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Abstract 
 
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging 
from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction 
models have been proposed in the past to understand the energy usage pattern of a machine tool. However, 
uncertainties in both the machine and the operating environment make it difficult to predict the energy 
consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, 
contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction 
model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively 
collect and process data extracted from a machine tool and its sensors. We then present a data-driven model 
that can be used to predict the energy consumption of the machine tool for machining a generic part. 
Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to 
develop the prediction model. The energy prediction model is then generalized over multiple process 
parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty 
intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. 
Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a 
machining process. 
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1. INTRODUCTION 
 
Over 22% of greenhouse gas emissions in the US come from the industrial sector, which is also the highest 
consumer of electrical power in the US (EIA, 2014). To reduce energy use in the manufacturing sector, 
manufacturers need energy prediction models that can estimate electricity costs and peak power demand for 
their equipment based on a production plan. These models can help manufacturers reduce their energy costs 
and environmental footprint and respond to new regulations and business drivers. For example, the Smart 
Grid and carbon cap-and-trade may incentivize manufacturers to adjust their operations to respond to load 
adjustments in the grid or take advantage of lower energy or carbon prices during specific time windows. 
These models can also improve process monitoring since deviations in the power demand and energy 
consumption can be related to component wear, tool breakage, or collisions (Gutowski, 2006, 
Vijayaraghavan, 2010). The first step towards building such models is to understand the energy 
consumption patterns of machine tools and manufacturing operations. In this paper, we use the data 
collected from a machine tool to determine how different operational strategies influence the energy 
consumption pattern of a machine tool and to derive the most energy-efficient strategy to machine a part.  
 
Models for predicting energy consumption and optimizing manufacturing processes have been a subject of 
research interest for over 50 years. Most of these efforts are physics-based, which means that the models 
are built upon the physical laws that govern manufacturing operations. Based on the energy transfer from 
an electrical system to a mechanical system, Neugebauer et al. (2007) formulated a mechatronic 
representation for computing the total energy consumption of a metal-cutting machine tool. Using energy 
conservation, Dietmair and Verl (2009) categorized and derived the energy consumption of a metal-cutting 
machine tool using its two basic operations: moving axes and removing material. Although these methods 
are based on the physics of a machine tool, they are difficult to implement because they often require a 
large number of physical parameters that are often hard to compute or estimate. It is also difficult to 
properly incorporate the stochastic nature of a manufacturing process into a physics-based model. These 
difficulties challenge the construction of physics-based models that account for different mechanical 
characteristics of different machine tools.   
 
To address the challenges presented by physics-based models, a number of studies have explored 
characterizing the energy consumption of a machine tool using experimental data. Draganescu et al. (2003) 
used experimental data to construct statistical regression models based on machining parameters, such as 
the feed rate, spindle speed, and depth of cut. Diaz et al. (2009) used experimental data on face-milling 
operations to show that the material removal rate is one key indicator of energy consumption in a machine 
tool. Gutowski et al. (2006) developed machine-tool characterization techniques by studying the effects of 
different process parameters on the total energy consumption.  
 
Both the physical and experimental applications in literature have been developed for specific machining 
operations, parameter spaces, and tool-workpiece material combinations, which limits the broad 
applicability of these approaches. Furthermore, they may be insufficient for machine tools with relatively 
high tare power demand (tare power refers to the power required for non-cutting operations and auxiliary 
equipment). Most modern machine tools fit this description since the energy needed for material removal is 
a fraction of the overall energy consumed. Most of the limitations in the literature are due to a limited 
access to data, lack of standardized data-collection systems, and inadequate post-processing techniques. 
 
Advances in machine automation and sensing have begun to address such limitations by allowing 
continuous measurements of the operating conditions and energy consumption of a machine tool. Such 
advances provide new opportunities to build data-driven models to characterize a machine-tool and its 
performance. Teti et al. (2010) gave an extensive survey of sensor technologies, signal processing, and 
decision-making methodologies for machine-tool monitoring. One recent advancement is MTConnect, 
which is an XML-based standard that has been developed to facilitate archiving, accessing, and retrieving 
operational data from various manufacturing equipment (MTConnect Institute, 2014, Vijayaraghavan et al. 
2008). MTConnect enables aggregation of raw power data and machining operational information, which 
provides a means to track variations in energy consumption by different machining operations 
(Vijayaraghavan and Dornfeld, 2010). MTConnect has also been used to study the effects of different 
process parameters on the energy consumption of a machine tool and to construct statistical regression 



models for energy consumption (Diaz et al., 2011). Although these studies have clearly illustrated the 
possibility of collecting real-time operational and energy consumption data for future data analysis, they 
have so far dealt primarily with data collected from slotting operations. In practice, machining a part 
requires a variety of machining operations with many different combinations of operational parameters.  
However, the principles of data-driven process planning and machine tool monitoring based on energy 
consumption that come across from these studies are the key motivators of this work. 
 
In this paper, we construct a generalized, energy prediction model for different machining operations using 
various combinations of process parameters. The constructed energy prediction model can be used for 
several tasks. First, by establishing the correlation among machining parameters and the resultant energy 
consumption, the energy prediction model can help gain a better understanding of the energy consumption 
pattern of a target machine tool. Furthermore, the energy prediction model can be used to facilitate 
operating a target machine more efficiently, such as reducing the total energy consumption of the target 
machine by selecting an energy-efficient toolpath. Finally, an energy prediction model allows monitoring 
of a target machine by observing sudden, unexpected events that may show deviations between the 
predicted and actual energy consumption, which could be an indication of failure or deterioration of a 
certain machine component.   
 
This paper is organized as follows: We first describe a data-processing methodology that uses MTConnect 
to extract data from a machine tool controller and add-on sensors efficiently and effectively. We used this 
methodology to collect data from an automated milling machine tool (Mori Seiki NVD1500DCG), which 
allowed us to contextualize energy-consumption data with the corresponding machining operation and its 
process (control) parameters. To explore all possible combinations of process parameters for different 
machining operations, we collected data from 18-machined parts with different machining strategies (NC 
codes). Using this data, we developed a generalized, data-driven, energy prediction model that can 
determine the energy consumption of the machine tool for machining a generic part. We applied the 
Gaussian Process (GP) regression model, a non-parametric regression model, to model the complex input 
and output relationship. Finally, we illustrate the use of the energy prediction model to evaluate the optimal 
strategy for machining a generic part.  
 
2. DATA COLLECTION AND POST-PROCESSING 
 
The first step to construct an accurate energy prediction model of a machine tool is to collect and process 
data with minimum noise from the target machine. This data includes the process parameters collected 
from a wide range of machining operations, which are inputs to the model, and the corresponding energy-
consumption measurements, which are the outputs of the model. However, collecting such extensive data 
through experimentation requires significant time and effort, which has been one key barrier for 
constructing data-driven energy prediction models. Recent advances in sensing and data management, such 
as MTConnect, have started to address these barriers by enabling the real-time collection and remote 
retrieval and processing of manufacturing data. This section discusses how we designed the experiments to 
collect the data used to construct a data-driven energy prediction model.  
 
