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Abstract 

Given a boolean n × n matrix A we consider arithmetic circuits for computing the 
transformation x  → Ax over different semirings. Namely, we study three circuit models: 
monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), 
and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating 
OR-circuits from the two other models in terms of circuit complexity: 

(1)	 We show how to obtain matrices that admit OR-circuits of size O(n), but require 
SUM-circuits of size Ω(n3/2/ log2 n). 

(2)	 We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove 
that any subquadratic-time algorithm for this task violates the strong exponential 
time hypothesis. 
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arithmetic circuits, boolean arithmetic, idempotent arithmetic, monotone separations, 
rewriting 

*A preliminary version of our second contribution has appeared in SAT 2012 [15]. 
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1. Introduction 

Arithmetic circuit models. A basic question in arithmetic complexity is to determine 
the minimum size of an arithmetic circuit that evaluates a linear map x  → Ax; see, e.g., 
the recent survey of Jukna and Sergeev [17]. In this work we approach this question 
from the perspective of relative complexity by varying the circuit model while keeping 
the matrix A fixed, with the goal of separating different circuit models. That is, our 
goal is to show the existence of matrices A that admit small circuits in one model but 
have only large circuits in a different model. 

We will focus on boolean arithmetic and the following three circuit models. Our 
circuits consist of either 

1. only ∨-gates (i.e., boolean sums; rectifier circuits), 
2. only +-gates (i.e., integer addition; cancellation-free circuits), or 
3. only ⊕-gates (i.e., integer addition mod 2). 

These three types of circuits have been studied extensively in their own right (see 
Section 3), but fairly little is known about their relative powers. 

Each model admits a natural description both from an algebraic and a combinatorial 
perspective. 

Algebraic perspective. In the three models under consideration, each circuit with inputs 
x1, . . . , xn and outputs y1, . . . , ym computes a vector of linear forms 

nn 
yi = aij xj , i = 1, . . . , m. 

j=1 

That is, y = Ax, where A = (aij ) is an m by n boolean matrix with aij ∈ {0, 1} and 
the arithmetic is either 

1. in the boolean semiring ({0, 1}, ∨, ∧), 
2. in the semiring of non-negative integers (N, +, ·), or 
3. in GF(2). 

As an example, Figure 1 displays two circuits for computing y = Ax for the same A 
using two different operators; the circuit on the right requires one more gate. 

Combinatorial perspective. A circuit computing y = Ax for a boolean matrix A can 
also be viewed combinatorially: every gate g is associated with a subset of the formal 
variables {x1, . . . , xn}; this set is called the support of g and it is denoted supp(g). The 
input gates correspond to the singletons {xj }, j = 1, . . . , n, and every non-input gate 
computes either 

1. the set union (∨), 
2. the disjoint set union (+), or 
3. the symmetric difference (⊕) of its children. 
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Figure 1: An ∨-circuit (left) and a +-circuit (right). 

This way an output gate yi will have supp(yi) = {xj : aij = 1}. 
Note the special structure of a +-circuit: there is at most one directed path from 

any input xj to any output yi. In fact, from this perspective, every +-circuit for A 
is easy to interpret both as an ∨-circuit for A, and as a ⊕-circuit for A (equivalently, 
there are onto homomorphisms from (N, +, ·) to ({0, 1}, ∨, ∧) and GF(2)). In this sense, 
both ∨- and ⊕-circuits are at least as efficient as +-circuits. 

Relative complexity. More generally we fix a boolean matrix A and ask how the circuit 
complexity of computing y = Ax depends on the underlying arithmetic. To make this 
quantitative, denote by C∨(A), C+(A), and C⊕(A) the minimum number of wires in an 
unbounded fan-in circuit for computing y = Ax in the respective models. For simplicity, 
we restrict our attention to the case of square matrices so that m = n. 

For X, Y ∈ {∨, +, ⊕}, we are interested in the complexity ratios 

gapX/Y(n) := max CX(A)/CY(A). 
A∈{0,1}n×n 

For example, we have that gap∨/+(n) = gap⊕/+(n) = 1 and that gap+/⊕(n) ≥ gap∨/⊕(n) 
for all n, by the above fact that each +-circuit can be interpreted as an ∨-circuit and 
as a ⊕-circuit. 

We review the motivation for studying separation bounds in Section 3. We next 
state our results in Section 2; these are summarised in Figure 2 along with the prior 
separation results. 

Notation. A circuit C is a directed acyclic graph where the vertices of in-degree (or 
fan-in) zero are called input gates and all other vertices are called arithmetic gates. One 
or more arithmetic gates are designated as output gates. The size |C| of the circuit is 
the number of edges (or wires) in the circuit. We abbreviate [n] := {1, . . . , n}. 

