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Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and
meso-scale junctions, but it necessitates that any variation of the junction with time must be slow
compared to characteristic times of the system, e.g., the relaxation time of local excitations. Trans-
port through structurally dynamic junctions is, however, increasingly of interest for sensing, harness-
ing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation
of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behav-
ior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting
their natural dynamics and reducing the current; and in an intermediate regime the Landauer view
of the system only is recovered. We also demonstrate that a simple equation of motion emerges,
which is suitable for efficiently simulating time-dependent transport.

I. INTRODUCTION

The prototypical example of electron transport in
nano- and meso-scale junctions is a small conducting
region connected to two electron reservoirs. When
the confinement in this region is strong, the rigorous
treatment of quantum effects becomes crucial. The
Landauer formalism1,2 is a well-known method for de-
scribing these systems, which is based on an energy-
dependent transmission probability for the region of in-
terest. This method has been successfully applied to
ballistic transport,3 quantized conductance,4,5 quantum
point contacts,6 cold-atom systems,7,8 and broadly in the
area of nanoscale electronics.2,9,10 However, the view-
point on which the Landauer formula is based neglects
the explicit effect of relaxation mechanisms, the dynam-
ics of the region of interest, and many-body interactions.
Put differently, the text-book Landauer approach2,11,12

implicitly assumes that deviation from the equilibrium
distribution in the external reservoirs is negligible. There
is thus an interplay between relaxation timescales—e.g.,
those in the junction and at the interface with the
electrodes—that cannot be captured by the Landauer
formalism.

An alternative method to calculate the transport prop-
erties is to work with a closed system and explicitly
solve for the dynamics.2,13–15 This approach has been ap-
plied to study molecular conductance16,17 and induced
cold atom transport,8,18,19 where the latter closely ap-
proximates a closed system, giving an ideal application
of this approach. The limitation of this method, how-
ever, is that the recurrence time is proportional to the
total system size, meaning that a large—and compu-
tationally expensive—reservoir is needed to fully elimi-
nate transient effects and to examine dynamical pertur-
bations on top of an otherwise steady-state current. This
is not feasible in most situations, especially if one is in-
terested in complex, time-dependent many-body systems
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Figure 1. Schematic representation of the model. (a)
System-reservoir-environment model, with yellow and blue
representing the junction region (e.g., two leads connected
by a junction)—the system of interest S—and L (R) in-
dicating the extended reservoirs. The presence of electron
sources, sinks, and interactions (electron-electron, electron-
phonon, etc.), here subsumed into the environments EL(R),
causes the reservoirs to relax toward their respective equilib-
rium distributions, which, when an external bias is applied,
will be at different chemical potentials. (b) Each reservoir
state exchanges electrons with an environment (i.e., an exter-
nal reservoir at some chemical potential), which gives rise to a
non-zero relaxation rate γ. The imbalance of occupied states
will drive a current through S, where explicit (or implicit)
relaxation mechanisms may or may not be present.

or the effect of relaxation (which would require the ex-
plicit incorporation of additional degrees of freedom such
as phonons).

Transport in time-dependent structures, however,
has emerged at the forefront of applications. Elec-
tronic sequencing20–27 (via tunneling current through
base pairs) and sensing28–35 (e.g., protein fluctuations
on/nearby carbon nanotube and graphene devices), in
particular, require a rigorous treatment of the inter-
play between transport and changes of the junction or
molecular structure. In other words, if the local re-
laxation of electrons near the junction is slower or on
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the same timescale as the changes in the junction (typ-
ically picoseconds) the interaction between these two
processes can dramatically influence transport. Practi-
cal real-time approaches to transport that are naturally
suited to these systems are therefore necessary. The for-
malism introduced by Jauho, Meir and Wingreen36–38

(which has been used to describe the conduction in a va-
riety of systems, such as quantum dots,39–41 and layered
semiconductors42–44) provides an exact formal solution to
the time evolution, but involves two-time Green’s func-
tions, making its use prohibitive in many applications.
In this report, we show that in the absence of time de-
pendence, one can recover the Landauer view with rea-
sonably sized “extended reservoirs” and weak relaxation.
The incorporation of explicit but finite reservoirs, how-
ever, also allows for one to examine the competition be-
tween time-dependence of the junction and the relaxation
rate of the reservoir region.

In transport, external sources and sinks of electrons,
together with electron-electron, electron-phonon, etc., in-
teractions, seek to sustain an equilibrium potential dif-
ference across two large regions, which we call extended
reservoirs. We develop an open system approach to trans-
port that includes a finite electron lifetime representing
the presence of these relaxation mechanisms. In partic-
ular, the extended reservoirs consist of a set of states
whose occupation is pushed towards equilibrium by the
exchange of electrons with implicit reservoirs (the en-
vironment E) at different chemical potentials. When a
finite system is placed between them, an electric cur-
rent will be driven across it. We derive a Landauer-
like formula for this scenario and demonstrate that a
finite relaxation time in the extended reservoirs gives
rise to three distinct regimes of behavior, analogous to
Kramers’ turnover for chemical reactions.45 A methodol-
ogy similar to that below—one based on the concept of
“extended reservoirs”—was proposed and developed for
classical thermal transport,46,47 where a corresponding
crossover effect occurs (see also Ref. 48).

II. RESULTS

A. Model

The Hamiltonian is H = HL +HR +HS +HI , where
the explicit degrees of freedom are divided into three
parts: the left extended reservoir (L), the right extended
reservoir (R), and the system of interest (S). The ex-
tended reservoir regions have a finite electron lifetime
that pushes them towards equilibrium by allowing for
the exchange of electrons with the external degrees of
freedom in the implicit reservoir.49 In other words, L
and R are open to some larger environment E (shown
as EL and ER in Fig. 1), where the latter will be com-
posed of degrees of freedom that are treated implicitly.
Finally, HI describes the interaction between S and the
left (L) and right (R) extended reservoirs. Figure 1 shows

a schematic of this setup.

The left and right regions each contain Nr non-
interacting electronic states with a Hamiltonian given

by HL =
∑
k∈L εkc

†
kck and HR =

∑
k∈R εkc

†
kck, where

k ∈ L,R indexes the single particle states and c†k(ck)
are their respective creation (annihilation) operators.
The interaction Hamiltonian is described by HI =∑
k∈L,R

∑
i∈S ~vkic

†
kci + h.c., where i ∈ S indexes the

system states (with associated operators c†i , ci ). The vki
are the hopping rates between the reservoir and system
states. The method we describe will be applicable to
all dimensions, as this just changes the onsite energies
in the Hamiltonian and hopping rates to the extended
reservoirs. The system Hamiltonian, HS , is arbitrary,
potentially including many-body or spin-dependent in-
teractions, vibrational degrees of freedom, etc.

In the absence of S, the extended reservoir states relax
into their equilibrium occupations, i.e., their local den-
sity of electrons decays into a Fermi-Dirac distribution.
The rate at which this occurs, denoted by γ, is controlled
by the coupling strength between the reservoirs, L and
R, and their environment, EL(R). Generically, γ cap-
tures the physical interaction with the environment that
relax the reservoirs into equilibrium.50 A lower bound
on γ−1 can be estimated by the mean scattering time in
the material, which is typically on the order of 1 fs to
10 fs for metals. However, γ is the relaxation rate to
reach equilibrium, which can be much weaker (especially
for, e.g., local disturbances to dissipate in confined ge-
ometries, at low temperature, or in the presence of weak
electron-phonon interaction). Physically, each reservoir
state is exchanging electrons with a larger external reser-
voir (EL(R)) with an applied bias of VL(R) and an infinite
extent. The total externally applied bias is V = VL−VR,
where we here take V to be in units of energy.

