affine disperser for dimension d(n) is a family of functions fn : F2
n →

F2 such that for all sufficiently large n, fn is non-constant on any affine subspace of dimension
at least d(n). Explicit constructions of affine dispersers have drawn a lot of attention
recently. First, polynomial-time computable affine dispersers for any linear dimension
were constructed [BKS+10, Bou07], and then it was shown that there are polynomial-time
computable affine dispersers for sublinear dimensions d(n) = o(n) [BK12, Yeh11, Li11, Sha11,
Li15].

2.1 Generalizations of circuits

Cyclic circuits. In this paper we use generalizations of circuits that simplify circuit
transformations. These generalized circuits may contain cycles; however, the underlying
graphs are still not arbitrary labelled directed graphs.

A cyclic circuit is a directed (not necessarily acyclic) graph where all vertices have indegree
either 0 or 2. We adopt the same terminology for its nodes (input and internal gates) and its
size as for ordinary circuits. We restrict our attention to cyclic xor-circuits, where all gates
compute affine operations. While the most interesting internal gates compute either ⊕ or ≡,
for technical reasons we also allow passing gates and trivial gates. We will be interested in
multioutput cyclic circuits, so, in contrast to our definition of ordinary circuits, several gates
may be designated as outputs, and they may have nonzero outdegree.

A circuit, and even a cyclic circuit, naturally corresponds to a system of equations over F2,
where internal gates correspond to variables of the system and variables of the (cyclic) circuit
are counted in the constants of the system (that is, we formally have a separate system
for every assignment to the input gates, but all these systems share the same matrix). For
a gate G fed by gates F and H and computing some operation 8, we write the equation
G ⊕ (F 8 H) = 0. A more specific clarifying example would be a gate G computing F ⊕ x ⊕ 1,
where x is an input gate; then the line in the system would be G ⊕ F = x ⊕ 1, where G and

7

F contribute two 1’s to the matrix, and x ⊕ 1 contributes to the constant vector.
For a cyclic xor-circuit, this is a linear system with a square matrix. We call a cyclic

xor-circuit fair if this matrix has full rank. It follows that for every assignment of the inputs,
there exist unique values for the gates such that these values are consistent with the circuit
(that is, for each gate its value is correctly computed from the values in its inputs). Thus,
similarly to an ordinary circuit, every gate in a fair circuit computes a function of the values
fed into its input gates (clearly, it is an affine function). A simple example of a fair cyclic
xor-circuit is shown in Figure 2. Note that if we additionally impose the requirement that the
graph is acyclic, we arrive at ordinary linear circuits (that is, circuits consisting of xor-type
gates, passing gates, and constant gates).

Relationship between cyclic and acyclic xor-circuits. It is not difficult to show that
for multiple outputs, fair cyclic xor-circuits form a stronger model than acyclic xor-circuits.
For example, the 9 functions computed simultaneously by the cyclic xor-circuit shown in
Figure 2 cannot be computed by an acyclic xor-circuit with 9 gates. To see this, assume for
the sake of contradiction, that an acyclic xor-circuit with 9 gates computes the same functions.
Since the circuit has 9 gates all gates must compute outputs. Consider a topologically minimal
gate G. Such a gate exists since the circuit is acyclic. Since G is topologically minimal it
computes the sum of two input gates, therefore it cannot compute an output.

On the other hand, a minimal xor-circuit of k variables computing a single output has
exactly k − 1 internal gates and is acyclic.

Semicircuits. We introduce the following notion, called semicircuits, a generalization of
both Boolean circuits and cyclic xor-circuits.

A semicircuit is a composition of a cyclic xor-circuit and an (ordinary) circuit. Namely,
its nodes are split into two sets, X and C. The nodes in the set X form a cyclic xor-circuit.
The nodes in the set C form an ordinary circuit (if wires going from X to C are replaced
by variables). There are no wires going back from C to X. A semicircuit is called fair if
X is fair. In what follows we abuse the notation by using the word “circuit” to
mean a fair semicircuit.

3 Lower bound

3.1 Overview

In this section we prove the main theorem.
The proof goes by induction. We start with an affine disperser and a circuit computing it

on {0, 1}n . Then we gradually shrink the space where it is computed by adding equations
(“substitutions”) for variables. This allows us to simplify the circuit by reducing the number
of gates (and other parameters counted in the complexity measure) and eliminating the
variable we have just substituted.

8

G1
G1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G2 = x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

⊕G5

⊕G6

⊕G7

⊕ G2

⊕ G3

⊕ G4

⊕

⊕
G8

⊕ G9

x7

x8

x1

x4

x3

x2

x5

x6

G3 = x1 ⊕ x2 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G4 = x1 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G5 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x8

G6 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6

G7 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6

G8 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x8

G9 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8

⎤⎡⎤⎡⎤⎡
G1 = G9 ⊕ x5 1 0 0 0 0 0 0 0 1 G1 x5 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 1 0 0 1 1 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G2

G3

G4

G5

G6

G7

G8

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4

x3

x2

x7

x8

x1

0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G2 = G1 ⊕ x4

G3 = G2 ⊕ x3

G4 = G3 ⊕ x2

G5 = G1 ⊕ x7

G6 = G5 ⊕ x8

G7 = G6 ⊕ x1

G8 = G4 ⊕ G7

G9 = G8 ⊕ x6 0 0 0 0 0 0 0 1 1 G9 x6

Figure 2: A simple example of a cyclic xor-circuit. In this case all the gates are labeled
with ⊕. The affine functions computed by the gates are shown to the right of the circuit.
The bottom row shows the program computed by the circuit as well as the corresponding
linear system.

9

In Subsection 3.2 we show how to make substitutions in fair semicircuits, and how to
simplify them afterwards. We also introduce “troubled” gates, special “unwanted” fragments
of circuits that we count in the complexity measure. We check that the simplification methods
we use do not increase the number of these gates too much.

In order to eliminate troubled gates, sometimes we use quadratic substitutions. In
Subsection 3.3 we describe formally subsets of points of {0, 1}n resulting from all kinds of the
substitutions we make and show that affine dispersers are non-constant on such subsets. In
Subsection 3.4 we define the circuit complexity measure and formulate the main result: we
can always reduce the measure by an appropriate amount by shrinking the space; the lower
bound follows.

Finally, Subsection 3.5 proves the main result by going through a number of cases.

3.2 Cyclic circuit transformations

3.2.1 Basic substitutions

In this section we consider several types of substitutions. It is straightforward how to
substitute a constant to an input:

Proposition 1. Let C be a circuit with input gates x1, . . . , xn, and let c ∈ {0, 1} be a constant.
For every gate G fed by x1 replace the operation g(x1, t) computed by G with the operation
g'(x1, t) = g(c, t) (thus the result becomes independent of x1). This transforms C into another
circuit C ' (in particular, it is still a fair semicircuit) such that it has the same number of
gates, the same topology, and for every gate H that computes a function h(x1, . . . , xn) in C,
the corresponding gate in the new circuit C ' computes the function h(c, x2, . . . , xn).

We call this transformation a substitution by a constant.
A more complicated type of a substitution is when we replace an input x with a function

computed in a different gate G. In this case in each gate fed by x, we replace wires going
from x by wires going from G.

We call this transformation a substitution by a function.

Proposition 2. Let C be a circuit with input gates x1, . . . , xn, and let g(x2, . . . , xn) be a
function computed in a gate G. Consider the construction C ' obtained by substituting a
function g to x1 (it has the same number of gates as C). Then if G is not reachable from x1

by a directed path in C, then C ' is a fair semicircuit, and for every gate H that computes
a function h(x1, . . . , xn) in C, except for x1, the corresponding gate in the new circuit C '

computes the function h(g(x2, . . . , xn), x2, . . . , xn).

Proof. Note that we require that G is not reachable from x1 (thus we do not introduce new
cycles), and also that g does not depend on x1. Functions computed in the gates are the
solution of the system corresponding to the circuit (see Section 2.1). The transformation
simply replaces every equation of the form H = F 8 x1 with the equation H = F 8 G (and
equation of the form H ' = x1 8 x1 with the equation H ' = G 8 G). Consider specific values
for x2, . . . , xn. Assume that the solution for the old system does not satisfy the new equation.