2. Results 

+/∨-Separation. We begin by studying the monotone complexity of tensor product 
matrices of the form 

A = B1 ⊗ B2, 
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Figure 2: Separation bounds from (a) prior work, and (b) present work. An arrow from Y to X is 
labelled with gapX/Y(n); bounds for (X, Y)-Rewrite are given inside square brackets. 

where ⊗ denotes the usual Kronecker product of matrices. In Section 4, we prove a direct 
sum type theorem on their monotone complexity. As a corollary, we obtain matrices that 
are easy for ∨-circuits, C∨(A) = O(n), but hard for +-circuits, C+(A) = Ω(n3/2/ log2 n). 

Theorem 1. gap+/∨(n) = Ω(n1/2/ log2 n). 

We are not aware of any prior lower bound techniques that work against +-circuits, 
but not against ∨-circuits. Hence, as far as we know, Theorem 1 is a first step in this 
direction. We also mention that, after a preprint of this work appeared, Jukna and 
Sergeev [17] have given an alternative proof and extensions of our Theorem 1. 

While we are unable to enlarge the gap in Theorem 1, or prove any super-constant 
lower bounds on gap⊕/∨, we still conjecture that all the non-trivial complexity gaps 

1−o(1)between the three models are of order n . Our second result provides some evidence 
towards these conjectures. 

Circuit rewriting. In Section 5, we show that if certain ∨-circuits that are derived from 
CNF formulas could be efficiently rewritten as equivalent +- or ⊕-circuits, this would 
imply unexpected consequences for exponential-time algorithms. More precisely, we 
study the following problem. 

The (X, Y)-Rewrite problem. On input an X-circuit C, output a Y-circuit that computes 
the same matrix as C. 

Both (∨, +)-Rewrite and (∨, ⊕)-Rewrite admit simple algorithms that output a circuit 
of size O(|C|2) in time O(|C|2). However, we show that any significant improvement on 
these algorithms would give a randomised 2(1−E)n poly(n, m) time algorithm for deciding 
whether an n-variable m-clause CNF formula is satisfiable. This would directly violate 
the strong exponential time hypothesis [7, 13, 14], which states that no such randomised 
algorithm exists. (See [13] for a more careful definition of the hypothesis.) 

Theorem 2. Neither (∨, +)-Rewrite nor (∨, ⊕)-Rewrite can be solved in time O(|C|2−E) 
for any constant e > 0, unless the strong exponential time hypothesis fails. 
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Theorem 2 provides evidence, e.g., for the conjecture gap⊕/∨(n) = n1−o(1) in the 
1−o(1)following sense. If there is a family of matrices A witnessing C⊕(A)/C∨(A) = n , 

then clearly no O(|C|2−E)-time algorithm exists for (∨, ⊕)-Rewrite: if we are given a 
minimum-size ∨-circuit for A as input, there is no time to write down a legal output. 

Our proof of Theorem 2 shows, in particular, that an O(|C|2−E)-time algorithm 
for (∨, +)-Rewrite would give an improved algorithm for counting the number of 
satisfying assignments to a given CNF formula (#CNF-SAT). Similarly, an O(|C|2−E)
time algorithm for (∨, ⊕)-Rewrite would give an improved algorithm for deciding whether 
the number of satisfying assignments is odd (⊕CNF-SAT). 

3. Related work 

Upper bounds. The trivial depth-1 circuit for a boolean matrix A uses |A| wires, where 
we denote by |A| the weight of A, i.e., the number of 1-entries in A. Even though 
|A| might be of order Θ(n2), Lupanov [22] (as presented by Jukna [16, Lemma 1.2]) 
constructs depth-2 circuits (applicable in all the three models) of size O(n2/ log n) for 
any A. This implies the universal upper bound 

gapX/Y(n) = O(n/ log n). (Lupanov) 

Lower bounds. Standard counting arguments [16, §1.4] show that most n × n matrices 
have wire complexity Ω(n2/ log n) in each of the three models. Combining this with 
Lupanov’s upper bound we conclude that a random matrix does little to separate our 
models: 

Fact 1. For a uniformly random A, the ratio CX(A)/CY(A) is a constant w.h.p. 

Unsurprisingly, it can also be shown that finding a minimum-size circuit for a 
given matrix is NP-hard in all the models. For ∨- and +-circuits this follows from 
the NP-completeness of the Ensemble Computation problem as defined by Garey and 
Johnson [10, PO9]. For ⊕-circuits this was proved by Boyar et al. [5]. 