The general solution for the steady-states in this setup
can be found by following the approach of Jauho, Meir,
and Wingreen,37 where the reservoirs are taken to be in-
finite with a well-defined occupation and no relaxation.
Indeed, when the whole L − S − R system is treated as
some larger system S ′, the steady state is just the Meir-
Wingreen solution, albeit with an unmanageably large
number of degrees of freedom. Here, however, we are in-
terested in calculating the transport properties of S by
itself, i.e., to what extent can the extended reservoirs
L and R—finite in extent but with relaxation—capture
the effect of infinite reservoirs in the normal approaches.
As well, we want to determine what parameter ranges
(e.g., realistic values of γ) are simulatable via a Marko-
vian master equation approach. To this end, we will
start with the Green’s functions for the extended reser-
voir states uncoupled from the system, but still including
a finite lifetime (note that, as we do in the Supplemental
Information, one can start with all degrees of freedom
treated explicitly, including EL(R), see Eq. (A1)). For
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the lesser Green’s function:

g<k (ω) =
ıγfL(R)(ω)

(ω − ωk)2 + γ2/4
, (1)

with ~ωk = εk and fL(R)(ω) = 1/(exp[β(~ω−VL(R))]+1)
is the Fermi-Dirac distribution. This expression is within
the wide-band approximation, see the Supplemental In-
formation for the general case. This leads to the single
particle retarded and advanced Green’s functions

g
r(a)
k (t, t′) = ∓ıΘ(±t∓ t′)

〈
{c†k(t)ck(t′)}

〉
= ∓ıΘ(±t∓ t′)e−ıωk(t−t′)−γ|t′−t|/2 (2)

or g
r(a)
k (ω) = (ω−ωk±ıγ/2)−1 for the Fourier transform.

The γ in both these equations reflects the finite lifetime
of electrons in the extended reservoir regions. Starting
with this broadened Green’s function for the individual
reservoir state, the steady-state current is

I =
e

2π

ˆ ∞
−∞

dω [fL(ω)− fR(ω)]

× tr
[
ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)

]
. (3)

The quantity Γij is the spectral density of the couplings
between the system and the extended reservoirs

Γ
L(R)
ij (ω) =

∑
k∈L(R)

vikvkj
γ

(ω − ωk)2 + γ2/4
, (4)

with i, j ∈ S. Gr(a)(ω) are the exact retarded and ad-
vanced Green’s functions for the system only but in the
presence of the left and right extended reservoirs and in-
cluding relaxation in the latter.

Equation (3) is similar to the traditional Landauer
formula. However, the density of states of a single ex-
tended reservoir state is broadened to a Lorentzian due
to the inclusion of a finite relaxation time. When no
interactions are present, Eq. (3) can be interpreted in
terms of a relaxation-dependent transmission coefficient,
Tγ = tr[ΓLGrΓRGa]. This relaxation gives rise to dif-
ferent physical regimes of behavior and also an effective
equation of motion that can be used to examine trans-
port in more complex time-dependent scenarios. We first
describe the different regimes of behavior for an example
system.

When the reservoir states are symmetrically coupled to
the system, i.e., when the distribution of energies εk and
couplings vki are the same for each k ∈ L and its corre-
sponding k ∈ R, the spectral density, Eq. (4), is propor-
tional to the imaginary part of the inverse of Gr(a)(ω).
This results in a simplified expression for the current,

I = − eγ
2π

∑
k∈L

∑
i,j∈S

vikvkj

×
ˆ ∞
−∞

dω
[fL(ω)− fR(ω)]

(ω − ωk)2 + γ2/4
Im[Gr

ij(ω)]. (5)

In the example below, we make use of this simplified
expression.

B. Single-Site Homogeneous System

Equation (3) is valid for any system—including those
with many-body interactions—with a finite relaxation
time. In what follows, however, we will focus on a ho-
mogeneous system in which the combined L − S − R
system is a 1D lattice with hopping rate J : H =∑
n∈L,R,S ~J(c†ncn+1 + h.c.). The quantity J sets the

frequency scale, where the bandwidth W = 4J . Note
that in this example, the total coupling to the system
and the bandwidth are both determined by J . Typically,
J−1 is in the range 0.1 fs to 1 fs for conducting materi-
als. We choose to work with hopping rates rather than
energies as this gives more transparent expressions.

The extended reservoir portion of H can be directly
diagonalized via a sine transformation.51 That is, given
k ∈ {1, . . . , Nr}, ωk = −W/2 cos[kπ/(Nr + 1)]. We can
express the couplings with a single index, vk for k ∈ L,R
(instead of vki). Using this notation, the couplings are

vk = J
√

2/(Nr + 1) sin[kπ/(Nr + 1)]. (6)

Again, in this special case of a uniform 1D lattice,
J sets the hopping rate in both the extended reser-
voir region and between the system and extended reser-
voirs. Additionally, we will take the system to be a
single site with no onsite energy so that Gr(a)(ω) =

1/
[
ω − 2

∑
k v

2
kg
r(a)
k (ω)

]
, where the sum over k is in ei-

ther L or R (the factor of 2 reflects the symmetry of the
setup).

Figure 2 shows the calculation of the current I from
Eq. (5) (or Eq. (3)) as a function of the relaxation rate
γ for a reservoir size Nr = 64. There are three regimes
visible: (1) a small γ regime with current I1, (2) an in-
termediate regime with I2, and (3) a large γ regime with
I3. We first discuss the intermediate regime.

C. Intermediate γ

Figure 2 shows that there is an intermediate range of
γ for which the current is approximately flat. That is, in
this crossover region between small and large values of γ,
a plateau forms and subsequently elongates as the size of
the extended reservoir increases (see Fig. 3). The current
in this regime is the same as that predicted by a Landauer
calculation for S alone. That calculation gives the cur-

rent as I2 = e/(2π)
´W/2
−W/2 dω [fL(ω) − fR(ω)]T (ω). In

linear response, this yields

I2 ≈ eV T (ωF )/(2π~), (7)

where ~ωF is the Fermi level. In this example, the
transmission coefficient at the Fermi level is T (ωF ) = 1
and the plateau comes at the quantum of conductance,
I2(β � J~) ≈ eV/(2π~) (the transmission coefficient
through part of a homogeneous lattice is unity, T (ω) = 1,
for all frequencies in the band).52
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Figure 2. Regimes of the electronic current. The steady-
state current, Eq. (5) (or Eq. (3)), of the single-state system
connected to two 1D extended reservoirs of size Nr = 64. The
potential difference is V = 0.5J~ and the temperature is given
by β = 40(J~)−1. The dashed lines show the approximations
in the small and large γ regimes, and the dotted line is the
Landauer calculation of the closed system, S, with infinite L
and R without relaxation. The small γ regime has a current
increasing linearly with γ, as it dominates the rate at which
electrons flow through the whole setup. In the large γ regime,
the fast relaxation localizes electrons in the extended reser-
voir, causing the current to decay as 1/γ. In the intermediate
relaxation regime, the current matches that from a Landauer
calculation.

Perfect transmission at the Fermi level (T (ωF ) = 1)
remains even if the hopping rate from the extended reser-
voir into the system is different (i.e., even if we have an
inhomogeneity of the hopping rates at the interface to
the system). In other systems, or in nonlinear response,
though, the current—i.e., the level of the plateau—will
be a complicated function of the total setup. As we dis-
cuss below, this will change when the current transitions
into the other two regimes.

D. Small γ

Figure 2 shows that the current increases linearly with
γ when it is small. In this regime, electrons move from
the left extended reservoir into the system much faster
than the implicit reservoirs replenish the electrons in L
(and similarly for R). The rate of the replenishment
is the relaxation rate γ, as this determines how fast the
states return back to their equilibrium occupation. Thus,
when γ is small, electrons cannot be restored rapidly
enough and this rate becomes the bottleneck for the cur-
rent, and hence the current is essentially dependent only
on γ.