2.1 Data acquisition system 
 
Figure 1 shows the overall data acquisition system used to collect energy-consumption data contextualized 
with machining data, such as process parameters, NC blocks, and tool positions. The machining data were 
collected from a FANUC controller, and the power time-series data was collected using a High Speed 
Power Meter (HSPM) from System Insights. The power consumption data represents the power consumed 
by the entire machine tool, including auxiliary components such as the cooling system and the controller. 
Both types of data were collected using MTConnect and synchronized and organized using an MTConnect 
agent. Bhinge et al (2014) and Helu et al. (2014) describe the hardware platform and data acquisition 
system in greater detail. 
 



 
Figure 1. Data acquisition system 

 
 
2.2 Data processing 
 
To extract insights about a machine tool, the data collected from a target machine needs to be properly 
processed and contextualized. When constructing our energy prediction model, we used feature extraction 
to identify the process parameters that possibly influence energy consumption from the raw data. Figure 2 
shows how we classified the data into three groups based on the level of post processing applied: direct, 
derived, and simulated data.  
 

 
 

Figure 2. Categorization of types of manufacturing data obtained using MTConnect 
 
Direct data was the raw data collected from the machine tool controller and added sensors using 
MTConnect. This data included the NC code block, timestamp, instantaneous feed rate, instantaneous 
spindle speed, instantaneous loads on each axis, instantaneous tool position, and instantaneous power. 
Instantaneous power was measured using an externally installed power meter.  The MTConnect agent 
synchronized the direct data using a common time stamp. 
 
Derived data, which is data corresponding to cutting operations, was generated by applying simple 
calculations to sets of direct data. For example, the machining process in a conventional automated 
machine tool is composed of sequences of cutting operations that can be described using a set of control 
parameters represented by an NC code block. To construct the energy prediction model, we needed to 
determine the relationship between the control parameters and the corresponding energy consumption in 
every NC code bock. Specifically, we computed the total energy, average feed rate, average spindle speed, 
and length of cut in x- and y-directions over the duration of a block of NC code corresponding to a single 



cutting operation. We then used the length of cuts in the x- and y-directions to determine the length and 
direction of the cut. A sequence of such cuts constituted the complete toolpath. 
 
Simulated data was generated by simulating the tool movements associated with the sequence of cutting 
operations for the machining process. Such data was needed because the block-averaged data for each NC 
code block did not provide enough detail to distinguish actual material removal operations from other tool 
movements (e.g., air cut above workpiece). To determine the actual amount of material removed, we 
applied a reverse simulation of the entire cutting process using the instantaneous position data retrieved as 
direct data. This simulation required knowledge of the workpiece dimensions and the tool diameter. To 
simulate the cutting operation, we constructed a 2-dimensional mesh on the surface of the workpiece, 
tracked the material removed during each cut, and redefined the elements in the mesh after every block of 
NC code. From the positional displacement obtained in the derived data, the toolpath of the tool for each 
NC code block was tracked and the material removed was calculated. The data extracted from this 
simulation included the depth of cut, volume of material removed, cutting strategy (i.e., climb or 
conventional milling), and classification of cut (e.g., air cutting, rapid motion without cutting, feed with 
cutting). The cutting strategy was determined from the cutting simulation by tracking the direction of 
angular rotation of the tool and the number of elements being cut on either side of the centerline of the tool.  
 
2.3 Experimental design   
 
The training output for our model was energy consumption data corresponding to each block of the NC 
code and its corresponding machining parameters, all of which can be collected in near-real time and 
efficiently processed and retrieved remotely. The experimental design and data processing technique used 
for generating the training data for this study have been described in previous work (Helu, et al., 2014; 
Bhinge et al., 2014; Park et al., 2015). In this section, we briefly present the basic setup and data processing 
steps used in the experiments. Figure 3 shows the sample part designed to collect training data for the data-
driven energy prediction model. Table 1 shows the specific details of the workpiece, machine tool, and 
cutting tool used in this experimental study.  
 
As shown in Figure 3, there were five basic cutting operations – face milling, contouring, pocketing, 
slotting, and plunge – that were involved in machining a part. In addition, there were three non-cutting 
operations – air cut in the x-y plane, air cut in the 𝑧𝑧 direction, and rapid motion – that were also included in 
the experiments. Because process parameters, such as feed rate, spindle speed, and depth of cut, could have 
affected energy consumption, the test parts were produced using different combinations of process 
parameters to investigate this relationship. For the objective of this paper, a single tool and workpiece were 
chosen, but an expansion of this experimental setup could also involve variations in cutting tool geometry 
and workpiece materials. A Taguchi technique (Box et al., 1979) was employed to design the experiments to 
ensure a fractional-factorial combination for each set of process parameters in each operation. Table 2 shows 
the levels chosen for the depth of cut, chip load (feed or thickness of chip removed by one cutting edge of 
the tool), and spindle speed used to machine the parts. The levels were chosen to cover the entire range of 
prescribed milling parameters for the tool-workpiece material combination. The feed rate f (mm/min) is the 
product of the spindle speed (RPM), the number of tool teeth, and the chip load (mm/tooth). 
 
As noted in Section 1, 18 parts were machined for this study, which provided a total of 196 face-milling, 
108 contouring, 54 slotting and pocketing, and 32 plunge experiments. Each line of NC code corresponded 
to a cutting operation and tool motion and was combined with the corresponding process parameters and 
output energy consumption. Unlike traditional data-collection procedures, each line of NC code for a part 
was treated as a separate experiment. This allowed us to conduct a large number of experiments by 
machining a modest number of parts. The face milling operations on the first 9 parts were carried out in the 
𝑦𝑦 direction, and the remaining 9 parts were milled in the 𝑥𝑥 direction. The separation of milling operations 
in the x- and y-directions was necessary to measure the energy consumption accurately for the target 
machine. The datasets collected from machining all 18 parts were then used to construct the energy 
prediction model for each (cutting or non-cutting) operation. 
 



 
Figure 3.  Test part design for experimentation.  

 
 
 

 
Table 1. Experiment details (Bhinge et al., 2014). 