10

Then take x1 = g(x2, . . . , xn), it violates the corresponding equation in the old system, a
contradiction. Vice versa, consider a different solution for the new system. It must satisfy
the old system (where x1 = g(x2, . . . , xn)), but the old system has a unique solution.

In what follows, however, we will also use substitutions that do not satisfy the hypothesis of
this proposition: substitutions that create cycles. We defer this construction to Section 3.2.3.

3.2.2 Normalization and troubled gates

In order to work with a circuit, we are going to assume that it is “normalized”, that is, it
does not contain obvious inefficiencies (such as trivial gates, etc.), in particular, those created
by substitutions. We describe certain normalization rules below; however, while normalizing
we need to make sure the circuit remains within certain limits: in particular, it must remain
fair and compute the same function. We need to check also that we do not “spoil” a circuit
by introducing “bottleneck” cases. Namely, we are going to prove an upper bound on the
number of newly introduced unwanted fragments called “troubled” gates.

We say that an internal gate G is troubled if it satisfies the following three criteria:

• G is an and-type gate of fanout 1,

• the gates feeding G are input gates,

• both input gates feeding G have fanout 2.

x y
∧G

From now on, we denote all and-type gates by ∧, and all xor-type gates by ⊕.
We always make substitutions consciously and thus can count the number of troubled

gates that can possible emerge. However, what if a gate is killed because of simplifications?
We limit the process of removing gates to normalization rules, and make sure that we never
get more than four new troubled gates per killed gate.

We say that a circuit is normalized if none of the following rules is applicable to it. Each
rule eliminates a gate G whose inputs are gates I1 and I2. (Note that I1 and I2 can be inputs
or internal nodes, and, in rare cases, they can coincide with G itself.)

Rule 1: If G has no outgoing edges and is not marked as an output, then remove it.

I1 I2 I1 I2

G

Note also that it could not happen that the only outgoing edge of G feeds itself, because this
would make a trivial equation and violate the circuit fairness.

11

Rule 2: If G is trivial, i.e., it computes a constant operation c, remove G and “embed” this
constant to the next gates. That is, for every gate H fed by G, replace the operation h(g, t)
computed in this gate (where g is the input from G and t is the other input) by the operation
h ' (g, t) = h(c, t). (Clearly, h ' depends on at most one argument, which is not optimal, and in
this case after removing G one typically applies Rule 3 or Rule 2 to its successors.)

I1 I2

G
I1 I2

Rule 3: If G is passing, i.e., it computes an operation depending only on one of its inputs,
remove G by reattaching its outgoing wires to that input. This may also require changing
the operations computed at its successors (the corresponding input may be negated; note
that an and-type gate (xor-type gate) remains an and-type gate (xor-type gate)).

If G feeds itself and depends on another input, then the self-loop wire (which would now
go nowhere) is dropped. (Note that if G feeds itself it cannot depend on the self-loop input.)

If G has no outgoing edges it must be an output gate (otherwise it would be removed by
Rule 0). In this special case, we remove G and mark the corresponding input of G (or its
negation) as the output gate.

I1 I2 I1 I2

G

Rule 4: If G is a 1-gate that feeds a single gate Q, Q is distinct from G itself, and Q is also
fed by one of G’s inputs, then replace in Q the incoming wire going from G by a wire going
from the other input of G (this might also require changing the operation at Q); then remove
G. We call such a gate G useless.

I1 I2 I1 I2

G
Q Q

Rule 5: If the inputs of G coincide (I1 and I2 refer to the same node) then we replace the
binary operation g(x, y) computed in G with the operation g ' (x, y) = g(x, x). Then perform
the same operation on G as described in Rule 3 or 2.

Proposition 3. Each of the Rules 1–5 removes one internal gate, introduces at most four
new troubled gates. None of the rules change the functions of n input variables computed in
the gates that are not removed. A fair semicircuit remains a fair semicircuit.

Proof. Fairness. The circuit remains fair since no rule changes the set of solutions of the
system.

New troubled gates. For all the rules, the only gates that may become troubled are I1,
I2 (if they are and-type gates), and the gates they feed after the transformation (if I1 or I2

is a variable). Each of I1, I2 may create at most two new troubled gates. Hence each rule,
when applied, introduces at most four new troubled gates.

12

� � � �

3.2.3 Affine substitutions

In this subsection, we show how to make substitutions that do create cycles. This will be
needed in order to make affine substitutions. Namely, we take a gate computing an affine
function x1 ⊕ i∈I xi ⊕ c (where c ∈ {0, 1} is a constant) and “rewire” a circuit so that this
gate is replaced by a trivial gate computing a constant b ∈ {0, 1}, while x1 is replaced by an
internal gate. The resulting circuit over x2, . . . , xn may be viewed as the initial circuit under
the substitution x1 ← i∈I xi ⊕ c ⊕ b. The “rewiring” is formally explained below; however,
before that we need to prove a structural lemma (which is trivial for acyclic circuits) that
guarantees its success.

For an xor-circuit, we say that a gate G depends on a variable x if G computes an affine
function in which x is a term. Note that in a circuit without cycles this means that precisely
one of the inputs of G depends on x, and one could trace this dependency all the way to x,
therefore there always exists a path from x to G. In the following lemma we show that it is
always possible to find such a path in a fair cyclic circuit too. However, it may be possible
that some nodes on this path do not depend on x. Note that dependencies in cyclic circuits
are sometimes counterintuitive. For example, in Figure 2, gate G4 is fed by x2 but does not
depend on it.

Lemma 1. Let C be a fair cyclic xor-circuit, and let the gate G depend on the variable x.
Then there is a path from x to G.

Proof. Let us substitute all variables in C except for x to 0. Since G depends on x, it can
only compute x or its negation.

Let R be the set of internal gates that are reachable from x, and U be the set of internal
gates that are not reachable from x. Let us enumerate the gates in such a way that gates
from U have smaller indices than gates from R. Then the circuit C corresponds to the system

U 0 LU× G = ,
R1 R2 LR

where G = (g1, . . . , g|C|)
T is a vector of unknowns (the gates’ values), U is the principal

submatrix corresponding to U (a square submatrix whose rows and columns correspond to
the gates from U). Note that

•	 the upper right part of the matrix is 0, because there are no wires going from R to
U , and thus unknowns corresponding to gates from R do not appear in the equations
corresponding to gates from U ,

•	 LU is a vector of constants, it cannot contain x since U is not reachable from x,

•	 LR is a vector of affine functions of x, since all other inputs are substituted by zeros.

If U is singular, then the whole matrix is singular, which contradicts the fairness of C.
Therefore, U is nonsingular, i.e., the values G ' = (g1, . . . , g|U|)

T are uniquely determined by

13

U × G ' = LU , and they are constant (independent of x). This means that G cannot belong
to U .

We now come to rewiring.

Lemma 2. Let C be a fair semicircuit with input gates x1, . . . , xn and internal gates
G1, . . . , Gm. Let G be a gate not reachable by a directed path from any and-type gate.
Assume that G computes the function x1 ⊕ i∈I xi ⊕ c, where I ⊆ {2, . . . , n}. Let b ∈ {0, 1}
be a constant. Then one can transform C into a new circuit C ' with the following properties:

1.	 graph-theoretically, C ' has the same gates as C, plus a new internal gate Z; some edges
are changed, in particular, x1 is disconnected from the circuit;

2. the operation in G is replaced by the constant operation b;

3.	 inC� (Z) = 2, outC� (G) = outC (G) + 1, outC� (x1) = 0. outC� (Z) = outC (x1) − 1.

4. The indegrees and outdegrees of all other gates are the same in C and C ' .

5.	 C ' is fair.

6.	 all gates common for C ' and C compute the same functions on the affine subspace
defined by x1 ⊕ i∈I xi ⊕ c ⊕ b = 0, that is, if f(x1, . . . , xn) is the function computed
by an internal gate in C and f ' (x2, . . . , xn) is the function computed by its counterpart
in C ' , then f(i∈I xi ⊕ c ⊕ b, x2, . . . , xn) = f ' (x2, . . . , xn). The gate Z computes the
function i∈I xi ⊕ c ⊕ b (which on the affine subspace equals x1).