When the system is noninteracting and γ is much less
than the state spacing (γ �W/Nr), energy conservation
guarantees that an electron coming out of state k (i.e., at
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Figure 3. Expansion of the plateau. The steady-state
current as a function of the relaxation rate γ for the Nr ∈
{32, 64, 128, 256, . . . } systems (dashed lines) and the Nr →∞
limit, I23 (solid line). The parameters of the system are the
same as in Fig. 2. In the limit that Nr →∞ and then γ → 0,
we recover the standard Landauer current. The vertical dot-
ted line demarcates the regions where the Markovian master
equation is valid and not valid. Since the size of the plateau
grows linearly with Nr, the plateau will eventually extend into
the region where the Markovian equation is valid, allowing for
transport in this intermediate plateau regime to be simulated
with the much simpler Markovian approach.

energy εk) on the left, must exit the system at the same
energy on the right. This allows the current to be broken
into contributions from pairs of states, for which the pair
can also be labeled by k in this symmetric setup. The
current flowing into the left reservoir state k from the en-
vironment EL is ILk = eγ(fLk −nLk ) and the current out of
that state into the system is ILSk = eσ(nLk − nS), where

f
L(R)
k is the Fermi-Dirac distribution evaluated at the

reservoir state frequency fL(R)(ωk) and σ is the particle
flow rate from the reservoir state into the system. Similar
rate equations hold on the right side. In the steady state
(Ik ≡ ILk = ILSk = . . .) and when γ � σ (i.e., the relax-
ation γ has to be weak enough that electrons are injected
into an extended reservoir state much more slowly than
they move into the system and are subsequently taken
away from the interface between the system and extended
reservoir), these equations give Ik ≈ e(γ/2)(fLk − fRk ),
where γ/2 is the “reduced γ” (i.e., it reflects that there
are two interfaces, one at the left and one at the right.
For different relaxation rates in L and R, the relevant
quantity would be γLγR/(γL + γR)). Summing over the
contribution from all states k, the total current in this
regime is

I1 ≈ eγ/2
∑
k

(fLk − fRk ). (8)

The sum over k is over a single set of states in the left or
right, which are identical in the symmetric setup. Fig-



5

ure 2 plots Eq. (8) along with the full solution, showing
agreement for small γ.

Essentially, Eq. (8) is just eγ/2 times a particle bias:
There are

∑
k(fLk − fRk ) open channels in the bias

window—where an electron can move from an occupied
state k on the left and go to an unoccupied state k on
the right—and each contributes eγ/2 to the current. We
note that the physics of this regime is the same as that
observed in weakly coupled quantum dot systems,53 in
which case γ reflects a weak tunneling rate to the ex-
ternal electrodes which limits how fast the dot at the
boundary can equilibrate with the electrode.

The transition from the small to intermediate regimes
occurs when the current from Eq. (8) intersects the
plateau current, Eq. (7). We can approximate Eq. (8)
by eγ/2(V/~)Nr/W , where V/~ is the bias window in
terms of frequency, W/Nr is the frequency spacing of the
reservoir states, and, thus (V/~)/(W/Nr) gives the num-
ber of states in the bias window.54 The γ at which the
transition occurs, which we will denote by γ12, is

γ12 ≈W/(πNr). (9)

This value decreases inversely with Nr. Indeed, as seen
in Fig. 3, this is responsible for the increasing size of the
plateau region, as the transition to the large γ region is
independent of Nr (which we will see below).

We note that this transition γ is equivalent to the
condition necessary to be in the small gamma regime,
γ � W/Nr. In more complex systems, or even just in
nonlinear response, the transition γ can be dependent on
many other factors besides just the mode spacing, such
as the hopping rate to the system, the bias, etc. In other
words, the transition from small to intermediate γ de-
pends on the details of the setup.

E. Large γ

When γ becomes large, Fig. 2 shows that the current
“turns over” and starts to decay as 1/γ. The strong re-
laxation (i.e., the fast relaxation rate) in this regime is
effectively localizing electrons in the extended reservoir
region. For currents to flow, electrons must remain co-
herent between the extended reservoir and the system.
The relaxation limits this coherence to a time ≈ 1/γ and
therefore the current is suppressed by this factor.

Alternatively, this can be seen by starting with Eq. (5).
There, the Lorentzian is approximately constant (1/γ) in
the relevant region of integration and the Green’s func-

tions for the reservoir states, g
r(a)
k , are purely imaginary.

The density of states, Im[Gr], is dominated by the contri-
bution from the system in this example (see the Supple-
mental Information for more details). In linear response,
this gives

I3 ≈
e

2π

(
4πJ2

γ

)
, (10)

so long as V 6= 0. That is, the strong relaxation renor-
malizes the coupling to J2/γ and, thus, the total electron
flow through S is limited by this factor.5556 This also
shows that the current in the large γ regime is indepen-
dent of Nr, with the exception of potential discretization
effects (whenNr is very small) that can cause mismatches
in energy, and that the current is independent of the bias
in this regime for the particular example we discuss.

Just as with the small γ regime, we can find the tran-
sition into the large γ regime. This occurs at γ23 ≈
4πJ2~/V , where we have denoted the transition γ as
γ23. Thus, while the behavior of the current in the large
γ regime is independent of bias, the transition to this
regime is dependent on the bias—decreasing the bias
makes this transition occur at increasingly large values
of γ.

We note that, unlike γ12 and γ23, how the small and
large γ behavior varies with γ is generally independent of
the form of the system and the reservoir dispersion rela-
tion, but rather only depends on characteristic quantities
such as the total coupling strength (between the system
and extended reservoir) and relaxation rate.

F. Nr →∞ Limit

The Nr → ∞ limit can be taken in Eq. (3) to regain
a macroscopic electron reservoir, but with a finite relax-
ation time. In our example setup, the extended reservoirs
become semi-infinite 1D lattices on each side. For this
case, we can find the self-energy through either a recur-
sion relation8,57 or by integrating the states directly:

Σr(a)(ω) =
∑
k

v2k
ω − ωk ± ıγ/2

→
ˆ
v(ω′)2D(ω′)dω′

ω − ω′ ± ıγ/2 ,

(11)
with D(ω′) = dk/dωk|ωk=ω′

. This expression gives a
self-energy

Σr(a)(ω) =
8J2

W 2

(
ω ∓ ıγ

2
− ı
√
W 2

4
−
(
ω ∓ ıγ

2

)2)
.

(12)
Using this in Eq. (3) or Eq. (5) (with Γ = 2 Im Σ) pro-
vides a semi-analytic expression for the exact current
through the system in the infinite Nr limit, denoted by
I23. Figure 3 shows this quantity together with the solu-
tion for several finite Nr reservoirs.58 These show that as
Nr increases the plateau will continually grow and, when
Nr →∞, the small γ regime will be eliminated entirely.

The results above are for steady-state currents, which
can be calculated from exact treatment of the L−S −R
system. However, this neglects time-dependent effects
present in S. As we show in the Supplemental Informa-
tion, Eq. (3) also describes the steady-state solution of



6

the Markovian master equation

ρ̇ = − ı
~

[H, ρ] +
∑
k

γk+

(
c†kρck −

1

2

{
ckc
†
k, ρ
})

+
∑
k

γk−

(
ckρc

†
k −

1

2

{
c†kck, ρ

})
(13)

in the small γ regime and in part of the intermedi-
ate plateau region (so long as Nr is sufficiently large,
see Fig. 3). This type of equation has been applied
previously.59–62 It is often taken as a phenomenological
equation for all regimes of γ, not as a weak-coupling ap-
proximation to a memory-less reservoir.63 Our complete
solution to both the full model (for all γ) and its Marko-
vian counterpart enables us to put rigorous bounds on
the latter’s validity, which we will now discuss.