Workpiece Material Cold Finish Mild Steel 1018 
Workpiece 
Dimensions 

63.5mm x 63.5mm square cut to a 
length of 56mm 

Machine Make Mori Seiki NVD 1500 
Machine Type Micro NC Milling Machine 
Tool Material Solid Carbide 
Tool Diameter 3/8'' (9.525 mm) 

 

 
 

Table 2. Experiment levels chosen for different factors. 
Level Spindle Speed 

(RPM) 
Chip Load 
(mm/tooth) 

Depth of Cut 
(mm) 

1 1500 0.0254 1 
2 3000 0.0330 1.5 
3 4500 0.0432 3 
4 6000 0.0508 - 

 
 
2.4 Data used for energy prediction model  
 
The direct, derived, and simulated data were used to construct the energy prediction model of the milling 
machine. There were five basic input (predictor) variables based on the fundamental parameters of a 
milling machine tool that affect energy consumption (see Figure 4): feed rate, spindle speed, depth of cut, 
cutting direction, and cutting strategy. Three of the input variables – feed rate, spindle speed and depth of 
cut – were quantifiable measurements defined as follows: 
 
• 𝑥𝑥1 ∈ ℝ  Feed rate: The average velocity at which the tool is fed, which can be retrieved from the 

controller data 
 

• 𝑥𝑥2 ∈ ℝ  Spindle speed: The average rotational speed of the tool, which can be retrieved from the 
controller data 

 

• 𝑥𝑥3 ∈ ℝ  Depth of cut: The actual depth of material that the tool is cutting, which can be obtained from 
the cutting simulation 

 
The remaining input variables – cutting direction and cutting strategy – were qualitatively (or categorically) 
labeled. Qualitative variables were represented numerically by codes to construct a regression model. For 
example, a vector of 𝐾𝐾 binary or bits represented a qualitative variable with 𝐾𝐾 independent categorical 
features; only a single bit was nonzero to indicate the associated category among 𝐾𝐾 possible categories 



(Hastie et al. 2009). This approach was used to represent the cutting direction and strategy as coded 
variables to convert qualitative features into quantitative features: 
 
• (𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7) ∈ {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}  Cutting directions: 𝑥𝑥 -cut, 𝑦𝑦 -cut, 𝑧𝑧 -cut, or 

𝑥𝑥𝑦𝑦 -cut, which were represented as coded variables (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1), 
respectively.  
 

• (𝑥𝑥8, 𝑥𝑥9, 𝑥𝑥10) ∈ {(1,0,0), (0,1,0), (0,0,1)} Cutting strategies: Conventional milling, climb milling, or a 
combination of both (as in slotting), which were represented as coded variables,(1,0,0), (0,1,0) and 
(0,0,1), respectively. 

 
Using categorical or coded variables, the prediction model was able to represent any combination of cutting 
direction and cutting strategy. Furthermore, the use of coded variables allowed the prediction model to be 
constructed using the entire training data. Otherwise, we would have needed to partition the dataset into 
subsets with few data points according to each combination of cutting direction and cutting strategy if we 
had to construct an individual prediction function for each combination of features. 
 
 

  
(a) Process parameters of a milling process (b) Cutting strategy 

 
Figure 4. Machining process parameters. 

 
The output (response) variable of the energy prediction model was the energy per unit length of cut, which 
is a quantitative measure. Within each code block 𝑖𝑖, the power consumption of a phase, 𝑃𝑃𝑘𝑘

(𝑖𝑖), 𝑘𝑘 = 1, … ,𝑁𝑁𝑃𝑃, 
over a time duration of 𝑡𝑡𝑘𝑘, was retrieved as a time series dataset using MTConnect.  The total energy 
consumption, 𝐸𝐸(𝑖𝑖) for NC code block 𝑖𝑖, was computed as:  
  

𝐸𝐸(𝑖𝑖) = � 𝑃𝑃𝑘𝑘
(𝑖𝑖) × 𝑡𝑡𝑘𝑘

𝑁𝑁𝑃𝑃

𝑘𝑘=1
. 

 
(1) 

 
 
The number of data points, 𝑁𝑁𝑃𝑃, in each NC code block 𝑖𝑖 depended on the duration of the corresponding 
operation and the sampling rate for the power measurement, which was 100 Hz in this study. We 
generalized the energy consumption by using energy density 𝑦𝑦(𝑖𝑖) = 𝐸𝐸(𝑖𝑖)/𝑙𝑙(𝑖𝑖)   (i.e., the energy per unit 
length of cut) as the output response feature.  That is the length of cut scales the predicted energy 
consumption. Predicting the energy density implicitly included the dependence of the duration of cut on the 
feed rate and length of cut. It also allowed us to predict the energy consumption of a part with different 
(unseen) dimensions, which made the model spatially scalable. Note that we modeled the relationship 
between the averaged values of the process parameters and the average power (or energy density) across 
the duration of the block. 
 
For the 18 parts machined for the experiments in this study, a total of 12,299 datasets of input feature 
vector 𝒙𝒙 and output feature 𝑦𝑦 were generated after post-processing and cutting simulation; each dataset 
corresponded to an individual NC code block. We filtered out those datasets that corresponded to NC code 
blocks that had duration shorter than 2 seconds except for those blocks corresponding to rapid motion. This 
process prevented statistically low quality data from biasing the prediction model since data from blocks of 
longer duration are more stable. The filtered dataset 𝑫𝑫 = {(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1, … ,𝑚𝑚}, where  𝑚𝑚 = 3,214 (i.e., 



data from 3,214 NC code blocks remained after filtering) was further categorized into seven different 
datasets �𝑫𝑫1, … ,𝑫𝑫𝑞𝑞 , … ,𝑫𝑫7� that corresponded to the seven cutting operations described in Figure 3 and 
Section 2.3; each dataset 𝑫𝑫𝑞𝑞 = �(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)�𝑖𝑖 = 1, … ,𝑚𝑚𝑞𝑞�  contained 𝑚𝑚𝑞𝑞  NC code blocks for the cutting 
operation type 𝑞𝑞. 
 
3. DATA-DRIVEN APPROACH FOR ENERGY PREDICTION 
 
To construct a data-driven energy prediction model for a machine tool using the data described in Section 2, 
we can apply Gaussian Process (GP) regression because it can construct a non-linear regression model with 
high-dimensional input features using a relatively small number of training data. As a non-parametric 
regression technique, GP regression can model the input and output relationship without using a set of pre-
defined basis functions. Instead, it uses bases formed from the training data. Due to this flexibility, GP 
regression is able to model complex relationships among input variables and a target response with the least 
number of hyper-parameters. Additional benefits of GP regression are its ability to quantify uncertainties in 
the predicted values and its ability to update the regression model incrementally. GP regression has been 
applied to many fields, including modeling robotics (Nguyen-Tuong et al. 2009), human motions (Wang et 
al., 2008), and traffic flow (Kim et al. 2011). The following sections describe the procedure we applied to 
construct the energy prediction model using GP regression. 
 
3.1 Gaussian Process 
 
GP regression is employed to approximate the unknown energy prediction function 𝑓𝑓(𝒙𝒙) using historical 
data on the machining process parameters and corresponding energy consumption. A GP is a collection of 
random variables (stochastic process), any finite set of which has a joint Gaussian distribution (Rasmussen 
and Williams 2006). By treating the values of the unknown function 𝑓𝑓(·)  =  GP(𝑚𝑚(·), 𝑘𝑘(·,·))   as a 
collection of random variables, GP describes the function probabilistically as a multivariate Gaussian 
distribution specified by its mean function 𝑚𝑚(·) and the covariance function 𝑘𝑘(∙,∙). The mean function 𝑚𝑚(·) 
captures the prior mean of the target function, which is usually assumed to be zero. The covariance function 
𝑘𝑘(∙,∙) quantifies the correlation between input data in terms of their function values.  
 