Proof. Consider a path from x1 to G that is guaranteed to exist by Lemma 1. Denote the
internal gates on this path by G1, . . . , Gk = G. Denote by T1, . . . , Tk the other inputs of these
gates. Note that we assume that G1, . . . , Gk are pairwise different gates while some of the
gates T1, . . . , Tk may coincide with each other and with some of G1, . . . , Gk (it might even be
the case that Ti = Gi).

The transformation is as shown in Figure 3. The gates A0, . . . , Ak are shown on the
picture just for convenience: any of x1, Z, G1, . . . , Gk may feed any number of gates, not just
one Ai.

To show the fairness of C ' , assume the contrary, that is, the sum of a subset of rows of
the new matrix is zero. The row corresponding to Gk = b must belong to the sum (otherwise
we would have only rows of the matrix for C, plus an extra column). However, this would
mean that if we sum up the corresponding lines of the system (not just the matrix) for C, we
get Gk = const ⊕ j∈J xj where J " 1 (note that x1 was replaced by Z in the new system,
and cancelled out by our assumption). This contradicts the assumption of the Lemma that
Gk computes the function x1 ⊕ i∈I xi ⊕ c. Therefore, the matrix for C ' has full rank.

The programs shown next to the circuits explain that for x1 = i∈I xi ⊕ c ⊕ b, the gates
G1, . . . , Gk compute the same values in C ' and C; the value of Z is also clearly correct.

14

A0
x1

⊕

⊕

A0
⊕

⊕

⊕

Z

T1 A1 G1 T1A1 G1
Z = G1 ⊕ T1G1 = x1 ⊕ T1 G1 = G2 ⊕ T2T2 A2 G2 T2G2 = G1 ⊕ T2 A2 G2

Gk−1 = Gk ⊕ TkGk = Gk−1 ⊕ Tk

⊕

b

. Gk = b
Ak−1 Gk−1 Tk−1 Ak−1 Gk−1 Tk−1

⊕

⊕
Tk Ak Gk TkAk Gk

Figure 3: This figure illustrates the transformation from Lemma 2. We use ⊕ as a generic
label for xor-type gates. That is, in the picture, gates labelled ⊕ may compute the function ≡.

Corollary 1. This transformation does not introduce new troubled gates.

Proof. Indeed, the gates being fed by G1, . . . , Gk−1, Gk, Z are not fed by variables; these
gates themselves are not and-type gates; other gates do not change their degrees or types of
input gates.

After we apply the transformation, we apply Rule 2 to G. Since the only troubled gates
introduced by this rule are the inputs of the removed gate, no troubled gates are introduced
(and one gate, G itself, is eliminated, thus the combination of Lemma 2 and Rule 2 does not
increase the number of gates).

3.3 Read-once depth-2 quadratic sources

We generalize affine sources as follows.

Definition 1. Let the set of variables {x1, . . . , xn} be partitioned into three disjoint sets
F, L, Q ⊆ {1, . . . , n} (for free, linear, and quadratic). Consider a system of equalities that
contains

• for each variable xj with j ∈ Q, a quadratic equality of the form

xj = (xi ⊕ ci)(xk ⊕ ck) ⊕ cj ,

where i, k ∈ F and ci, ck, cj are constants; the variables from the right-hand side of all
the quadratic substitutions are pairwise disjoint;

15

x1 x2 x3 x4 x5 x6 x7 x8

∧x9 ∧ x10 ∧x11

⊕x12 ⊕x13 ⊕ x14

Figure 4: An example of an rdq-source. Note that a variable can be read just once by an
and-type gate while it can be read many times by xor-type gates.

• for each variable xj with j ∈ L, an affine equality of the form
xj = xi ⊕ xi ⊕ cj

i∈Fj ⊆F i∈Qj ⊆Q

for a constant cj .

A subset R of {(x1, x2, . . . , xn) ∈ Fn} that satisfies these equalities is called a read-once2

depth-2 quadratic source (or rdq-source) of dimension d = |F |.

An example of such a system is shown in Figure 4.
The variables from the right-hand side of quadratic substitutions are called protected.

Other free variables are called unprotected.
For this, we will gradually build a straight-line program (that is, a sequence of lines of

the form x = f(. . .), where f is a function depending on the program inputs (free variables)
and the values computed in the previous lines) that produces an rdq-source. We build it
bottom-up. Namely, we take an unprotected free variable xj and extend our current program
with either a quadratic substitution

xj = (xi ⊕ ci)(xk ⊕ ck) ⊕ cj

depending on free unprotected variables xi, xk or a linear substitution
xj = xi ⊕ cj

i∈J

depending on any variables. It is clear that such a program can be rewritten into a system
satisfying Definition 1. In general, we cannot use protected free variables without breaking
the rdq-property. However, there are two special cases where this is possible: (1) we can
substitute a constant to a protected variable (and update the quadratic line accordingly: for
example, z = xy and x = 1 yield z = y and x = 1); (2) we can substitute one protected
variable for another variable (or its negation) from the same quadratic equation (for example,
z = xy and x = y yield z = y and x = y).

In what follows we abuse the notation by denoting by the same letter R the source, the
straight-line program defining it, and the mapping R : Fd

2 → Fn
2 computed by this program

that takes the d free variables and evaluates all other variables.

16

Definition 2. Let R ⊆ Fn
2 be an rdq-source of dimension d, let the free variables be

x1, x2, . . . , xd, and let f : Fn → F2 be a function. Then f restricted to R, denoted f |R,2

is a function f |R : Fd → F2, defined by f |R(x1, . . . , xd) = f(R(x1, . . . , xd)).2

Note that affine sources are precisely rdq-sources with Q = ∅. We define dispersers for
rdq-sources similarly to dispersers for affine sources.

Definition 3. An rdq-disperser for dimension d(n) is a family of functions fn : F2
n → F2

such that for all sufficiently large n, for every rdq-source R of dimension at least d(n), fn|R

is non-constant.

The following proposition shows that affine dispersers are also rdq-dispersers for related
parameters.

Proposition 4. Let R be an rdq-source of Fn
2 of dimension d. Then R contains an affine

subspace of dimension at least d/2.

Proof. For each quadratic substitution xj = (xi ⊕ ci)(xk ⊕ ck) ⊕ cj , further restrict R by
setting xi = 0. This replaces a quadratic substitution by two affine substitutions xi = 0
and xj = ci(xk ⊕ ck) ⊕ cj ; the number of free variables is decreased by one. Also, since the
free variables do not occur on the left-hand side, the newly introduced affine substitution is
consistent with the previous affine substitutions.

Since the variables occurring on the right-hand side of our quadratic substitutions are
disjoint we have initially that 2|Q| ≤ |F | = d, so the number of newly introduced affine
substitutions is at most d/2.

Note that it is important in the proof that protected variables do not appear on the
left-hand sides. The proposition above is obviously false for quadratic varieties : no Boolean
function can be non-constant on all sets of common roots of n − o(n) quadratic polynomials.
For example, the system of n/2 quadratic equations x1x2 = x3x4 = . . . = xn−1xn = 1 defines
a single point, so any function is constant on this set.

Corollary 2. An affine disperser for sublinear dimension is also an rdq-disperser for sublinear
dimension.

3.4 Circuit complexity measure

For a circuit C and a straight-line program R defining an rdq-source, we define the following
circuit complexity measure:

µ(C, R) = g + αQ · q + αT · t + αI · i ,

where g is the number of internal gates in C, q is the number of quadratic substitutions in R,
t is the number of troubled gates in C, and i is the number of influential input gates in C.
We say that an input is influential if it feeds at least one gate or is protected (recall that a

17

variable is protected if it occurs in the right-hand side of a quadratic substitution in R). The
constants αQ, αT , αI > 0 will be chosen later.

Proposition 3 implies that when a gate is removed from a circuit by applying a normaliza
tion rule the measure µ is reduced by at least β = 1 − 4αT . The constant αT will be chosen
to be very close to 0 (certainly less than 1/4), so β > 0.

In order to estimate the initial value of our measure, we need the following lemma.

Lemma 3. Let C be a circuit computing an affine disperser f : Fn for dimension d,2	 → F2

then the number of troubled gates in C is less than n
2 + 5

2
d .