In Eq. (13), the terms γk+ = γfαk and γk− = γ(1−fαk ),
where α = L(R) when k ∈ L(R), relax the extended
reservoirs into an equilibrium defined by their isolated
Hamiltonian when HI is absent. That is, unlike the setup
described above, this equilibrium is for the extended
reservoir states at fixed energy ~ωk. This coincides with
the concept of equilibrium above only when the broaden-
ing is sufficiently small. Larger γ, therefore, can give rise
to unphysical behavior, such as residual currents at zero
bias (see the Supplemental Information). In particular,
the relaxation in the extended reservoirs must be smaller
than the thermal relaxation, γ � 1/β~ (or, in terms of
timescales, γ−1 � 25 fs at room temperature), other-
wise electron occupation can be smeared well above the
Fermi level. As well, if one has asymmetric L and R ex-
tended reservoirs—with the asymmetry characterized by
an energy offset δ (see the Supplemental Information)—
one needs γ � W 3V/δJ2~. Taking γ and Nr such that
the current is on the plateau, γ ≈W/Nr, gives a require-
ment on the extended reservoir size, Nr � δ/V , when δ
is finite.64 This less strict condition (when compared to
γ � 1/β~) guarantees that superfluous currents will be
negligible compared to the actual current at finite bias.
Within these regimes, the Markovian master equation al-
lows for the calculation of the full time dynamics. This
formalism allows for the simulation of time-dependent
effects or interactions and, notably, does so without the
use of two-time Green’s functions or the use of memory

kernels, which both drastically increase the complexity
of the simulations.

III. DISCUSSION

In summary, we developed the concept of extended
reservoirs to examine the effect of relaxation on trans-
port and the validity of a Markovian master equation
approach. In addition to providing the full, exact solu-
tion to both the Markovian and non-Markovian cases, we
showed that the current displays a crossover behavior as
the relaxation rate is varied, with a weak coupling limit
proportional to γ and a strong coupling limit propor-
tional to 1/γ. These two regimes are “relaxation” dom-
inated. The Landauer regime can be simulated through
the use of a finite number of reservoir states and con-
trolling the relaxation rate to be between these two
regimes. The physical behavior in the presence of a finite
reservoir is analogous to Kramers’ problem and thermal
transport.46,47

This approach naturally leads to the Markovian mas-
ter equation, Eq. (13), for small-to-intermediate γ, which
gives a suitable starting point for studying the real-time
behavior of the current where the junction region is time-
dependent. This formalism allows the electronic reser-
voirs to respond to dynamical components of the system
(such as structural and energetic fluctuations) and re-
lax back to equilibrium at a finite rate. The method,
therefore, can be applied to help understand the role
of fluctuations in determining transport properties, to
assess the effectiveness of electronic sensing in aqueous
solution, and to give a unified approach to simulating
nanoscale devices out of equilibrium.
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62 S. Ajisaka, B. Žunkovič, and Y. Dubi, Sci. Rep. 5, 8312

(2015).
63 H.-P. Breuer and F. Petruccione, The theory of open quan-

tum systems (Oxford university press, 2002).
64 Without an asymmetry, the anomalous current from the

left reservoir to the right is canceled by the anomalous
current from right to left.



Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic
transport – Supplemental Information

Daniel Gruss,1, 2, 3 Kirill A. Velizhanin,4 and Michael Zwolak1, ∗

1Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899
2Maryland Nanocenter, University of Maryland, College Park, MD 20742
3Department of Physics, Oregon State University, Corvallis, OR 97331

4Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Appendix A: Steady-State Current

The expressions introduced in the main text are based
on a derivation of the steady-state current using the
equilibrium condition of a single extended reservoir site.
What follows in this section is a more complete derivation
of the steady-state current.

1. Single Extended Reservoir State Green’s
Function

Let us a consider a single electronic level of energy ~ωk
connected to a manifold of non-interacting states that
comprise the implicit reservoir Ek. The index k denotes
the extended reservoir state that these states are coupled
to. The EL(R) from the main text are composed of all Ek
for k ∈ L(R). The Hamiltonian of this partial system is

Hk = ~ωkc†kck +
∑

α∈Ek
~ωαc†αcα+

∑

α∈Ek
~tα

(
c†αck + c†kcα

)
.

(A1)
This Hamiltonian describes the systems shown in Fig.
1(b) in the main text. For an implicit reservoir state α,
the isolated Green’s functions are

g>α (t, t′) = −ı[1− f(ωα)]e−ıωα(t−t
′)−η|t−t′|, (A2)

g<α (t, t′) = ıf(ωα)e−ıωα(t−t
′)−η|t−t′|, (A3)

grα(t, t′) = θ(t− t′)
[
g>(t, t′)− g<(t, t′)

]
, (A4)

and

gaα(t, t′) = −θ(t′ − t)
[
g>(t, t′)− g<(t, t′)

]
; (A5)

or, in terms of their Fourier transforms,

g>α (ω) = −2πı[1− f(ωα)]δ(ω − ωα), (A6)

g<α (ω) = 2πıf(ωα)δ(ω − ωα), (A7)

grα(ω) = 1/(ω − ωα + ıη), (A8)

and

gaα(ω) = 1/(ω − ωα − ıη), (A9)

where η is the infinitesimal positive number and f(ω) is
the Fermi-Dirac distribution. The subscript α on gα is

used to distinguish it from an extended reservoir state
Green’s functions (gk) or the full system Green’s func-
tions (Gij) as used for the L − S − R system. For
the interaction of one level with all the other levels,
Eq. (A1), we have (symbolically, on the Keldysh con-
tour) gk = g0k + g0kΣkgk, with g0k being the single
isolated extended reservoir site. Using the relation be-
tween on-contour and real-time non-equilibrium Green’s
functions,1 for the retarded Green’s function we have

grk(ω) = gr0k(ω) + gr0k(ω)Σrk(ω)grk(ω), (A10)

where

Σrk(ω) =
∑

α∈Ek
t2αg

r
α(ω) =

1

2π

ˆ
dω′

γ(ω′)
ω − ω′ + ıη

. (A11)

Here, γ(ω) = 2π
∑
α t

2
αδ(ω−ωα). Evaluating the integral,

one obtains

Σrk(ω) =
1

2π
P
ˆ
dω′

γ(ω′)
ω − ω′ −

ıγ(ω)

2
= Ek(ω)− ıγ(ω)

2
,

(A12)

where Ek(ω) is a frequency-dependent energy shift and
γ(ω) is a frequency-dependent relaxation rate. Similarly,
the lesser self-energy is evaluated as

Σ<k (ω) =
∑

α∈Ek
t2αg

<
α (ω) = ıγ(ω)f(ω). (A13)

The retarded Green’s function of the extended reservoir
site then becomes

grk(ω) =
1

ω − [ωk + Ek(ω)] + ıγ(ω)/2
. (A14)

As is seen, “friction” is in general non-Markovian, since
the dephasing rate γ(ω) is frequency-dependent. The
frequency shift, Ek(ω), is also non-Markovian in the same
sense. Now let us find the the full lesser Green’s function.
To this end we will use the Keldysh equation1,2

g<k (ω) = grk(ω)Σ<k (ω)gak(ω), (A15)

resulting in

g<k (ω) =
ıγ(ω)f(ω)

(ω − ωk − Ek(ω))2 + γ2(ω)/4
. (A16)
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The important fact here is that the Fermi-Dirac distribu-
tion here is not evaluated at ωk or at any other fixed fre-
quency. Instead, it is evaluated at ω and, therefore, this
factor is the same (at fixed ω) for any Green’s function of
any site within the same reservoir. In particular, it guar-
antees that the current vanishes when the Fermi-Dirac
distribution is the same for the two extended reservoirs.

The often used wide band approximation would result
in ω-independent γ and vanishing Ek. In this approxi-
mation, the result for the lesser Green’s function is

g<k (ω) =
ıγf(ω)

(ω − ωk)
2

+ γ2/4
. (A17)

In a similar manner, the retarded Green’s function is

grk(ω) =
1

ω − ωk + ıγ/2
. (A18)

Accordingly, one has, using the identity grk(ω) = [gak(ω)]
∗
,

g<k (ω) = −f(ω) [grk(ω)− gak(ω)] . (A19)

2. Landauer-like Formula

We are following a notation similar to the original
Meir-Wingreen paper.3 The Hamiltonian of the system
is

H =
∑

k∈L,R
εkc
†
kck+

∑

k∈L,R

∑

i∈S
~
(
vkic

†
kci + vikc

†
i ck

)
+HS ,

(A20)
with εk = ~ωk. Unlike the Meir-Wingreen scenario where
such a Hamiltonian fully describes the steady-state since
the sizes of left and right reservoirs are assumed to be in-
finite, here we take a finite number of extended reservoir
states, but each such site k is connected to an implicit
reservoir according to the Hamiltonian (A1).