In GP regression, we assume that the output 𝑦𝑦 = 𝑓𝑓(𝒙𝒙) + 𝜖𝜖 is measured with noise 𝜖𝜖~ 𝑁𝑁(0,𝜎𝜎𝜖𝜖2), which is 
Gaussian distributed with zero mean and variance 𝜎𝜎𝜖𝜖2 . The values for the unknown function 𝑓𝑓(𝒙𝒙)  are 
treated as random variables and modeled by a Gaussian distribution for incorporating prior knowledge 
captured in the historical data. Suppose the current dataset is denoted by 𝑫𝑫𝑞𝑞 = �(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)�𝑖𝑖 = 1, … ,𝑚𝑚𝑞𝑞� for 
the machining operation type 𝑞𝑞. The measured output 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑓𝑓𝑞𝑞(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛) + 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛 corresponding to the new 
input feature 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛  and the historical outputs 𝒚𝒚1:𝑚𝑚𝑞𝑞 = {𝑦𝑦1, … ,𝑦𝑦𝑚𝑚𝑞𝑞}𝑇𝑇  in the training dataset 𝑫𝑫𝑞𝑞  follow a 
multivariate Gaussian distribution (Rasmussen and Williams 2006): 
 

�𝒚𝒚
1:𝑚𝑚𝑞𝑞

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 �~𝑁𝑁 �𝟎𝟎, � 𝐊𝐊 𝒌𝒌
𝒌𝒌𝑇𝑇 𝑘𝑘(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 ,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛)��, 

 
(2) 

 
 
where 𝒌𝒌𝑇𝑇  =  {𝑘𝑘(𝒙𝒙1, 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛), . . . , 𝑘𝑘(𝒙𝒙𝑚𝑚𝑞𝑞 ,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛)}  and K is the covariance matrix (kernel matrix) whose 
(𝑖𝑖, 𝑗𝑗)th entry is 𝐊𝐊𝑖𝑖𝑖𝑖  =  𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑖𝑖). The value of the covariance function 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑖𝑖) quantifies the amount the 
two input feature vectors 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑖𝑖 change together.  Note that the more the two vectors 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑖𝑖 differ, 
the closer the value of the covariance approaches zero, which implies that the two input vectors are not 
correlated in terms of their function values. An effective kernel function can be chosen considering the 
characteristics of the target function. Noting that energy consumption varies smoothly with the changes in 
the machining parameters (Diaz et al. 2011), we use a squared exponential kernel function that can 
effectively describe a continuously varying function. The squared exponential kernel function evaluates the 
covariance between the two input feature vectors 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑖𝑖  as (Neal, 1996): 
 

𝑘𝑘�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑖𝑖� = 𝜎𝜎𝑠𝑠2exp �−
1
2��

𝑥𝑥𝑟𝑟𝑖𝑖 − 𝑥𝑥𝑟𝑟
𝑗𝑗

𝜆𝜆𝑟𝑟
�
2𝑛𝑛

𝑟𝑟=1

� + 𝜎𝜎𝜖𝜖2𝛿𝛿𝑖𝑖𝑖𝑖 . (3) 



 
The kernel function is described by the hyper-parameters 𝜽𝜽 = {𝜎𝜎𝑠𝑠,𝜎𝜎𝜖𝜖 ,𝝀𝝀}. The term 𝜎𝜎𝑠𝑠2 is referred to as the 
signal variance, which quantifies the overall magnitude of the covariance value. The term 𝜎𝜎𝜖𝜖2 is referred to 
as the noise variance, which quantifies the level of noise assumed to exist in the observed output response. 
The Kronecker delta function 𝛿𝛿𝑖𝑖𝑖𝑖 serves to selectively specify the noise variance 𝜎𝜎𝜖𝜖2 to the covariance value 
𝑘𝑘�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑖𝑖�; that is, the noise signals added to different measurements are assumed to be independent and the 
noise correlation is non-zero only when 𝑖𝑖 = 𝑗𝑗 . The vector 𝝀𝝀 = (𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 , … 𝜆𝜆𝑛𝑛)  is referred to as the 
characteristic length scales to quantify the relevancy of the input features in 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑟𝑟 , … 𝑥𝑥𝑛𝑛)  for 
predicting the response 𝑦𝑦. Note that we used a total of 𝑛𝑛 = 10 input features in this study. A large length 
scale 𝜆𝜆𝑖𝑖  indicates weak relevance, while a small length scale 𝜆𝜆𝑖𝑖  implies strong relevance of the 
corresponding input feature 𝑥𝑥𝑖𝑖.  
 
The hyper-parameters 𝜽𝜽 = {𝜎𝜎𝑠𝑠,𝜎𝜎𝜖𝜖 ,𝝀𝝀} are determined by maximizing the log-likelihood of the measurement 
data. Using the definition of GP in Eq. (2), the log-likelihood function of data 𝑫𝑫𝑞𝑞 = �(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)�𝑖𝑖 = 1, … ,𝑚𝑚𝑞𝑞� 
can be expressed as (Rasmussen and Williams 2006): 
 

𝐿𝐿�𝜽𝜽;𝑫𝑫𝑞𝑞� =  𝑃𝑃(𝒚𝒚1:𝑚𝑚𝑞𝑞|𝒙𝒙1:𝑚𝑚𝑞𝑞;𝜽𝜽) = 𝑁𝑁(0,𝐊𝐊) =
1

�(2𝜋𝜋)𝑚𝑚𝑞𝑞|𝐊𝐊|
exp�−(𝒚𝒚1:𝑚𝑚𝑞𝑞)𝑇𝑇𝐊𝐊−1(𝒚𝒚1:𝑚𝑚𝑞𝑞)�. 

 
(4) 

 
 
Note that 𝐊𝐊 is the covariance matrix whose (𝑖𝑖, 𝑗𝑗) entries are defined as shown in Eq. (3). The optimum 
hyper-parameters 𝜽𝜽∗ = {𝜎𝜎𝒔𝒔∗,𝜎𝜎𝜖𝜖∗,𝝀𝝀∗} are then determined as that maximize the log-likelihood of the training 
data 𝑫𝑫𝑞𝑞 as (Rasmussen and Williams 2006): 
 
                                             𝜽𝜽∗ = argmax

𝜽𝜽
 𝐿𝐿�𝜽𝜽;𝑫𝑫𝑞𝑞�,           

                                          =  argmax
𝜽𝜽

−
1
2

(𝒚𝒚1:𝑚𝑚𝑞𝑞)𝑇𝑇𝑲𝑲−1𝒚𝒚1:𝑚𝑚𝑞𝑞 −
1
2

log|𝑲𝑲| −
𝑚𝑚𝑞𝑞

2
log2𝜋𝜋. 

 
(5) 

 
 
With the gradient ∇log𝐿𝐿�𝜽𝜽;𝑫𝑫𝑞𝑞� of the log-likelihood function 𝐿𝐿�𝜽𝜽;𝑫𝑫𝑞𝑞� available, Eq. (5) can be solved 
using a mathematical optimization algorithm. We use Gaussian Processes for Machine Learning (GPML), a 
GP package implemented in MATLAB® to optimize the hyper-parameters (Rasmussen and Nickisch 2013).  
 