Proof. Let V be the set of the inputs, |V | = n. In what follows we let L denote the disjoint
set union. Let us call two inputs x and y neighbors if they feed the same troubled gate.
Assume to the contrary that t ≥ n

2 + 5
2
d . Let vi be the number of variables feeding exactly i

troubled gates. Since a variable feeding a troubled gate must have outdegree 2, vi = 0 for
i > 2. By double counting the number of wires from inputs to troubled gates, 2t = v1 + 2v2.
Since v1 + v2 ≤ n,

n + 5d ≤ 2t = v1 + 2v2 ≤ n + v2.

Let T be the set of inputs that feed two troubled gates, |T | = v2 ≥ 5d. We now construct
two disjoint subsets X ⊂ T and Y ⊂ V such that

• |X| = d,

•	 there are |Y | consistent linear equations that make the circuit C independent of variables
from X L Y .

When the sets X and Y are constructed the theorem statement follows immediately. Indeed,
we first take |Y | equations that make C independent of X L Y , then we set all the remaining
variables V \ (X L Y) to arbitrary constants. After this, the circuit C evaluates a constant
(since it does not depend on variables from X L Y and all other variables are set to constants).
We have |Y | + |V \ (X L Y)| = |V \ X| = n − d linear equations which contradicts the
assumption that f is an affine disperser for dimension d.

Now we turn to constructing X and Y . For this we will repeat the following routine
d times. First we pick any variable x ∈ T , it feeds two troubled gates, let y1 and y2 be
neighbors of x (y1 may coincide with y2). We add x to X, also we add y1, y2 to Y . Note that
it is possible to assign constants to y1 and y2 to make C independent of x. (See the figure
below. If y1 differs from y2, then we substitute constants to them so that they eliminate
troubled gates fed by x and leave C independent of x. If y1 coincides with y2, then either
x = c, or y1 = c, or y1 = x ⊕ c eliminates both troubled gates for some constant c; if we
make an x = c substitution, then formally we have to interchange x and y, that is, add y
rather than x to X.) Each of y1, y2 has at most one neighbor different from x. We remove x,
y1, y2, neighbors of y1 and y2 (at most five vertices total) from the set T , if they belong to
it. Since at each step we remove at most five vertices from T , we can repeat this routine d
times. Since we remove the neighbors of y1 and y2 from T , we guarantee that in all future
steps when we pick an input, its neighbors do not belong to Y , so we can make arbitrary
substitutions to them and leave the system consistent.

18

y1 x y2

∧ ∧
y x
∧ ∧

We are now ready to formulate our main result.

computing f . Let αQ, αT , αI ≥ 0 be some constants, and αT ≤ 1/4. Then µ(C, ∅) ≥ δ(n−d−2)
FnTheorem 1. Let f : 2

where

δ := αI + min
 αI

2
, 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β +

αQ

2

, (1)

and β = 1 − 4αT .

We defer the proof of this theorem to the next section. This theorem, together with
Corollary 2, implies a lower bound on the circuit complexity of affine dispersers.

Corollary 3. Let δ, β, αQ, αT , αI be constants as above, then the circuit size of an affine
disperser for sublinear dimension is at least αT

δ − − αI n − o(n) .

2

2

Proof. Note that q = 0, i ≤ n, t < n 5d

→ F2 be an rdq-disperser for dimension d and C be a fair semicircuit

+

2
(see Lemma 3). Thus, the circuit size is

n 5d
g = µ − αQ · q − αT · t − αI · i > δ(n − d − 2) − αT · + − αI · n

2 2 αT 5αT αT
= δ − − αI n − δ + d − 2δ = δ − − αI n − o(n) .

2 2 2

2

2
The maximal value of δ − αT

the following linear program: maximize δ − αT

β + 4αT = 1

αT , αQ, αI , β ≥ 0 αI αQ
δ ≤ αI + min , 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β + .

2 2

− αI satisfying the condition from Corollary 3 is given by
− αI subject to

19

�

�

The optimal values for this linear program are

1

αT = ,

43
65

αQ = 1 + 22αT = ,
43

2
αI = 6 + 2αT = 6 + ,

43
39

β = 1 − 4αT = ,
43

3
δ = 9 + 3αT = 9 + .

43

1This gives a (3 +
86)n − o(n) lower bound for an affine disperser for sublinear dimension.

3.5 Gate elimination

In order to prove Theorem 1 we first show that it is always possible to make a substitution
and decrease the measure by δ.

Theorem 2. Let f : Fn
2 → F2 be an rdq-disperser for dimension d, let R be an rdq-source

of dimension s ≥ d + 2, and let C be an optimal (i.e., C with the smallest µ(C, R)) fair
semicircuit computing the function f |R. Then there exist an rdq-source R ' of dimension s ' < s
and a fair semicircuit C ' computing the function f |R such that

µ(C ' , R ') ≤ µ(C, R) − δ(s − s ') .

Before we proceed to the proof, we show how to infer the main theorem from this claim:

Proof of Theorem 1. We prove that for optimal C computing f |R, µ(C, R) ≥ δ(s − d − 2).
We do it by induction on s, the dimension of R. Note that the statement is vacuously true
for s ≤ d + 2, since µ is nonnegative. Now suppose the statement is true for all rdq-sources
of dimension strictly less than s for some s > d + 2, and let R be an rdq-source of dimension
s. Let C be a fair semicircuit computing f |R. Let R ' be the rdq-source of dimension s '

guaranteed to exist by Theorem 2, and let C ' be a fair semicircuit computing f |R . We have
that

µ(C, R) ≥ µ(C ' , R ') + δ(s − s ') ≥ δ(s − d − 2),

where the second inequality comes from the induction hypothesis.

3.5.1 Proof sketch

The proof of Theorem 2 is based on a careful consideration of a number of cases. Before
considering all of them formally, we show a high-level picture of the case analysis.

1We fix the values of constants αT , αQ, αI , β, δ to the optimal values: αT =
43 , αQ =

65 6 2 39 9 3
43 , αI =

43 , β =
43 , δ =

43 . Now it suffices to show that we can always make one

20

I1 I2 I2 I1x I2 I1

∧A ∧A ∧A
x

∧A

Case 1 Case 2 Case 3 Case 4

x y
∧ A

x y
∧A

x y
∧A

⊕D

B C

∧ FE

z

Case 5a Case 5(b)i

Case 5(b)ii

Figure 5: Gate elimination process in Theorem 2.

substitution and decrease the measure by at least δ = 9 3 . First we normalize the circuit.
43

By Proposition 3, during normalization if we eliminate a gate then we introduce at most
39four new troubled gates, this means that we decrease the measure by at least 1 − 4αT =
43 .

Therefore, normalization never increases the measure.
We always make constant, linear or simple quadratic substitution to a variable. Then

we remove the substituted variable from the circuit, so that for each assignment to the
remaining variables the function is defined. It is easy to make a constant substitution x = c
for c ∈ {0, 1}. We propagate the value c to the inputs fed by x and remove x from the circuit,
since it does not feed any other gates. An affine substitution x = xi ⊕ c is harder i∈I E r
to make, because a straightforward way to eliminate x would be to compute i∈I xi ⊕ c
elsewhere. Fortunately, Lemma 2 shows how to compute it on the affine subspace defined by
the substitution without using x and without increasing the number of gates (after an extra
gate introduced by this lemma is removed by normalization).

Thus, in this sketch we will be making arbitrary affine substitutions for sums that are
computed in gates without saying that we need to run the reconstruction procedure first.
Also, we will make a simple quadratic substitution z = (x ⊕ c1)(y ⊕ c2) ⊕ c3 only if the gates
fed by z are canceled out after the substitution, so that we do not need to propagate this
quadratic value to other gates. We want to stay in the class of rdq-sources, therefore we
cannot make an affine substitution to a variable x if it already has been used in the right-hand
side of some quadratic restriction z = (x ⊕ c1)(y ⊕ c2) ⊕ c3, also we cannot make quadratic
substitutions that overlap in the variables. In this proof sketch we ignore these two issues,
but they are addressed in the full proof in the next subsection.

Let A be a topologically minimal and-type gate (i.e., an and-type gate that is not reachable
from any and-type gate), let I1 and I2 be the inputs of A (I1 and I2 can be variables or
internal gates). Now we consider the following cases (see Figure 5).