The time-dependent current from the left reservoir to
the system can be written as3

I(t) = e
∑

k∈L

∑

j∈S

[
vkjG

<
jk(t, t)− vjkG<

kj(t, t)
]
. (A21)

When the steady state is established, we can take the
Fourier transform,

I = e
∑

k∈L

∑

j∈S

ˆ
dω

2π

[
vkjG

<
jk(ω)− vjkG<

kj(ω)
]
. (A22)

Since the reservoir sites are non-interacting (in a two-
or more-electron sense) we have the following Dyson
equation2

G<kj(ω) =
∑

i∈S
vki
[
grk(ω)G<

ij(ω) + g<k (ω)Ga
ij(ω)

]
,

(A23)
or equivalently

G<ik(ω) =
∑

j∈qs
vjk
[
Gr
ij(ω)g<k (ω) + G<

ij(ω)gak(ω)
]
.

(A24)
Using these identities, Eq. (A22) can be rewritten as

I = e
∑

k∈L

∑

i,j∈S

ˆ
dω

2π
vkivjk

{
g<k (ω)

[
Gr
ij(ω)−Ga

ij(ω)
]

− [grk(ω)− gak(ω)] G<
ij(ω)

}
.

(A25)

We emphasize that even though gk(ω) are single-particle
non-interacting Green’s functions, the corresponding
quasiparticles do have finite lifetime because of their cou-
pling to the implicit reservoirs, which is different from
the original Meir-Wingreen formulation. For example,

g
≷
k (ω) are not delta functions with respect to ω, but

rather Lorentzians (when the wide band limit is taken,
Eq. (A17)).

To proceed further we use (i) the Keldysh equation,1,2

G≷ = GrΣ≷Ga, and (ii) that the self-energy due

to the interaction with reservoir sites is Σ
r(a)
ij =

∑
k∈L,R vikvkjg

r(a)
k , and (iii) the linear relation between

real-time Green’s functions G>−G< = Gr−Ga.1 Using
these identities the current can be rewritten as

I = e
∑

i,j∈S

∑

α,β∈S

∑

k∈L

∑

l∈L,R

ˆ
dω

2π
vkivjkvαlvlβGr

iα(ω)Ga
βj(ω)

{
g<k (ω) [grl (ω)− gal (ω)]− [grk(ω)− gak(ω)] g<l (ω)

}
. (A26)

Considering the equilibrium property of the isolated state k, Eq. (A19), one gets

I = −e
∑

i,j∈S

∑

α,β∈S

∑

k∈L

∑

l∈R

ˆ
dω

2π
vkivjkvαlvlβGr

iα(ω)Ga
βj(ω) [grl (ω)− gal (ω)] [grk(ω)− gak(ω)] {fL(ω)− fR(ω)} . (A27)

It is clearly seen that once the Fermi-Dirac distribution becomes identical on the left and on the right, the current
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vanishes. Actually, any partial current also vanishes, i.e.,
the current for a specific choice of indices m,n, α, β, k, l
and frequency ω, as of course is expected due to the nec-
essary detailed balance at equilibrium.

A concise expression for the current can be written by
introducing the spectral density

Γ
L(R)
ji (ω) = ı

∑

k∈L(R)

vjkvki [grk(ω)− gak(ω)] , (A28)

and the expression for the current becomes

I =
e

2π

∑

i,j,α,β∈S

ˆ ∞
−∞

dω [fL(ω)− fR(ω)] (A29)

× ΓLij(ω)Gr
jα(ω)ΓRαβ(ω)Ga

βi(ω).

Using the matrix notation,

I =
e

2π

ˆ ∞
−∞

dω [fL(ω)− fR(ω)] (A30)

× tr
[
ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)

]
.

This expression is Eq. (3) from the main text.

3. Small γ, Nr →∞

As an example, we examine a system that is a single
noninteracting state. In this case, the continuous form
for the extended reservoir self-energy from integrating
the single site Green’s functions, Eq. (12) from the main
text, is

Σr(a)(ω) =
(
ω ∓ ıγ/2− ı

√
4J2 − (ω ∓ ıγ/2)2

)
/2,

(A31)
when W = 4J , and can be broken into the real and
imaginary components

Re Σr(ω) =
1

4

[
8
(
ω2 + 4J2

)
γ2 + 16

(
ω2 − 4J2

)2
+ ω4

] 1
4

× sin

[
1

2
tan−1

( −4ωγ

−4ω2 + γ2 + 16J2

)]
+
ω

2
(A32)

Im Σr(ω) = −1

2

[(
ω2 − γ2

4
− 4J2

)2

+ ω2γ2

] 1
4

× cos

[
1

2
tan−1

( −4ωγ

−4ω2 + γ2 + 16J2

)]
− γ

4
.

(A33)

The term in the integral of Eq. (A30) can then be written
in terms of these components, and then expanded in γ
and ω. Since both γ and ω appear as the same order
in the expansion and the self-energy is small outside the
band edge, the error in the ω integral is small when γ is

small. In practice, the bias is typically also taken to be
small. For a single central site,

Tγ(ω) = tr
[
ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)

]
(A34)

=
(2 Im Σr(ω))2

(ω − 2 Re Σr(ω))2 + (2 Im Σr(ω))2
≈ 1− ω2γ2

64J4
.

The first term is the transmission coefficient for a 1D
lattice in the Landauer formula, so the correction is of
order γ2.

4. Large γ

As γ increases, the Green’s function for a single reser-
voir site, Eq. (A18), approaches grk(ω) = −2/γ in the
relevant region of integration (i.e., where the difference
in Fermi distributions is non-negligible). The transmis-
sion coefficient in that region, then, is

Tγ(ω) ≈ − 4

γ

∑

k

v2k Im[Gr(ω)]. (A35)

Using the explicit form for the total Green’s function,
with S consisting of a single non-interacting state with
frequency ωs, this simplifies to

Tγ(ω) ≈ 4

γ

∑

k

v2k

(
4
∑
k v

2
k/γ

(ω − ωs)2 + (4
∑
k v

2
k/γ)2

)

=
1

γ

(
1/γ

(ω − ωs)2/(4J2)2 + (1/γ)2

)

≈ π

γ
δ

(
ω − ωs

4J2

)
=

4πJ2

γ
δ(ω − ωs), (A36)

where we used that
∑
k v

2
k = J2 since the couplings vk

come from a unitary transformation times the total cou-
pling to the system. When the bias window includes this
peak and at zero temperature, the current in the large γ
regime becomes

I3 ≈
2eJ2

γ
. (A37)

This expression is independent of the bias, as long as it
is nonzero. As we note in the main text, the transition
to this value of the current, though, does depend on the
bias.