After the measurement data and the covariance function (hyper-parameters) are updated, GP regression 
predicts the unknown response 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 corresponding to a new input feature vector 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 in a probabilistic 
fashion. Since the distribution conditional on any subset of the data assumed to be Gaussian distributed, the 
posterior distribution 𝑝𝑝�𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛�𝑫𝑫𝑞𝑞 ,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛�  on 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛  given the historical dataset 𝑫𝑫𝑞𝑞 =
�(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)�𝑖𝑖 = 1, … ,𝑚𝑚𝑞𝑞� and the new input feature vector 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛  can be expressed as a 1-D Gaussian 
distribution (Rasmussen and Williams 2006): 
 

𝑝𝑝�𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛�𝑫𝑫𝑞𝑞 ,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛� = 𝑁𝑁 �𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛;𝜇𝜇�𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑞𝑞�,𝜎𝜎 
2�𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑞𝑞��. (6) 

 
The posterior distribution 𝑝𝑝�𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛�𝑫𝑫𝑞𝑞 ,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛� can be described by its mean 𝜇𝜇 and variance 𝜎𝜎 

2, which can be 
expressed, respectively, as (Rasmussen and Williams, 2006): 
 

𝜇𝜇�𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑞𝑞� = 𝒌𝒌𝑇𝑇𝐊𝐊−1𝒚𝒚1:𝑚𝑚𝑞𝑞, (7) 
 

                            𝜎𝜎�𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑞𝑞� = �𝑘𝑘(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 ,𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛) − 𝒌𝒌𝑇𝑇𝐊𝐊−1𝒌𝒌 . (8) 
 
That is, we can obtain the mean function 𝜇𝜇�𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑞𝑞� from the GP regression to predict the most probable 
energy density 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑓𝑓𝑞𝑞(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛) + 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛 for a given input feature vector 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 and the standard deviation 
function 𝜎𝜎�𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛|𝑫𝑫𝑞𝑞�  to quantify the uncertainty in the predicted value of 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛  at 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 . The energy 



consumption per each machining operation is then aggregated to predict the total energy consumption (with 
some estimated uncertainty bound) for machining a part. 
 
3.2 Estimating test error 
 
Selecting the type of basis function and choosing the optimum feature sets precedes fitting a prediction 
model to the training dataset. For GP regression, once the type of kernel function is specified, the optimum 
feature selection is implicitly carried out by optimizing the hyper-parameters for the kernel function. For 
example, the optimized length scales 𝝀𝝀 = (𝜆𝜆1, … , 𝜆𝜆𝑟𝑟 , … 𝜆𝜆𝑛𝑛)  for the exponential squared function 
automatically weigh the importance of the corresponding features in predicting the output response since a 
smaller 𝜆𝜆𝑟𝑟 implies a larger influence of the corresponding input feature 𝑥𝑥𝑟𝑟 on the output response 𝑦𝑦. This 
property of feature weighting, generally known as automatic relevance determination (ARD) (Neal 1996), 
simplifies the construction of the energy prediction model since all features are being included to construct 
the energy prediction functions without explicitly conducting the feature-selection procedure.  
 
Depending on the machining operation, the parameters in the input feature vector 𝑥𝑥 affected the energy 
density value 𝑦𝑦  differently. For each machining operation type 𝑞𝑞  with the dataset 𝑫𝑫𝑞𝑞 =
�(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)�𝑖𝑖 = 1, … ,𝑚𝑚𝑞𝑞�, we constructed the individual energy-prediction function for that operation using 
GP regression. We then estimated (generalization) errors for each prediction function using the holdout 
cross-validation technique (Hastie et al. 2009). Note that here the (generalization) error was estimated to 
provide insight into how well each individual energy prediction function would perform with unseen test 
data. 
 
For each machining operation type 𝑞𝑞 with the dataset 𝑫𝑫𝑞𝑞 = �(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)�𝑖𝑖 = 1, … ,𝑚𝑚𝑞𝑞�, we trained the model 
and computed the error rates as follows: 
 
(1) Randomly divide the dataset 𝐷𝐷𝑞𝑞 into the training dataset 𝐷𝐷𝑞𝑞𝑡𝑡𝑟𝑟 with 𝑚𝑚𝑞𝑞

𝑡𝑡𝑟𝑟 training data points and the test 
dataset 𝑫𝑫𝑞𝑞

𝑡𝑡𝑛𝑛  with 𝑚𝑚𝑞𝑞
𝑡𝑡𝑛𝑛  test data points. In this study, we set the ratio 𝑚𝑚𝑞𝑞

𝑡𝑡𝑟𝑟:𝑚𝑚𝑞𝑞
𝑡𝑡𝑛𝑛 = 7: 3 , which is a 

common ratio used to estimate the accuracy (i.e., test error) of predictions for supervised learning 
algorithms (Hastie et al. 2009). 

(2) Construct the energy density prediction function 𝑓𝑓𝑞𝑞(𝑥𝑥) by computing 𝜇𝜇�𝒙𝒙|𝑫𝑫𝑞𝑞� and 𝜎𝜎�𝒙𝒙|𝑫𝑫𝑞𝑞� using the 
training dataset 𝑫𝑫𝑞𝑞

𝑡𝑡𝑟𝑟. 
(3) Predict the energy densities corresponding to the input features in the test dataset 𝐷𝐷𝑞𝑞𝑡𝑡𝑛𝑛 and computed 

the error by comparing them to the true energy densities in the test dataset 𝐷𝐷𝑞𝑞𝑡𝑡𝑛𝑛 . The error was 
measured in terms of the mean absolute error (MAE), which was more insensitive to outliers than the 
root mean square error (RMSE) (Willmott and Matsuura 2005): 

 

MAE𝑞𝑞 =
1
𝑚𝑚𝑞𝑞
𝑡𝑡𝑛𝑛� �𝜇𝜇�𝒙𝒙𝑖𝑖|𝑫𝑫𝑞𝑞� − 𝑦𝑦𝑖𝑖�

 

��𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖�∈𝑫𝑫𝑞𝑞𝑡𝑡𝑡𝑡  � 
.   (9) 

 
MAE𝑞𝑞  quantifies the average deviation between the predicted and measured values.  To further 
quantify how much the predicted values in terms of a ratio to the mean density y�𝑞𝑞 for the machining 
operation type q, we use the normalized mean absolute error (NMAE) (Gustafson and Shaocai 2012):  

 

 NMAE𝑞𝑞 =
∑ �𝜇𝜇�𝒙𝒙𝑖𝑖|𝑫𝑫𝑞𝑞� − 𝑦𝑦𝑖𝑖� 

{(𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖)∈𝐷𝐷𝑞𝑞𝑡𝑡𝑡𝑡  } 

∑ 𝑦𝑦𝑖𝑖 
{(𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖)∈𝑫𝑫𝑞𝑞𝑡𝑡𝑡𝑡  } 

=
MAE𝑞𝑞

y�𝑞𝑞
 .   (10) 

 
Note that we could have computed the average deviation between the predicted and measured densities, 
i.e., MAE𝑞𝑞 , by simply multiplying  NMAE𝑞𝑞  with the measured mean density y�𝑞𝑞  (for the machining 
operation type q). 