1. At least one of I1, I2 (say, I1) is an internal gate of outdegree greater than one. There

21

is a constant c such that if we assign I1 = c, then A becomes constant. (For example, if
A is an and, then c = 0, if A is an or, then c = 1 etc.) When A becomes constant it
eliminates all the gates it feeds. Therefore, if we assign the appropriate constant to I1,
we eliminate I1, two of the gates it feeds (including A), and also a successor of A, four
gates total, and we decrease the measure by at least αI + 4β = 929 > δ.

43

2.	 At least one of I1, I2 (say, I1) is a variable of outdegree one. We assign the appropriate
constant to I2. This eliminates I2, A, a successor of A, and I1. This assignment
eliminates at least two gates and two variables, so the measure decrease is at least
2αI + 2β = 1339 > δ.

43

3.	 I1 and I2 are internal gates of outdegree one. Then if we assign the appropriate constant
to I1, we eliminate I1, A, a successor of A, and I2 (since I2 does not feed any gates).
We decrease measure by at least αI + 4β > δ.

4.	 I1 is an internal gate of outdegree one, I2 is a variable of outdegree greater than one.
Then we assign the appropriate constant to I2. This assignment eliminates I2, at least
two of its successors (including A), a successor of A, and I1 (since it does not feed any
gates). Again, we decrease the measure by at least αI + 4β > δ.

5.	 I1 and I2 are variables of outdegree greater than one.

(a)	 I1 or I2 (say, I1) has outdegree at least three. By assigning the appropriate
constant to I1 we eliminate at least three of the gates it feeds and a successor of
A, four gates total.

(b)	 I1 and I2 are variables of degree two. If A is a 2+-gate we eliminate at least four
gates by assigning I1 so in what follows we assume that A is a 1-gate. In this case
A is a troubled gate. We want to make the appropriate substitution and eliminate
I1 (or I2), its successor, A, and A’s successor.

i.	 If this substitution does not introduce new troubled gates, then we eliminate a
variable, three gates and decrease the number of troubled gates by one. Thus,
we decrease the measure by αI + 3 + αT = 9 3 = δ.

43

ii.	 If the substitution introduces troubled gates, then we consider which normal
ization rule introduces troubled gates. The full case analysis is presented in
the next subsection, here we demonstrate just one case of the analysis. Let us
consider the case when a new troubled gate is introduced when we eliminate
the gate fed by A (see Figure 5, the variable z will feed a new troubled
gate after assignments x = 0 or y = 0). In such a case we make a different
substitution: z = (x ⊕ c1)(y ⊕ c2) ⊕ c3. This substitution eliminates gates
A, D, E, F and a gate fed by F . Thus, we eliminate one variable, five gates,
but we introduce a new quadratic substitution, and decrease the measure by
at least αI + 5β − αQ = 9 3 = δ.

43

22

It is conceivable that when we count several eliminated gates, some of them coincide, so that
we actually eliminate fewer gates. Usually in such cases we can prove that some other gates
become trivial. This and other degenerate cases are handled in the full proof in the next
subsection.

3.5.2 Full proof

Proof of Theorem 2. Since normalization does not increase the measure and does not change
R, we may assume that C is normalized.

In what follows we will further restrict R by decreasing the number of free variables
either by one or by two, then we will implement these substitutions in C and normalize C
afterwards. Formally, we do it as follows:

•	 We add an equation or two to R.

•	 Since we now compute the disperser on a smaller set, we simplify C (in particular, we
disconnect the substituted variables from the rest of the circuit). For this, we

–	 change the operations in the gates fed by the substituted variables or restructure
the xor part of the circuit according to Lemma 2,

–	 apply some normalization rules to remove some gates (and disconnect substituted
variables).

•	 We count the decrease of µ.

•	 We further normalize the circuit (without increase of µ) to bring it to the normalized
state required for the next induction step.

Since s ≥ d + 2, even if we add two more lines to R, the disperser will not become a
constant. This, in particular, implies that if a gate becomes constant then it is not an output
gate and hence feeds at least one other gate. By going through the possible cases we will show
that it is always possible to perform one or two consecutive substitutions matching at least
one of the following types (by Δµ we denote the decrease of the measure after subsequent
normalization).

1.	 Perform two consecutive affine substitutions to reduce the number of influential inputs
by at least three. Per one substitution, this gives Δµ ≥ 1.5αI .

2.	 Perform one affine substitution to reduce the number of influential inputs by at least 2:
Δµ ≥ 2αI (numerically, this case is subsumed by the previous one).

3. Perform one affine substitution to kill four internal gates: Δµ ≥ 4β + αI .

4.	 Perform one constant substitution to eliminate three internal gates including at least
one troubled gate so that no new troubled gate is introduced: Δµ ≥ αI + 3 + αT .

23

5. Perform one quadratic substitution to kill five internal gates: Δµ ≥ 5β − αQ + αI .

6.	 Perform two affine substitutions to kill at least five internal gates and replace a quadratic
substitution by an affine one, reducing the measure by at least 5β + αQ + 2αI . Per

αQsubstitution this is Δµ ≥ 2.5β +
2 + αI .

7.	 Perform one affine substitution to kill two internal gates and replace one quadratic
substitution by an affine one: Δµ ≥ 2β + αQ + αI .

All substitutions that we perform are of the form such that adding them to an rdq-source
results in a new rdq-source.

We check all possible cases of (C, R). In every case we assume that the conditions of the
previous cases are not satisfied. We also rely on the specified order of applications of the
normalization rules where applicable.

Note that the measure can accidentally drop less than we expect if new troubled gates
emerge. We take care of this when counting the number of internal gates that disappear,
recall Proposition 3 that guarantees the decrease of β per one eliminated gate. If some
additional gate accidentally disappears, it may introduces new troubled gates but does not
increase the measure, because β ≥ 0.

Cases:

1.	 The circuit contains a protected variable q that either feeds an and-type gate or feeds
at least two internal gates. Then there is a type 7 substitution of q by a constant.

2.	 The circuit contains a protected 0-variable q occurring in the right-hand side of a
quadratic substitution together with some variable q ' . We substitute a constant to q ' .
After this neither q nor q ' are influential, so we have a type 2 substitution.

Note that after this case all protected variables are 1-variables feeding xor gates.

3.	 The circuit contains a variable x feeding an and-type gate T , and out(x) + out(T) ≥ 4.
Then if x gets the value that trivializes T , we remove four gates: T by Rule 2, and
descendants of x and T by Rule 3. If some of these descendants coincide, this gate
becomes trivial (instead of passing) and is removed by Rule 2 (instead of Rule 3), and
an additional gate (a descendant of this descendant) is removed by Rule 3. This makes
a type 3 substitution.

Note that after this case all variables feeding and-gates have outdegree one or two.

4.	 There is an and-type gate T fed by two input gates x and y, one of which (say, x)
has outdegree 1. Adopt the notation from the following picture. In this and all the
subsequent pictures we show the outdegrees near the gates that are important for the
case analysis.

24

1+1
x y
∧T

We substitute y by a constant trivializing T . This removes the dependence on x and y
(which are both influential and unprotected), a type 2 substitution.

5.	 There is an and-type gate T fed by two input gates x and y, and at this point (due to
the cases 3 and 4) we inevitably have out(T) = 1 and out(x) = out(y) = 2, that is, T is
“troubled”. Adopt calling conventions from the following picture:

x
2

y
2

∧T
1

D

B C

Since the circuit is normalized, B = D and C = D (Rule 4). One can now remove
three gates by substituting a constant to x that trivializes T . If in addition to the three
gates one more gate can be killed, we are done (substitution of type 3). Otherwise, we
have just three gates, but the troubled gate T is removed. If this does not introduce a
new troubled gate, it makes a substitution of type 4. Likewise, if this is the case for a
substitution to y, we are done.

So in the remaining subcases of Case 5 we will be fighting the situation where only three
gates are eliminated while one or more troubled gates are introduced.

How can it happen that a new troubled gate is introduced? This means that something
has happened around some and-type gate E. Whatever has happened, it is due to two
gates, B and D, that became passing (if some of them became trivial, then one more
gate would be removed). The options are:

•	 E gets as input a variable instead of an internal gate (because some gate in between
became passing).