Appendix B: Markovian Master Equation

In the main text and above, we derived a Landauer for-
mula for the L−S−R system, which results in a Marko-
vian master equation for the real-time dynamics in the
small-to-intermediate γ regime. As we show below and
mention in the main text, outside of this regime this for-
malism gives physically invalid results. In the appropri-
ate region, though, it allows for the direct calculation of
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the full time dynamics and can be readily expanded to in-
clude many-body interactions or time-dependent terms.
Here we will derive the full solution—in all regimes—to
the Markovian master equation. Given the Hamiltonian

H =
∑

k∈L,R
εkc
†
kck+

∑

k∈L,R

∑

i∈S
~
(
vkic

†
kci + vikc

†
i ck

)
+HS ,

(B1)
the starting point is the Markovian master equation,

ρ̇ = − ı
~

[H, ρ] +
∑

k

γk+

(
c†kρck −

1

2

{
ckc
†
k, ρ
})

+
∑

k

γk−

(
ckρc

†
k −

1

2

{
c†kck, ρ

})
, (B2)

with γk+ = γfαk and γk− = γ(1 − fαk ), where α = L(R)

when k ∈ L(R), and f
L(R)
k = 1/(exp[β(εk − VL(R))] + 1)

is the Fermi-Dirac distribution. The total applied bias
is V = VL − VR. This form for γk+ and γk− ensures
that in the absence of the interaction HI , the extended
reservoirs will relax into an independent equilibrium of
their own Hamiltonians, HL and HR. For simplicity, we
have assumed that γ is the same in both the left and
right regions, and for all k.

This master equation describes the evolution of a sys-
tem in the presence of explicit reservoir states, with a
different mechanism than used in the main text. The
following will examine the behavior of Eq. (B2) over the
full range of the relaxation γ.

1. Single Extended Reservoir State Green’s
Function

In the absence of S, the extended reservoir states decay
into the equilibrium state, exp(−βHL(R))/Z, i.e., the oc-

cupations decay to a Fermi-Dirac distribution as e−γt/2.
This can be shown from the exact time-dependent lesser
Green’s function in a reservoir site uncoupled from S,
which is given by

g<k (0, t) = ı
〈
c†k(t)ck(0)

〉
= ıtr

[
c†ke

Ltckρeq

]
, (B3)

where Lρ = dρ/dt can be found from Eq. (B2) and the su-
peroperator L is the Lindbladian. The equilibrium state

of the site has filling fk, so tr
[
c†kckρeq

]
= fk. In the Fock

basis of a single state, the equilibrium state is

ρeq =

(
1− fk 0

0 fk

)
. (B4)

A Jordan-Wigner transformation maps the electron cre-
ation and annihilation operators onto spin operators,

which allows us to write ckρeq = (fkσx + ıfkσy)/2. For
the equation of motion, Eq. (B2), the Lindblad oper-
ator is block diagonal in the the σx, σy subspace and
σI , σz subspace. This means we can separately solve
for the dynamics using L for these two subspaces. If

we wish to calculate the action on a generic operator
O = a0σI + axσx + ayσy + azσz, for the σx, σy subspace:

σx
dax
dt

+ σy
day
dt

= −ı[ωkc†kck, axσx + ayσy] (B5)

+ γk+

(
c†k(axσx + ayσy)ck −

1

2
{c†kck, axσx + ayσy}

)

+ γk−

(
ck(axσx + ayσy)c†k −

1

2
{ckc

†
k, axσx + ayσy}

)
.

Acting on both sides with (1/2)σx tr gives dax/dt =
−γax/2 + ωkay with γ = γk+ + γk− . Similarly with
(1/2)σy tr, giving day/dt = −γay/2−ωkax. Solving these
equations of motion we obtain

eLtckρeq = σxfk/2e
−tγ/2+ıωkt + σyfk/2e

−tγ/2−ıωkt.
(B6)

Then acting with ck and taking the trace gives

g<k (0, t) = ıe−tγ/2+ıωktfk, (B7)

for t ≥ 0. This can be readily employed to find the
retarded and advanced Green’s functions for the single
state

g
r(a)
k (t, t′) = ∓ıΘ(±t∓ t′)e−ıωk(t−t′)−γ|t−t′|/2. (B8)

or its Fourier transform, g
r(a)
k (ω) = (ω − ωk ± ıγ/2)−1.

Physically, the reservoir sites are exchanging electrons
with a larger external reservoir with an infinite number of
electrons and states without memory. The lesser Green’s
function is also found to be

g<k (ω) = −fk [grk(ω)− gak(ω)] .

=
ıγf(ωk)

(ω − ωk)
2

+ γ2/4
. (B9)

This expression recovers the original lesser Green’s func-
tion, Eq. (A17), except that the distribution is evaluated
at the ωk of the state, rather than being a continuum over
ω. As we discuss below, this has the effect of broadening
the density of states after they are occupied, rather than
occupying after broadening.

2. Steady-State Current

The general solution to the steady-states of the mas-
ter equation (Eq. (B2)) can also be found in an analo-
gous way to Jauho, Meir, and Wingreen and follows the
same process as the derivation for Eq. (A30). In this
case we use the equilibrium relation from the previous
section, Eq. (B9), rather than using the one that has an
ω-dependent distribution f(ω). In practice, this deriva-
tion is the same but with a filling, fk, dependent on the
reservoir energy, εk.

That is, after applying the Markovian equilibrium
property, Eq. (B9), the expression for the current,
Eq. (A27), is instead
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I = −e
∑

i,j∈S

∑

α,β∈S

∑

k∈L

∑

l∈R

ˆ
dω

2π
vkivjkvαlvlβGr

iα(ω)Ga
βj(ω) [grl (ω)− gal (ω)] [grk(ω)− gak(ω)] {fk − fl} . (B10)

Again, a concise expression for the current can be written
by introducing the spectral density

Γ
L(R)
ji (ω) = ı

∑

k∈L(R)

vjkvki [grk(ω)− gak(ω)] , (B11)

and the population-weighted spectral density

Γ̃
L(R)
ji (ω) = ı

∑

k∈L(R)

fkvjkvki [grk(ω)− gak(ω)] , (B12)

where the Fermi-Dirac distributions are included. Then,
the current can be written as

I =
e

2π

ˆ ∞
−∞

dω tr
[
Γ̃L(ω)Gr(ω)ΓR(ω)Ga(ω) (B13)

−ΓL(ω)Gr(ω)Γ̃R(ω)Ga(ω)
]
,

Note that, in this case, the integrand in Eq. (B13) does
not include the Fermi-Dirac distribution as a separate
prefactor as in the Meir-Wingreen / Landauer formula,
but rather appears as a convolution with a Lorentzian
due to the inclusion of a finite relaxation time from the
Markovian master equation.

When the reservoir states are symmetrically coupled
to the system, a simplified expression results:

I = − e

2π

∑

k∈L

∑

i,j∈S
vikvkj(f

L
k − fRk ) (B14)

×
ˆ ∞
−∞

dω γ

(ω − ωk)2 + γ2/4
Im[Gr

ij(ω)].

For this symmetric case, when the two extended reser-
voirs have the same chemical potential, the calculated
current I is always equal to zero. However, in the asym-
metric case, Eq. (B10) can yield a non-zero current even
with no applied bias. We will examine this fact in Ap-
pendix C in order to develop a bound for when the
Markovian master equation is consistent with physical
expectations.

3. Small and Large γ Limits

In similar fashion to the main text, we can derive the
limiting expressions for the steady-state current in the
low and high relaxation rate regimes. The spectral func-
tion for a single reservoir site connected to an implicit
bath is given by

Ak(ω) = ı [grk(ω)− gak(ω)] =
γ

(ω − ωk)2 + γ2/4
. (B15)

If γ is very small, Ak(ω) approaches 2πδ(ω − ωk). Then
Ak(ω)fk ≈ Ak(ω)fL(R)(ω), so long as f(ω) changes lit-
tle over the width of Ak(ω), and the expression for the
current can be rewritten as

I1 ≈
e

2π

ˆ ∞
−∞

dω [fL(ω)− fR(ω)] (B16)

× tr
[
ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)

]
.

This recovers Eq. (3) from the main text, where the spec-
tral density and Green’s functions include the relaxation
rate γ. What this means is that the master equation
can be used to simulate transport, provided that γ is in
a suitable range. Even the intermediate regime can be
accurately simulated, so long as Nr is sufficiently large.