 



The value of  NMAE𝑞𝑞  could have fluctuated depending on the selected training and test datasets. To 
quantify the test error reliably, 100 values of  NMAE𝑞𝑞  were computed using the procedure above. The 
averaged value 𝜇𝜇NMAE  was then determined and used as an error measure in this study. Note that the 
number of repetitions was chosen empirically so that a stable, representative mean value could be 
determined irrespective of the selected training and test datasets. 
 
Table 3 compares the estimated (generalization) errors for the energy density prediction function for each 
machining operation type. The averages for the normalized mean absolute error 𝜇𝜇NMAE  (computed using 
100 NMAE values from 100 test experiments) for the cutting operations are different due to the different 
cutting mechanisms and the different numbers of training data used for constructing the models. Overall the 
𝜇𝜇NMAE values range between 8% and 45%; the smallest values occur for the feed with cut operations. The 
standard deviation 𝜎𝜎NMAE for the average of the normalized mean absolute error quantifies the variability in 
the estimated 𝜇𝜇NMAE.  
 
Table 3: The estimated test error for each energy density prediction function (for rapid motion, the time 
filtering is not applied since the duration of rapid motions are mostly less than 2 sec). 
 
 

Operation type 
Number  
of NC 
blocks 

Average  
duration  

(sec) 

𝜇𝜇y�𝑞𝑞 
(J/mm) 

𝜇𝜇MAE 
(J/mm) 

𝜇𝜇NMAE 
(%) 

𝜎𝜎NMAE 
(%) 

Feed 
with 
cut 

Face milling 1225 18.973 221.963 18.736 8.440 0.472 
Contouring 401 7.278 247.463 30.957 12.488 1.585 

Slotting 119 4.753 240.515 26.148 10.881 1.173 
Pocketing 196 4.213 262.518 33.423 12.735 1.935 

Plunge 115 8.461 1722.108 501.457 29.189 3.212 
Non 
cut 

Air cut 384 6.999 841.273 70.157 8.350 0.798 
Rapid motion 110 0.528 100.572 44.069 44.653 12.521 

 
Table 3 also shows that when the size of training data was small, for example for the plunge and rapid 
motion operations, the estimated values fluctuated significantly. Since the average duration of these 
operations was extremely small when compared to other operations, the data quality was much lower, 
which resulted in greater prediction error and variation. Also, the plunge operation was conducted using an 
end-mill tool without a center cut. This non-standard use of the cutting tool can be one of the causes for the 
fluctuation in the energy prediction for the plunge operation. To gain better insight into the accuracy of the 
energy prediction model, the value of 𝜇𝜇NMAE can be compared to the coefficient of variation (CV) in the 
energy density values, which captures the inherent fluctuation of the energy density in the training dataset. 
The coefficient of variation is computed based on absolute difference between the energy densities and its 
mean:  
 

CV = � �𝑦𝑦𝑖𝑖 − 𝑦𝑦��
 𝑁𝑁

𝑖𝑖=1 
� 𝑦𝑦𝑖𝑖

 𝑁𝑁

𝑖𝑖=1 
� = 77.165% (11) 

 
The values of 𝜇𝜇NMAE obtained by the energy prediction model are much lower than the value of CV, which 
implies that the energy prediction model captures the variations in the energy density induced by different 
machine operations and parameters well. 
 
3.3 Uncertainty quantification in the prediction model 
 
Using the energy density prediction model for each machining operation type q represented by the mean 
energy density function 𝜇𝜇𝑞𝑞�𝒙𝒙|𝑫𝑫𝑞𝑞�  and the associated standard deviation function 𝜎𝜎𝑞𝑞(𝒙𝒙|𝑫𝑫𝑞𝑞) , the total 
energy consumption for machining a part can be estimated from the NC codes.  First, we can estimate the 
energy consumption 𝐸𝐸�𝑖𝑖  and the standard deviation 𝑆𝑆𝑖𝑖  from the input feature 𝒙𝒙𝑖𝑖  of the NC code block i 
performing the machining operation type 𝑞𝑞 as: 
 



𝐸𝐸�𝑖𝑖 = 𝜇𝜇𝑞𝑞�𝒙𝒙𝑖𝑖|𝑫𝑫𝑞𝑞�× 𝑙𝑙𝑖𝑖 , (12) 
  

𝑆𝑆𝑖𝑖 = 𝜎𝜎𝑞𝑞�𝒙𝒙𝑖𝑖�𝑫𝑫𝑞𝑞� × 𝑙𝑙𝑖𝑖 , (13) 
 
where 𝑙𝑙𝑖𝑖 is the length of cut specified for the operation by the NC code.  Aggregating all the NC blocks for 
the machining operation type q, the predicted total energy consumption 𝐸𝐸�𝑞𝑞  and the associated standard 
deviation 𝑆𝑆𝑞𝑞 can be computed for that operation type: 
 

𝐸𝐸�𝑞𝑞 = � 𝜇𝜇𝑞𝑞�𝒙𝒙𝑖𝑖|𝑫𝑫𝑞𝑞� × 𝑙𝑙𝑖𝑖
 

��𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖�∈𝑫𝑫𝑞𝑞�   
, (14) 

 

𝑆𝑆𝑞𝑞 = �� �𝜎𝜎𝑞𝑞(𝒙𝒙𝑖𝑖|𝑫𝑫𝑞𝑞) × 𝑙𝑙𝑖𝑖�2
 

��𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖�∈𝑫𝑫𝑞𝑞�   
. (15) 

 
Finally, the estimated total energy consumption 𝐸𝐸�  for machining a whole part and the standard deviation 𝑆𝑆 
associated with the estimation can be computed by summing the mean predicted energy 𝐸𝐸�𝑞𝑞  and 
accumulating the standard deviation 𝑆𝑆𝑞𝑞  for all machining operation types, 𝑞𝑞 = 1, … ,𝑄𝑄 , where Q = 7 
(including all cutting and non-cutting operations). Because the energy consumed in each machining 
operation is considered independent of the energy consumed by other machining operations, 𝐸𝐸�  and 𝑆𝑆 are 
expressed as: 
 

𝐸𝐸� = � 𝐸𝐸�𝑞𝑞
 𝑄𝑄

𝑞𝑞=1  
, (16) 

  

𝑆𝑆 = �� �𝑆𝑆𝑞𝑞�
2 𝑄𝑄

𝑞𝑞=1   
 . (17) 

 
Note that the energy density 𝑦𝑦� is represented to be a Gaussian random variable in the framework of GP 
regression. Because a linear combination of Gaussian random variables is also Gaussian, the predicted total 
energy 𝐸𝐸 , which is computed as a linear combination of the energy densities, is also Gaussian. The 
probability distribution on the total energy 𝐸𝐸 then can be expressed as 𝐸𝐸~𝑁𝑁�𝐸𝐸� , 𝑆𝑆2� with the mean 𝐸𝐸�  and 
the standard deviation 𝑆𝑆 given in Eq. (16) and Eq. (17), respectively. 
 