•	 A variable increases its outdegree from 1 to 2 (because a gate of degree at least
two became passing), and this variable starts to feed E (note that it could not
feed it before, because after the increase it would feed it twice).

•	 A variable decreases its outdegree to 2. This variable could not feed E before this
happens, because this would be Case 3. It takes at least one passing gate, X, to
pass a new variable to E, thus the decrease of the outdegree has happened because
of a single passing gate Y . In order to decrease the outdegree of the variable this
gate must have outdegree 1, thus it would be removed by Rule 4 as useless.

•	 E decreases its outdegree to 1.

25

–	 This could happen if two gates, B and D, became passing, and they fed a
single gate. However, in this case E should already have 2-variables as its
inputs, Case 3.

–	 This could also happen if E feeds B and some gate X, and B becomes passing
to X. However, in this case B is useless (Rule 4). (Note that out(B) = 1,
because otherwise E would not decrease its outdegree to 1.)

E x
B

X

–	 Similarly, if E feeds D and some gate X, and D becomes passing to X.

Summarizing, only the two first possibilities could happen, and both pass some variable
to E through either B or D (or both).

The plan for the following cases it to exploit the local topology, that is, possible
connections between B, D, and C. First we consider “degenerate” cases where these
gates are locally connected beyond what is shown in the figure in case 5. After this, we
continue to the more general case.

6.	 If B = C, then one can trivialize both T and B either by substituting a constant to x
or y or by one affine substitution y = x ⊕ c (using Proposition 2) for the appropriate
constant c (this can be easily seen by examining the possible operations in the two
gates). Since x and y are unprotected, the number of influential variables is decreased
by 2, making a substitution of type 2.

7.	 Assume that D feeds both B and C. In this case, a new troubled gate may emerge only
because D is fed by a variable u, and it is passed to some and-type gate E. Note that
out(D) ≤ 2, because otherwise u would become a 3-variable and E would not become
troubled. Therefore, u cannot be passed by D to E directly, it is passed via B.

x
2

y
2

∧T
1

D

B
1+

C
∧E

z
2

u

If out(B) ≥ 2, then even if out(u) = 1, it must be that C = E or that B feeds C,
because otherwise u would become a 3-variable after substituting x. Neither are possible:
C = E would imply B = D and y = z, contradicting the assumption that D = B (from
5); if B feeds C, that means that B = D, which is impossible. Therefore, we conclude
that out(B) = 1. So we can substitute constants for z, to make B a 0-gate, and for y,

26

to trivialize T . This way x ceases to be influential, and we have Δµ ≥ 3αI for two
substitutions (type 1).

Note that after this case we can assume that D does not feed B. If it does, we switch
the roles of the variables x and y.

8.	 Assume now that B feeds D, and D feeds C. (Or, symmetrically, C feeds D, and D
feeds B.) Then substituting y to trivialize T removes T , D, and C, and introduces no
new troubled gates, because C and D are passing the internal gate B. We assumed it is
not the case.

x
2

y
2

∧T
1

D

B C

9. We can now assume that B and D are not connected (in any direction).

Indeed, if B feeds D, we can switch the roles of x and y unless C feeds D (impossible,
because then D has three inputs: T , B, and C) or unless we switched x and y before
(that is, D feeds C, Case 8).

(a)	 Assume that D feeds a new troubled gate under the substitution of x. The troubled
gate E gets some variable z from D (directly, as D and B are not connected).

x
2

y
2

∧T
1

D

B C

∧E

z
1+

•	 If out(z) ≥ 2, then out(D) = 1 and E is fed by another variable t either
directly or via B. In the former case, we can substitute t to trivialize E, this
kills E and the gate it feeds, and also makes D and then T 0-gates; a type 3
substitution. In the latter case:

2 2

1
x yt

z
B T ∧ 2+ C

1
D

∧E

27

–	 if out(B) ≥ 2, then B is a xor-type gate (see Case 5a), and by substituting
x = t ⊕ c for the appropriate constant c, we can make B a constant
trivializing E and remove two more descendants of B and E, a type 3
substitution;

–	 if out(B) = 1, then we can set z and y to constants trivializing T and E,
respectively. Then B becomes a 0-gate and is eliminated, which means
that x becomes a 0-variable. We then get a substitution of type 1.

We can now assume that out(z) = 1 and thus out(D) ≥ 2, because z must get
outdegree two in order to feed the new troubled gate.

•	 If D is an and-type gate, substituting z by the appropriate constant trivializes
D and kills both gates that it feeds; also T becomes a 0-gate, a type 3
substitution.

•	 If z is protected, we set x and z to constants trivializing T , D, and E. This
additionally removes B and the gates that E feeds, at least five gates in total.
Since we also kill a quadratic substitution, this makes a type 6 substitution.

•	 Since we can now assume that z is unprotected and D is an xor-type gate, we
can make a substitution z = (x ⊕ c1)(y ⊕ c2) ⊕ c3 for appropriate constants
c1, c2, c3 to assign D a value that trivializes E. This makes T a 0-gate and
removes also D, E, another gate that D feeds, and the gate(s) that E feeds.
As usual, if some passing gates coincide, another gate is removed. Taking
into account the penalty for introducing a quadratic substitution, we get a
substitution of type 5.

(b)	 Since D does not feed a new troubled gate, B does, and B is fed directly by a
variable t (since B and D are not connected). The new troubled gate E must be
also fed directly by a variable z (because D does not feed it).

x
2

y
2

∧T

D

B
1+

C

∧
E

z

t
1+

•	 If out(B) ≥ 2 (which means B is a xor-type gate, see Case 5a), then by
substituting x = t ⊕ c (using Proposition 2) for the appropriate constant c,
we can make B a constant trivializing E and remove two more descendants of
B and E, a type 3 substitution.

•	 If out(B) = 1, then we can set z and y to constants trivializing T and E,
respectively. Then B becomes a 0-gate and is eliminated, which means that x
becomes a 0-variable. We then get a substitution of type 1.

—————————–

28

Starting from the next case we will consider a topologically minimal and-type gate and
call it A for the remaining part of the proof. Here A is topologically minimal if it cannot
be reached from another and-type gate via a directed path.

Note that the circuit C must contain at least one and-type gate (otherwise it computes
an affine function, and a single affine substitution makes it constant). The minimality
implies that both inputs of A are computed by fair cyclic xor-circuits (note that a
subcircuit of a fair circuit is fair, because it corresponds to a submatrix of a full-rank
matrix); in particular, they can be input gates.

10.	 One input of A is an input gate x of outdegree 2 while the other one is an internal gate
Q of outdegree 1.

x
2 1

Q
∧A

Recall that x is unprotected due to Case 1, and x cannot feed Q because of Rule 4.
Substituting x by the constant trivializing A eliminates the two successors of x, all the
successors of A, and makes Q a 0-gate which is then eliminated by Rule 1. A type 3
substitution. (As usual, if the only successor of A coincides with the other successor of
x then this gate becomes constant so its successors are also eliminated. That is, in any
case at least four gates are eliminated.)

11.	 One input to A is an internal gate Q. Denote the other input by P . If P is also an
internal gate and has outdegree larger than Q we switch the roles of P and Q.

In this case we will try to substitute a value to Q in order to trivialize A. Q is a gate
computed by a fair xor-circuit, so it computes an affine function c ⊕ i∈I xi. For this,
we use the xor-reconstruction procedure described in Lemma 2. In order to perform it,
we need at least one unprotected variable xi with i ∈ I.

(a) Such a variable x1 exists.
We then add the substitution x1 = b ⊕ c ⊕ i∈I\{1} xi to the rdq-source R for the
appropriate constant b (so that Q on the updated R computes the constant trivial
izing A). We could now simply replace the operation in Q by this constant (since
the just updated circuit computes correctly the disperser on the just updated R).
However, we need to eliminate the just substituted variable x1 from the circuit.
To do this, we perform the reconstruction described in Lemma 2. Note that it
only changes the in- and outdegrees of x1 (replacing it by a new internal gate Z)
and Q. No new troubled gates are introduced, and the subsequent application of
Rule 2 to Q removes Q without introducing new troubled gates as well.
Moreover, normalizations remove all descendants of Q, all descendants of A, and,
in the case out(P) = 1, Rule 1 removes P if it is an internal gate, or P becomes a
0-variable, if it was a variable. It remains to count the decrease of the measure.