Similarly for large γ, the integral within Eq. (B14) can
be calculated by transforming out from the frequency
domain:
ˆ ∞
−∞

dω γ

(ω − ωk)2 + γ2/4
Gr
ij(ω) (B17)

= 2π

ˆ ∞
−∞

dt e−ıωk−γ|t|/2 Gr
ij(−t) ≈ −ı

4π

γ
δi,j ,

which applies to both interacting and non-interacting
Green’s functions. In the non-interacting case, this can
be thought of an integration over the density of states for
each site in S. This yields an expression for the current
in the large γ regime to be

I3 ≈ 2e/γ
∑

k∈L

∑

i∈S
v2ki(f

L
k − fRk ), (B18)

where again the sum is over just a single set of k (either in
the left or right extended reservoir, which are identical).

When S consists of a single site, then the large-γ cur-
rent is found to be

I3 ≈ 2e/γ
∑

k∈L
v2k(fLk − fRk ). (B19)

The sum of the v2k terms is the transformation that
diagonalizes the extended reservoir’s single particle
Hamiltonian.4 Thus,

∑

k∈L(R)

f
L(R)
k v2k/J

2 → nL(R), (B20)

where nL(R) is the occupation of the extended reservoir
state in real space at the site immediately adjacent to the
system on the left (right). This makes a correspondence
with a setup with just a single extended reservoir site on
each end (Nr = 1), I3 ≈ 2eJ2(nL − nR)/γ. Essentially,
the sites further away in the Nr > 1 case are effectively
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decoupled from the system as any flow of electrons away
from those sites is suppressed due to the strong relax-
ation. Therefore, the current in the large γ regime is also
independent of Nr with the exception of discretization
effects.

In contrast to the Landauer-like formalism, the Marko-
vian master equation allows for an explicit derivation
showing only the occupation at the boundaries matter,
i.e., all other electrons are prevented from flowing to the
system by the strong relaxation. This is possible due to
the well-defined occupation of each reservoir site. In the
full model, the states are broadened and then occupied,
so there is no equivalent transformation to a single edge
site occupation like there is in the Markovian case.

We can, however, go further with the Markovian pro-
cedure. Within a small bias window, the reservoir cou-
pling is approximately constant v2k ≈ J2/Nr, and the
sum of the occupation terms is approximately the to-
tal number of states within the bias window

∑
k(fLk −

fRk ) ≈ V Nr/(W~). Substituting this in, we find I3 ≈
eV [2πJ2/(γW )](2π~). Comparing with Eq. (10) in the
main text, the large γ current here is additionally in-
versely related to the bandwidth and grows linearly with
V . Thus, while there is similar physical behavior to the
full model, the large γ current is quantitatively very dif-
ferent for the Markovian master equation, which reflects
its lack of validity in this regime.

Appendix C: Bounds on the Validity of the
Markovian Master Equation

This section quantifies the regimes where the master
equation is physically valid. The Markovian master equa-
tion is always mathematically valid in that it gives proper
quantum evolution. However, as we will see, it does not
accurately represent the equilibrium state at larger val-
ues of γ, which, e.g., leads to spurious currents and a
break down of detailed balance.

1. Broadening and the Fermi Level

The Markovian master equation broadens extended
reservoir states across a wide range of ω when the re-
laxation rate γ is large. That is, even with the Fermi
level fixed in the isolated extended reservoir, there is ex-
cessive electron occupation beyond this level in the open
system (succinctly, the Markovian equation occupies the
states then broadens them, rather than broadening then
occupying). As an example, Fig. 1 shows the density of
states times the occupation for both the full and Marko-
vian approaches. For small γ, Fig. 1(a), the relaxation is
weak enough that the states are still relatively localized
in energy. However, for large γ, Fig. 1(b), the electronic
occupation is smeared too much, and this allows current
to flow even without a drop in chemical potential. This
difference is most apparent for states at the Fermi level,
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Im
[ Γ
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(ω
)]

(1
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)
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ω (J)
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Im
[ Γ
L

(ω
)]

(1
/J

)

ωF

a

b

Figure 1. Spectral density and population-weighted
spectral density for a 1D reservoir. The solid line is the
spectral density, Eq. (A28) or Eq. (B11), times the Fermi-
Dirac distribution and the dashed line is the population-
weighted spectral density, Eq. (B12). These correspond to
the Landauer-like formula and the Markovian master equa-
tion method respectively. The number of reservoir states
Nr = 16, bias and temperature are the same as the main
text, β = 40(J~)−1 and ωF = 0.25J , and the relaxation rate
is (a) γ = 0.1J and (b) γ = J .

ωk ≈ ωF , as this is where the distribution is most rapidly
changing.

In the two approaches, only the lesser Green’s func-
tions are different, and these only differ by the distri-
bution function, f(ω) compared to f(ωk). We quantify
the error, ∆, between the two by the integrated absolute
difference,

∆ =

ˆ ∞
−∞

dω
γ |f(ω)− f(ωk)|
(ω − ωk)

2
+ γ2/4

. (C1)

To upper bound this error, we will use two features of
∆. One is that the error is maximal when the state ωk
is at the Fermi level, ωk = ωF . Two is that the Fermi
distribution can be replaced by the piecewise continuous
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function

f(ω)→





1, ω ≤ ωF − 2
β~

1
2 − 1

4β~(ω − ωF ), |ω − ωF | < 2
β~

0, ω ≥ ωF + 2
β~

(C2)

in order to obtain a bound of the error at the Fermi
level. That is, this replacement has a greater absolute
difference to f(ωF ) = 1/2 than the original distribution
function for all ω. Using these two features, the error for
any ωk is bounded by

∆ ≤ arctan

( −4

γβ~

)
+
π

2
+
γβ~

4
ln

(
1 +

16

γβ~

)
(C3)

/
γβ~

4
ln

(
1

γβ~

)
.

The condition for this error to be small is then γβ~� 1.
This can be interpreted as requiring that the broadening
due to the relaxation must be smaller than the broaden-
ing caused by thermal processes. As well, it has a sim-
ple, intuitive mathematical meaning: The maximal slope
of the Fermi-Dirac distribution should be much smaller
than γ, so that the γ-induced smearing has no significant
effect on the occupation.

Expanding on the above brief account, we can show
that the error is maximal when ωk is at the Fermi level
by extremizing ∆,

d∆

dωk
=

d

dωk

ˆ ∞
−∞

dω
γ |f(ω)− f(ωk)|
(ω − ωk)

2
+ γ2/4

= 0, (C4)

which can be rewritten asˆ ∞
−∞

dω
γ sign(ωk − ω)(f ′(ω)− f ′(ωk))

(ω − ωk)2 + γ2/4
= 0. (C5)

When ωk is at the Fermi level, the term containing f ′(ωk)
integrates to zero, as it is a symmetric function multiplied
by an antisymmetric function around ωk. Also when ωk is
at the Fermi level, f ′(ω) is symmetric around ωF (which
comes from the relationship f(ωF − ω) = 1− f(ωF + ω)
when ωk = ωF ), so f ′(ωF − ω) = f ′(ωF + ω). Thus,
the integrand is antisymmetric and it evaluates to zero.
This therefore gives an extremum in the error. Moreover,
when ωk < ωF , the slope is positive and when ωk > ωF ,
the slope is negative, therefore the error is maximal at
the Fermi level. In the limiting cases, ωk → ±∞, the
total error ∆ is zero, meaning that there is agreement
when the state is far away from the Fermi level, as excess
smearing has no consequences when the distribution is
flat.

Additionally, bounds on the relaxation rate and the
number of states required can be found for a given system
by numerically integrating the spectral density above the
Fermi level for the zero temperature case. This yields a
direct measure of the improperly occupied high-energy
states, even when they do not directly contribute to the
electronic current.
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I
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J
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γ = 0.004J
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b

Figure 2. Asymmetric system response. (a) V the
bias dependence of current I versus γ. The bias is V ∈
{0, 0.025, 0.05, 0.1, 0.2}J~ from bottom to top. The reser-
voirs states are equally spaced with a bandwidth of 4J ,
β = 40(J~)−1, and the left reservoir is shifted by δL = 0.1J
and the right is δR = −0.1J , making δ = 0.2J . Note there is
a negative current for no applied bias. (b) Difference between
the current I and the Landauer calculation ILand versus the
applied bias V for Nr = ∞. The solid line is near the peak
current, γ = 0.004J , and the dashed line is γ = J . The dot-
ted line is the approximation from low temperature and high
bandwidth Eq. (C7) for γ = J .