4. VALIDATION TESTS 
 
The energy prediction model constructed based on GP regression was used to predict the energy 
consumption for machining a generic part. This section discusses the validation of the trained energy 
prediction function using unseen test data.  
 
4.1 Data collection from a blind test 
 
Figure 5 shows a generic part, the geometry of which is quite different from the part used in the training 
process (see Figure 3).  The cutting and non-cutting operations used to produce the generic test part are face 
milling, pocketing, plunge, air cut, and rapid motion.   
 



 
Figure 5. Generic test part used to validate the energy prediction model 

 
The accuracy of the energy prediction model depended on how the machining parameters for a test part 
were distributed relative to the machining parameters used in the training dataset. If the machining 
parameters for the test part were completely different from the machining parameters used to collect the 
training dataset, the accuracy of the prediction fell. To study how the energy prediction model generalized 
over unobserved test data, we validated the energy prediction model by machining three test parts with the 
geometry shown in Figure 5, but we intentionally varied the spindle speeds in these experiment as shown in 
Table 4. Comparing the spindle speeds used to machine the 18 training parts to those in Table 4, the first 
test part uses the same spindle speed while the second and third use different spindle speeds. We chose 
these spindle speeds to evaluate the model’s capability of predicting the energy density values in 
incrementally more unexplored parameter space. For all test parts, the depth of cut was set to 1 mm.  
 

Table 4: Spindle speeds chosen for the blind tests 
 Used spindle speeds (in RPM) 
Training parts 1~18 {1,500;  3,000;  4,500} 
Test part 1 {1,500;  3,000;  4,500} 
Test part 2 {1,700;  2,800;  4,300} 
Test part 3 {2,130;  2,400;  3,750} 

 
4.2 Prediction result 
 
Figure 6 shows the measured energy density values y and the predicted energy density function 𝑦𝑦� for the 
face milling operations with different spindle speeds and different feed rates. To visualize the high-
dimensional prediction function for the energy density, we fix the other machining parameters for y-
direction cut and conventional cutting strategy and set the depth of cut to 1 mm. For each plot, the curve 
shows how the energy density varies with the feed rate for fixed spindle speed. The influence of the spindle 
speed on the energy density can be studied by comparing the curves shown in the figure. In each plot, the 
dash line represents the predicted mean 𝜇𝜇1(𝒙𝒙|𝐷𝐷1) and shaded band represents the 95% confidence bound on 
the predicted energy density, i.e., 𝜇𝜇1(𝒙𝒙|𝐷𝐷1) ± 1.96𝜎𝜎1(𝒙𝒙|𝐷𝐷1). 
 
As Figure 6 shows, the energy density measurements for the face milling operations in test parts 1, 2, and 3 
are well captured by the energy density prediction function for each spindle-speed/feed-rate combination.  
The overall trend of the energy density is well predicted by the mean function 𝜇𝜇1(𝒙𝒙|𝐷𝐷1). In addition, most 
measurements are within the 95% confidence bound on the predicted energy density. The width of the 
confidence bound changes depending on the distribution of the training data used to build the model. In 
general, the confidence bound for high feed rate is larger because a fewer number of data points were 
collected in this region to build the model. 
 



 
(a) Test part 1 

 
(b) Test part 2 

 
(c) Test part 3 

Figure 6. Predication of energy density values for generic test parts (machined using face-milling, y-
direction cut, conventional cutting strategy, and depth of cut = 1mm). The band represents 𝜇𝜇1(𝒙𝒙𝑖𝑖|𝐷𝐷1) ±
1.96𝜎𝜎1(𝒙𝒙𝑖𝑖|𝐷𝐷1).   
 
Figure 7 compares the predicted and the measured energy consumption for each individual NC code block. 
To predict the energy consumption 𝐸𝐸�𝑖𝑖 for block 𝑖𝑖, the type of machine operation 𝑞𝑞 is first identified and the 
energy density prediction function 𝜇𝜇𝑞𝑞�𝒙𝒙𝑖𝑖|𝑫𝑫𝑞𝑞� corresponding to that operation 𝑞𝑞  is used. The predicted 
(mean) energy for block 𝑖𝑖 is then computed using Eq. (12). In general, the predicted energy consumption 
values match well with the measurements. The deviation of the mean energy prediction from the measured 
energy consumption increases from test part 1 to 3. This is because the machining parameters in test part 3 
are the furthest away from the observed values in the training data. 
 
 
 
 
 
 
 
 
 
 



 
(a) Test Part 1 

 
(b) Test Part 2 

 
(c) Test Part 3 

Figure 7. Predication of total mean energy consumptions including all operations 
 
Finally, Table 5 compares the predicted and measured energy consumption using the normalized mean 
absolute error (NMAE) and relative total error (RTE) defined as: 
 

NMAE =
∑ �𝐸𝐸�𝑖𝑖 − 𝐸𝐸𝑖𝑖� 

{𝑖𝑖∈ NC blocks} 

∑ 𝐸𝐸𝑖𝑖 
{𝑖𝑖∈ NC blocks } 

, (18) 

  

RTE =
�𝐸𝐸� − 𝐸𝐸�
𝐸𝐸

. (19) 

 
 
 
 

Table 5: Summary of prediction results on the generic test parts 

 No. of data 

Averaged 
block 

duration 
(sec) 

NMAE  
(%) 

Measured 
Total energy 

(KJ) 

Prediction 
total energy 

(KJ) 

Standard 
deviation 

(KJ) 

RTE 
(%) 

Test 1 168 10.014    9.577    909.266 891.022    35.259    -2.007 
Test 2 152 9.567  10.359   768.605  766.901   37.696    -0.222 
Test 3 154 9.577  13.553   761.272 806.761    34.508 5.976 
 



Note that the NMAE in Eq. (18) is defined using the predicted energy 𝐸𝐸�𝑖𝑖 and the measured energy 𝐸𝐸𝑖𝑖 for 
each NC code block 𝑖𝑖, whereas the NMAE in Eq. (10) is defined using the predicted energy density 𝑦𝑦�𝑖𝑖 and 
the measured energy density 𝑦𝑦𝑖𝑖. Thus, the energy prediction with the longer length of cut 𝑙𝑙𝑖𝑖 will contribute 
more to the value of NMAE in Eq. (18). In spite of this dependence on the geometry, the measure can still 
quantify the mean absolute errors of the three test cases in a relative manner. As Table 5 shows, the NMAE 
for the three test parts are less than 15%, which are consistent with the estimated error using the training 
dataset based on the hold-out cross-validation method. In other words, the energy prediction model 
generalizes quite well for the unseen test dataset, which validates the effectiveness of the model in 
predicting the energy consumed to machine a generic part.  
 