29

Below we go through several subcases depending on the type of the gate P .

i. Q is a 2+-gate. We recall the general picture of xor-reconstruction.
x1

P
1+

⊕
2+

Q
∧A

xor-reconstruction

⊕ Z

P
1+ 3+

Q
∧A

After the reconstruction, there are at least three descendants of Q and at least
one descendant of A, a type 3 substitution.

ii.	 Q is an internal 1-gate and P is an input gate. Then P has outdegree 1 and
is unprotected (see Cases 10, 1).

x1

P
1

⊕
1
Q

∧A

xor-reconstruction

⊕ Z

P
1 2

Q
∧A

Note that P = x1 since the only outgoing edge of P goes to an and-type
gate. This means that P is left untouched by the xor-reconstruction. After
trivializing A the circuit becomes independent of both x1 and P giving a
type 2 substitution.

iii.	 Q is an internal 1-gate and P is an internal gate. Then P is a 1-gate (if the
outdegree of P were larger we would switch the roles of P and Q).

x1

⊕
1

P ⊕
1
Q

∧A

xor-reconstruction

⊕ Z

⊕
1

P
2
Q

∧A

Again, P is left untouched by the xor-reconstruction since it only has one
successor and it is of and-type while the xor-reconstruction is performed in
the linear part of the circuit. After the substitution, we remove two successors
of Q, at least one successor of A, and make P a 0-gate. A type 3 substitution.
Note that P cannot be a successor of Q because of Rule 4.

(b) All variables in the affine function computed by Q are protected.

i.	 Both inputs to Q, say xj and xk, are variables, and they occur in the same
quadratic substitution w = (xj ⊕ c)(xk ⊕ c ') ⊕ c '' . Then perform a substitution
xj = xk ⊕ c ''' (using Proposition 2) in order to trivialize the gate A. It kills
the quadratic substitution (and does not harm other quadratic substitutions,
because xj and xk could not occur in them), Q, A, its descendant (and more,
but we do not need it), which makes Δµ ≥ 3β + αQ + αI , a type 7 substitution.

30

ii.	 Q is a 2+-gate. Take any j ∈ I. Assume that xj occurs in a quadratic
substitution xp = (xj ⊕ a)(xk ⊕ b) ⊕ c. Recall that at this point all protected
variables are 1-variables feeding xor-gates (see Cases 1 and 2). We substitute
xk by a constant d and normalize the circuit. This eliminates the successor
of xk, kills the quadratic substitution, and makes xj unprotected. If at least
two gates are removed during normalization then we get Δµ ≥ 2β + αQ + αI ,
a type 7 substitution. In what follows we assume that the only gate removed
during normalization after the substitution xk ← d is the successor of xk.
If the gate Q is not fed by xk then it has outdegree at least 2 after the
substitution xk ← d and normalizing the descendants of xk. If the gate Q is
fed by xk then its second input must be an internal xor-gate Q ' (if it were an
input gate it would be a variable xj but then we would fall into Case 11(b)i).
Then after substituting xk ← d and normalizing Q the gate Q ' feeds A and
has outdegree at least 2. We denote Q ' by Q in this case.
Hence in any case, in the circuit normalized after the substitution xk ← d,
the gate A is fed by the 2+-gate Q that computes an affine function of
variables containing an unprotected variable xj . We then make Q constant
trivializing A by the appropriate affine substitution to xj . This kills four gates.
Together with the substitution xk ← d, it gives Δµ ≥ 5β + αQ +2αI , a type 6
substitution.

Hence in what follows we assume that out(Q) = 1. Therefore P is either a
variable or an internal xor-type 1-gate.

iii.	 P is an input gate. Then it has the following properties as in Case 11(a)ii.
Take any j ∈ I and assume that xj appears with xk in a quadratic substitution.
We first substitute xk ← d and normalize the circuit. After this the second
input of A still computes a linear function that depends on xj which is now
unprotected. We make an affine substitution to xj trivializing A. This makes
P a 0-variable, a type 1 substitution.

iv.	 P is an internal xor-type 1-gate. If P computes an affine function of variables
at least one of which is unprotected, we are in Case 11(a)iii with P and Q
exchanged. So, in what follows we assume that both P and Q compute affine
functions of protected variables.

A.	 Both inputs to P or Q (say, P) are variables xp and xq. Let xj be a
variable from the affine function computed at Q and let xk be its couple.
Note that xj = xp, xq while it might be the case that xk = xp or xk = xq.
We substitute xk by a constant to make xj unprotected. We then trivialize
A by an affine substitution to xj . This way, we kill the dependence on
three variables by two substitutions. A type 1 substitution.
Thus in what follows we can assume that both P and Q have at least one
internal xor-gate as an input.

B.	 One of P and Q (say, Q) computes an affine function of variables one of

31

which (call it xj) have a couple xk that does not feed P . We substitute
xk by a constant and normalize the descendant of xk. It only kills one
xor-gate fed by xk and makes xj unprotected. Note that at this point
P is still a 1-xor. We then trivialize A by substituting xj by an affine
function. Similarly to Case 11(a)iii, this kills four gates and gives, for two
substitutions, Δµ ≥ 5β + αQ + 2αI . A type 6 substitution.

C.	 The only case when the condition of the previous case does not apply
is the following: P computes an affine function on a single variable xi,
Q computes an affine function on a single variable xj , the variables xi

and xj appear together in a quadratic substitution, and moreover xi feeds
Q while xj feeds P . But this is just impossible. Indeed, since xi is a
protected variable it only feeds Q. As Q computes an affine function
on xi, Lemma 1 guarantees that there is a path from xi to Q. But this
path must go through P and A leading to a cycle that goes through an
and-type gate A.

Acknowledgements

Research is partially supported by NSF (grant 1319051) and the Government of the Russian
Federation (grant 14.Z50.31.0030). We also would like to thank Dmitry Itsykson and
Alexander Knop who survived a six-hour seminar on the proof and made valueable comments.

References

[And87] Alexander E. Andreev. On a method for obtaining more than quadratic effective
lower bounds for the complexity of π-schemes. Moscow Univ. Math. Bull.,
42(1):63–66, 1987.

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separa
tions. In CCC-98, 1998.

[BK12] Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polyno
mials. SIAM J. Comput., 41(4):880–914, 2012.

[BKS+10] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson.
Simulating independence: New constructions of condensers, Ramsey graphs,
dispersers, and extractors. J. ACM, 57(4), 2010.

[Blu84] Norbert Blum. A Boolean function requiring 3n network size. Theor. Comput.
Sci., 28:337–345, 1984.

32

[Bou07] Jean Bourgain. On the construction of affine extractors. GAFA Geometric And
Functional Analysis, 17(1):33–57, 2007.

[BV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors,
Automata, Languages, and Programming - 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572
of Lecture Notes in Computer Science, pages 163–173. Springer, 2014.

[CK15] Ruiwen Chen and Valentine Kabanets. Correlation bounds and #sat algorithms
for small linear-size circuits. In Dachuan Xu, Donglei Du, and Dingzhu Du, editors,
Computing and Combinatorics - 21st International Conference, COCOON 2015,
Beijing, China, August 4-6, 2015, Proceedings, volume 9198 of Lecture Notes in
Computer Science, pages 211–222. Springer, 2015.

[CKK+15] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and
David Zuckerman. Mining circuit lower bound proofs for meta-algorithms.
Computational Complexity, 24(2):333–392, 2015.

[CR06] Venkatesan T. Chakaravarthy and Sambuddha Roy. Oblivious symmetric al
ternation. In Bruno Durand and Wolfgang Thomas, editors, STACS 2006,
23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille,
France, February 23-25, 2006, Proceedings, volume 3884 of Lecture Notes in
Computer Science, pages 230–241. Springer, 2006.

[CT15] Gil Cohen and Avishay Tal. Two structural results for low degree polynomials
and applications. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P.
Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015,
Princeton, NJ, USA, volume 40 of LIPIcs, pages 680–709. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

[DC89] Patrick W. Dymond and Stephen A. Cook. Complexity theory of parallel time
and hardware. Inf. Comput., 80(3):205–226, 1989.