2. Asymmetric Reservoirs

Next, we will examine a system in between asymmet-
ric reservoirs. When the asymmetry of the L and R
extended reservoir is due to a shift in their relative en-
ergies by δ, then we have ω′k = ωk + δ/2 for k ∈ L and
ω′k = ωk−δ/2 for k ∈ R. Solving the equation of motion,
Eq. (B2), shows that there is a non-zero current for the
zero applied bias (V = 0). Note that δ is a parameter
that quantifies the asymmetry of the system.

Physically, the Fermi level on both reservoirs are iden-
tical, so the steady-state current between them should be
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zero. When the reservoir density of states is broadened
by γ, the replacement of f(ω) by f(ωk), as the Marko-
vian model does, results in some electronic occupation
above the Fermi level. This can give rise to an electronic
current. Figure 2 shows the steady-state current I as a
function of the relaxation γ for increasing values of the
applied bias V .

To simplify the analytic forms for the steady-state cur-
rent, we will introduce a system where the extended
reservoirs are “Markovian” rather than 1D. The density
of states for the 1D case is approximately constant near
ω = 0 as long as the bandwidth is large enough. For the
following, the states in the reservoirs are equally spaced
between frequencies ωmin and ωmax and then shifted
by the asymmetry parameter δ, given k ∈ {1, . . . , Nr}:
ωk = (ωmin −∆/2) + ∆k + δ/2 where the state spacing
is ∆ = (ωmax − ωmin)/Nr and the couplings are constant

vk =
√

8J2/(2πNr). Taking the limit as Nr → ∞, the
integral of the single particle Green’s functions yields for
L

Σr(a)(ω) =
8J2

2πW
ln

(
ω − δ/2− ωmin ∓ ıγ/2
ω − δ/2− ωmax ∓ ıγ/2

)
, (C6)

and similarly for R. Here the bandwidth is W = ωmax−
ωmin. The calculation of the steady-state current then
continues as previously.

At zero temperature (β →∞), expanding the current
for large bandwidth (and small V , δ), the leading terms
are

I ≈ eV (8J2/W )

~π[γ + 2(8J2/W )]
− 8eδγJ2

πW 3
. (C7)

The first term gives the linear response current. For small
γ, it is eV/2π~. The second term gives a residual, un-
physical current. So long as the asymmetry is small com-
pared to the bandwidth or γ is sufficiently small, this
term will be negligible compared to the linear response
contribution. Moreover, to accurately calculate results in
the Landauer regime for steady states, γ needs to be of
the order of W/Nr (this condition depends on the details
of the setup, as discussed in the main text regarding the
small γ regime). Thus, so long as

γ ≈W/Nr �W 3V/δJ2~ (C8)

then the simulation will accurately predict steady state
behavior. In other words, one needs Nr � J2δ~/W 2V
(or, for our particular example in the main text, Nr �
δ/V ), which is a condition that is basically always ful-
filled, to ensure the simulation gives accurate results in
the Landauer regime. This covers both small and inter-
mediate regimes discussed throughout the text.

Appendix D: Linear Reservoir with Equally Spaced
States

The process of discretization of the states can have
a large effect on the calculated current when using the

master equation, particularly when the bias window lies
completely in a gap between states. As an example, in
the 1D lattice case, the extended reservoir portion of
H can be directly diagonalized via a sine transforma-
tion. Thus, if one wished to study a large—but still
finite—extended reservoir driving a current through a
time-dependent junction, one could increase Nr by in-
creasing the size of the reservoir in real space, a fact that
also applies in higher dimensions. However, it can be
more useful to instead take Nr states evenly spaced in
energy and increase Nr by decreasing the spacing. That
is, given k ∈ {1, . . . , Nr}, ωk = −(W/2 + ∆/2) + ∆k,
where the state spacing is ∆ = W/Nr, places the states
evenly within the energy band (note that W = 4J for this
model). In order for this to represent the 1D extended
reservoir, the coupling constants to the system need to
incorporate the local density of states for the real-space
lattice at the boundary with the system. We can write
the couplings with a single index, vk for k ∈ L,R (in-
stead of vki), as the coupling to the system’s boundaries
only depend on k. Using this notation, the couplings

vk = 2(4J2 − ω2
k)1/4

√
J/2πNr, (D1)

have a factor of
√

4J2 − ω2
k, which is the local density

of states for the 1D lattice. In the Nr → ∞ limit, this
choice of state discretization recovers the semi-infinite,
real-space lattice.

Appendix E: Single-Site Reservoir Rate Equation

When the broadening γ is much smaller than the state
spacing ≈ W/Nr and for a non-interacting system, con-
servation of energy requires that each electron entering
the system from a site with a given energy εk also leave
the system from the a site with the same energy. This
allows the current to be broken into contributions from
pairs of extended reservoir states, which can be calcu-
lated from a system of rate equations. We shall examine
a three site system which consists of a single site from
each of L and R (indexed by k) and a single site in S.
Further, we will assume different relaxation rates on the
left and right, γL and γR respectively to make the ap-
pearance of a “reduced γ” clear.

When γ is small, the effect of the environment EL(R) is
to relax each extended state to a target filling, denoted
by fL(R), at a rate γL(R). This current due to relaxation
is proportional to the difference between the onsite occu-
pation of the reservoir state, nL(R), and fL(R). In linear
response, the current from EL and the current into ER
are

ILk ≈ eγL(fLk − nLk ), IRk ≈ eγR(nRk − fRk ). (E1)

The current between S and the reservoir states is pro-
portional to a rate parameter σ times the difference in
occupations:

ILSk ≈ eσ(nLk − nS), ISRk ≈ eσ(nS − nRk ). (E2)



9

The value of σ is related to the coupling between the
reservoir and system and describes the particle flow rate.
In the general case, this would be a function of the
system-reservoir coupling and the total Green’s function.
For the example system, however, σ scales as 1/Nr. In
linear response, the conductance is independent of J and
W , so the sum of the total current from all Nr states
must be a constant.

In the steady state, all four of these currents—ILk , IRk ,
ILSk , ISRk —must be equal, giving the solution

Ik =
eσ(

2 + σ γL+γRγLγR

) (fLk − fRk ). (E3)

The quantity γLγR/(γL+γR) is the “reduced γ” between
the two reservoirs and is simply γ/2 when the relaxation
rates are equal. The small γ (γ � σ) approximation for
Eq. (E3) with equal relaxation rates is Ik ≈ e(γ/2)(fLk −
fRk ), as used in the main text.

This rate argument can be extended to the full Nr 6= 1

system by solving a system of 4Nr equations for each of
the incoming and outgoing currents and then equating
the total current into nS ,

∑
k I
LS
k , with the total current

leaving
∑
k I
SR
k . When γL = γR = γ, this yields the

current through the system as

I ≈ eγ/2
∑

k

(fLk − fRk )
σ

σ + γ
. (E4)

For small γ, this recovers the expression in the main text.
Additionally, the occupation of the central site, nS , is
found to be equal to the mean target filling,

∑
k(fLk +

fRk )/(2Nr). With a symmetrical distribution of reservoir
state energies and bias window (as in the case of the main
text), then the central site onsite density is 1/2.

Lastly, a full solution involving a different σk for each
reservoir mode is obtainable. Assuming that the σk are
symmetric between the left and right sides, the total cur-
rent flow recovers Eq. (E4) to the lowest order of γ. The
relaxation strength limits the total current through the
system and, so long as γ is sufficiently small, then the
current is independent of the system-reservoir coupling.
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