While the NMAE quantifies error in the predicted energy for a single cut, the RTE quantifies the errors in 
the predicted total energy consumption for producing a whole part. Table 5 shows that for all test cases, the 
RTE is less than 6%. In addition, the measured total energy falls within the 95% confidence bound 𝐸𝐸� ±
1.96𝑆𝑆 on the predicted total energy. The RTEs for the energy prediction are small for all three test parts 
because the errors 𝐸𝐸�𝑖𝑖 − 𝐸𝐸𝑖𝑖 are distributed centered at the zero-mean with an almost equal chance to over- 
or underestimate the energy as shown in Figure 8. The overestimations and the underestimations on the 
block-wise energy consumptions are canceled out when they are summed up to compute the total energy 
consumption. Therefore, the block-wise energy prediction results in accurate estimation on the total energy 
consumption for machining a whole part. 
 

   
(a) Test part 1 (b) Test part 2 (c) Test part 3 

Figure 8. Distributions of errors 
 
5. SELECTION OF MACHINING STRATEGY 
 
In addition to predicting the energy consumption, the energy prediction functions can also be used to 
determine an energy-efficient toolpath to machine a part or to enable novel monitoring strategies by 
highlighting abnormal behavior. In this section, we discuss the use of energy prediction functions to select 
the toolpath that uses the least amount of energy to machine a part. 
 
5.1 Experiments for toolpath planning 
 
The machine-tool coordinates (x, y, z), with respect to the global reference, represent the location of the 
cutting tool. The toolpath is then described by the temporal sequences of these coordinates. The tool’s 
sequential moves with respect to the geometry of a workpiece determine the cutting direction and the 
cutting strategy. Figure 9 shows four different toolpaths that were explored to machine the pocket shown in 
Figure 10. Table 6 shows the process parameters used to execute these four different toolpaths. Each 
toolpath is composed of cuts in different directions and with different cutting strategies. The goal is to 
select the toolpath that minimizes the predicted energy consumption before actually machining the part. 
This prediction can then be compared to the true energy consumption measured during experiment.  
 



 
Figure 9. Toolpath comparison 

 
 

 
Figure 10. Part geometry for ordering different toolpath strategies 

 
Table 6. Process parameters used in the experiments to order different toolpaths 
Levels Cutting Speed  

(RPM) 
Chip Load 
 (inches) 

Depth of Cut 
(mm) 

1 1500 0.001 1.5 
2 300 0.002 1.5 

 
5.2 Energy-efficient toolpath selection  
 
Table 7 summarizes the results of the experiments to machine the part shown in Figure 10 using the four 
different toolpaths in Figure 9. The required energy varies depending on the toolpath used, and the energy 
prediction function predicts the total energy consumption with good accuracy. Figure 11 compares the 
measured and predicted energies for each toolpath. The error bar on the predicted energy usage represents 
the 95% interval, i.e., 𝜇𝜇 ± 1.96𝜎𝜎 , for the predicted total energy consumption. Note that the measured 
energy values all fall within the 95% confidence bound on the predicted total energy. With the predicted 
energies, the toolpaths can be ordered in terms of their energy consumption, and the  toolpath with the 
minimum energy consumption can be selected accordingly.  
 
Table 7. Summary of prediction results on the toolpath comparison using the generalized energy prediction 
function. 

 No. of data 

Averaged 
block 

duration 
(sec) 

NMAE  
(%) 

Measured 
Total energy 

(kJ) 

Prediction 
total energy 

(kJ) 

Standard 
deviation 

(kJ) 

RTE 
(%) 

Path 1 73 6.806 11.041 273.389 282.377 9.466 3.288 
Path 2 111 5.181 15.436 303.466 320.896 8.995 5.744 
Path 3 109 5.415 11.655 327.643 338.277 8.788 3.246 
Path 4 84 6.225 16.015 301.907 311.833 11.300 3.288 
 



 
Figure 11. Total energy consumption comparison for different toolpath strategies. 

 
 
6. CONCLUSIONS  
 
This study demonstrates the use of a non-parametric regression model, namely the Gaussian Process (GP), 
to predict the energy consumption of a machine tool. The GP models the complex relationships between the 
input machining parameters and output energy consumption and constructs a prediction function for the 
energy consumption with confidence bounds. Even though the training datasets in this study include only 
18 experimental parts, the models constructed using the machine-learning approach are able to reliably 
predict the energy consumption for machining a generic test part with the milling machine tool. This is 
primarily because of the block-wise experimentation and data analysis conducted which rendered each 
block of NC code as an experiment in itself. In addition, the energy prediction function is used to select the 
optimum toolpath that uses the least amount of energy to machine the same part.  
 
There are other parameters that can possibly affect the energy consumption pattern of a target machine. For 
example, the workpiece material or cutting tool geometry and material can affect the energy consumption 
pattern of the target machine. By including these parameters as input features, the energy prediction model 
can be further improved and generalized. In the future, we plan to conduct additional experiments to collect 
datasets that include these features to improve the robustness and generalizability of the energy prediction 
model.  
 
To effectively establish the energy consumption pattern of a machine tool over time, the energy prediction 
model would need to be updated continuously with new measurement data to account for the time-varying 
characteristics of the machine tool (e.g., due to tool wear and machine tool deterioration). Incorporating 
these characteristics, particularly tool wear, into the modeling approach is one area of future study. Another 
area of future work is constructing a near-real-time energy prediction model for a machine tool by 
combining a near-real-time data collection framework with an adaptive GP regression model. We are 
currently developing a near-real-time data collection framework to retrieve raw data from a milling 
machine tool and its sensors and convert the data into relevant input features. In addition, we are currently 
investigating the use of sparse representation of the covariance matrix to reduce the computational and 
storage demands of GP regression, which can help to update the GP regression model with near-real-time 
streaming data. We expect that the energy prediction function can be constructed using a fraction of 
training data points (perhaps as few as 10%), which can reduce the training time without sacrificing 
accuracy significantly. 
 
As alluded to in Section 5, an energy prediction model that is continually updated can be used to monitor 
the condition of machine components. One area where we can apply energy prediction for machine tool 
monitoring is anomaly detection. For example, a sudden, unexpected event (such as tool breakage or 
machine collision due to incorrect tool offsets) may cause a deviation between the predicted and actual 
energy consumption or power demand, which can trigger an immediate alarm. Developing monitoring 
strategies based on deviations between the predicted and measured energy consumption or power demand 
represents a potentially impactful area of future study. 



 
Finally, in addition to energy consumption, toolpath selection can be based on other criteria, which may 
include minimum machine operating time, minimum impact to a machine tool, and optimized surface 
roughness. Given data-driven predictive models for different performance features, such as time, tool wear, 
or surface roughness, an efficient toolpath can be chosen by considering these impacts individually or 
simultaneously. This study suggests one possible scenario of integrating the energy consumption prediction 
function into a CAM system. The integration of the energy prediction model into the CAM system would 
allow smart and well-informed decision regarding toolpath selection.  
 
In conclusion, this study shows that with advanced data collection and processing techniques, prediction 
models can be constructed to predict energy consumption of a machine tool with multiple operations and 
multiple process parameters. The specific energy prediction model that was generated in this study would 
work for generic parts machined on a Mori Seiki NVD1500. The methodology that was described, though, 
could be used to create prediction models for other machine tools to enable improved planning and 
operations in various shop-floor environments. 
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