[DK11] Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n − o(n)
lower bound on the circuit complexity of affine dispersers. In Filip Murlak and
Piotr Sankowski, editors, Mathematical Foundations of Computer Science 2011
- 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26,
2011. Proceedings, volume 6907 of Lecture Notes in Computer Science, pages
256–265. Springer, 2011.

[DKMM15]	 Evgeny Demenkov, Alexander S. Kulikov, Olga Melanich, and Ivan Mihajlin.
New lower bounds on circuit size of multi-output functions. Theory Comput.
Syst., 56(4):630–642, 2015.

33

[Dvi12] Zeev Dvir. Extractors for varieties. Computational Complexity, 21(4):515–572,
2012.

[FGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer
approach for the analysis of exact algorithms. J. ACM, 56(5), 2009.

[GK16] Alexander Golovnev and Alexander S. Kulikov. Weighted gate elimination:
Boolean dispersers for quadratic varieties imply improved circuit lower bounds.
In Proceedings of the 7th Innovations in Theoretical Computer Science (ITCS),
2016. To appear.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Juris
Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on Theory
of Computing, May 28-30, 1986, Berkeley, California, USA, pages 6–20. ACM,
1986.

[H̊as98] Johan H̊astad. The shrinkage exponent of de Morgan formulas is 2. SIAM J.
Comput., 27(1):48–64, 1998.

[HU69] John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and Their Relation
to Automata. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1969.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n − o(n) for
Boolean circuits. In Krzysztof Diks and Wojciech Rytter, editors, Mathematical
Foundations of Computer Science 2002, 27th International Symposium, MFCS
2002, Warsaw, Poland, August 26-30, 2002, Proceedings, volume 2420 of Lecture
Notes in Computer Science, pages 353–364. Springer, 2002.

[IN93] Russell Impagliazzo and Noam Nisan. The effect of random restrictions on
formula size. Random Struct. Algorithms, 4(2):121–134, 1993.

[Khr71] Valeriy M. Khrapchenko. A method of determining lower bounds for the complex
ity of π-schemes. Math. Notes of the Acad. of Sci. of the USSR, 10(1):474–479,
1971.

[KK06] Arist Kojevnikov and Alexander S. Kulikov. A new approach to proving upper
bounds for MAX-2-SAT. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January
22-26, 2006, pages 11–17. ACM Press, 2006.

[KK10] Arist Kojevnikov and Alexander S. Kulikov. Circuit complexity and multiplicative
complexity of Boolean functions. In Fernando Ferreira, Benedikt Löwe, Elvira
Mayordomo, and Lúıs Mendes Gomes, editors, Programs, Proofs, Processes, 6th
Conference on Computability in Europe, CiE 2010, volume 6158 of Lecture Notes
in Computer Science, pages 239–245. Springer, 2010.

34

[KM65] Boris M. Kloss and Vadim A. Malyshev. Estimates of the complexity of certain
classes of functions. Vestn.Moskov.Univ.Ser.1, 4:44–51, 1965. In Russian.

[KRT13] Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower
bounds for demorgan formula size. In 54th Annual IEEE Symposium on Foun
dations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,
USA, pages 588–597. IEEE Computer Society, 2013.

[Kul99] Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theor. Comput. Sci., 223(1-2):1–72, 1999.

[Li11] Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the
26th Annual IEEE Conference on Computational Complexity, CCC 2011, San
Jose, California, June 8-10, 2011, pages 137–147. IEEE Computer Society, 2011.

[Li15] Xin Li. Extractors for affine sources with polylogarithmic entropy. Electronic
Colloquium on Computational Complexity (ECCC), 22:121, 2015.

[LR01] Oded Lachish and Ran Raz. Explicit lower bound of 4.5n − o(n) for Boolean
circuits. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis,
editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing,
July 6-8, 2001, Heraklion, Crete, Greece, pages 399–408. ACM, 2001.

[LS73] Edward A. Lamagna and John E. Savage. On the logical complexity of symmetric
switching functions in monotone and complete bases. Technical report, Brown
University, 1973.

[Nec66] Edward I. Nechiporuk. On a Boolean function. Doklady Akademii Nauk. SSSR,
169(4):765–766, 1966.

[NTW04] Arfst Nickelsen, Till Tantau, and Lorenz Weizsäcker. Aggregates with component
size one characterize polynomial space. Electronic Colloquium on Computational
Complexity (ECCC), 028, 2004.

[Nur09] Sergey Nurk. An 20.4058m upper bound for Circuit SAT. Technical Report 10,
Steklov Institute of Mathematics at St.Petersburg, 2009. PDMI Preprint.

[Pau77] Wolfgang J. Paul. A 2.5n-lower bound on the combinational complexity of
Boolean functions. SIAM J. Comput., 6(3):427–443, 1977.

[PZ93] Mike Paterson and Uri Zwick. Shrinkage of de Morgan formulae under restriction.
Random Struct. Algorithms, 4(2):135–150, 1993.

[Raz85] Alexander A. Razborov. Lower bound on monotone complexity of some Boolean
functions. Doklady Akademii Nauk. SSSR, 281(4):798–801, 1985.

35

[RB12] Marc D. Riedel and Jehoshua Bruck. Cyclic boolean circuits. Discrete Applied
Mathematics, 160(13-14):1877–1900, 2012.

[Riv77] Ronald L. Rivest. The necessity of feedback in minimal monotone combinational
circuits. IEEE Trans. Computers, 26(6):606–607, 1977.

[San10] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula
and QBF satisfiability. In 51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA,
pages 183–192. IEEE Computer Society, 2010.

[Sav14] Sergey Savinov. Upper bounds for the Boolean circuit satisfiability problem.
Master Thesis defended at St.Peterburg Academic University of Russian Academy
of Sciences, 2014. In Russian.

[Sch74] Claus-Peter Schnorr. Zwei lineare untere Schranken für die Komplexität Boo
lescher Funktionen. Computing, 13(2):155–171, 1974.

[Sch76] Claus-Peter Schnorr. The combinational complexity of equivalence.
Comput. Sci., 1(4):289–295, 1976.

Theor.

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits.
Systems Technical Journal, 28:59–98, 1949.

Bell

[Sha11] Ronen Shaltiel. Dispersers for affine sources with sub-polynomial entropy. In
Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 247–256. IEEE Computer Society, 2011.

[SS91] Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation
and interpolation problems. In 32nd Annual Symposium on Foundations of
Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 378–383.
IEEE Computer Society, 1991.

[ST13] Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case
hardness for formulas over the full binary basis. Computational Complexity,
22(2):245–274, 2013.

[Sto77] Larry J. Stockmeyer. On the combinational complexity of certain symmetric
Boolean functions. Mathematical Systems Theory, 10:323–336, 1977.

[Sub61] Bella A. Subbotovskaya. Realizations of linear functions by formulas using +, ·, −.
Doklady Akademii Nauk. SSSR, 136(3):553–555, 1961.

[Tal14] Avishay Tal. Shrinkage of de Morgan formulae by spectral techniques. In
Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium
on, pages 551–560. IEEE, 2014.

36

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. SIAM J. Comput., 42(3):1218–1244, 2013. Extended abstract appeared
in Proc. STOC-2010.

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds.
Extended abstract appears in Proc. CCC-2011.

JACM, 61(1), 2014.

[Yao85] Andrew C. Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In FOCS, pages 1–10. IEEE Computer Society, 1985.

[Yeh11] Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–
256, 2011.

[Zwi91] Uri Zwick. A 4n lower bound on the combinational complexity of certain
symmetric Boolean functions over the basis of unate dyadic Boolean functions.
SIAM J. Comput., 20(3):499–505, 1991.

37

	Introduction
	Definitions
	Generalizations of circuits

	Lower bound
	Overview
	Cyclic circuit transformations
	Normalization and troubled gates
	Affine substitutions

	Read-once depth-2 quadratic sources
	Circuit complexity measure
	Gate elimination

	Introduction
	Definitions
	Generalizations of circuits

	Lower bound
	Overview
	Cyclic circuit transformations
	Basic substitutions
	Normalization and troubled gates
	Affine substitutions

	Read-once depth-2 quadratic sources
	Circuit complexity measure
	Gate elimination
	Proof sketch
	Full proof