∨-circuits. The study of ∨-circuits has been centered around finding explicit matrices 
that are hard for ∨-circuits. Here, dense rectangle-free matrices and their generalisations, 
(s, t)-free matrices, are a major source of lower bounds. 

Definition. A matrix A is called (s, t)-free if it does not contain an (s + 1) × (t + 1) 
all-1 submatrix. Moreover, A is simply called k-free if it is (k, k)-free. 

Nechiporuk [24] and independently Lamagna and Savage [21] we the first to apply a 
construction of dense 1-free matrices (e.g., incidence matrices of finite projective planes) 
to give a lower bound of C∨(A) = Ω(n3/2) for an explicit matrix A. Subsequently, 
Mehlhorn [23] and Pippenger [26] established the following theorem that gives a general 
template for this type of lower bound; we use it extensively later. 

Theorem 3 (Mehlhorn–Pippenger). If A is (s, t)-free, then C∨(A) ≥ |A|/(st). 
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Currently, the best lower bound for an explicit A is obtained by applying Theorem 
3 to a matrix construction of Kollár et al. [19]; the lower bound is C∨(A) ≥ n2−o(1) (see 
also Gashkov and Sergeev [11, §3.2]). 

⊕-circuits. It is a long-standing open problem to exhibit explicit matrices requiring 
super-linear size ⊕-circuits. No such lower bounds are known even for log-depth circuits, 
and the only successes so far are in the case of bounded depth [1, 9; 16, §13.5]. This, 
together with Fact 1, makes it particularly difficult to prove lower bounds on gap⊕/∨. 

However, in the opposite direction, complexity gaps exist: Sergeev et al. [11, 12] 
1−o(1)obtained a bound gap∨/⊕(n) = n . This was subsequently improved to gap∨/⊕(n) = 

Ω(n/ log2 n) by Boyar and Find [4] with an alternative proof given by Jukna and 
Sergeev [17]. 

+-circuits. Additive circuits have been studied extensively in the context of the addition 
chain problem (see Knuth [18, §4.6.3] for a survey) and its generalisations [27]. 

Algebraic complexity. A particular motivation for studying the separation between ∨
and +-circuits is to understand the complexity of zeta transforms on partial orders [2]. 
Indeed, the characteristic matrix of every partial order ≤ has an ∨-circuit proportional 
to the number of covering pairs in ≤, but the existence of small +-circuits (and hence 
fast zeta transforms) is currently not understood satisfactorily. 

Strong exponential time hypothesis. Theorem 2 is similar to other recent lower bound 
results for polynomial-time solvable problems based on the strong exponential time 
hypothesis [25]. See also Cygan et al. [8]. 

4. +/∨-Separation 

Overview. In this section we give a direct sum type theorem for the monotone complexity 
of tensor product matrices. Using this, we obtain a separation of the form 

C∨(B ⊗ A) = O(N), 
(1)

C+(B ⊗ A) = Ω(N3/2/ log2 N), 

where ⊗ denotes the usual Kronecker product of matrices and N = n2 denotes the 
number of input and output variables. This will prove Theorem 1. 

Tensor products. As a first example, let A be a fixed boolean n × n matrix and consider 
the matrix product 

X  → AX , (2) 

where we think of X as a matrix of N = n × n input variables. If we arrange these 
variables into a column vector x by stacking the columns of X on top of one another, 
then (2) becomes 

x  → (I ⊗ A)x, (3) 
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where I is the n × n identity matrix. That is, I ⊗ A is the block matrix having n copies 
of A on the diagonal. 

The transformation (3) famously admits non-trivial ⊕-circuits due to the fact that 
fast matrix multiplication algorithms can be expressed as small bilinear circuits over 
GF(2). However, it is easy to see that in the case of our monotone models, no non-trivial 
speed-up is possible: any ∨-circuit for (3) must compute A independently n times, that 
is, we have 

C∨(I ⊗ A) = n · C∨(A). (4) 

This follows from the observation that two subcircuits corresponding to two different 
columns of X cannot share gates due to monotonicity. 

Our approach. We will generalise the above setting slightly and use tensor products of 
the form B ⊗ A to separate ∨- and +-circuits. Analogously to (2), one can check that 
the matrix B ⊗ A corresponds to computing the mapping 

X  → AXBT. (5) 

We aim to show that for suitable choices of A and B computing B ⊗ A is easy for 
∨-circuits but hard for +-circuits. We will choose A to have large complexity (e.g., 
choose A at random), and think of B as dictating how many independent copies of A a 
circuit must compute. 

More precisely, define rk∨(B) and rk+(B) as the minimum r such that B can be 
written as B = PQT over the boolean semiring or over the semiring of non-negative 
integers, respectively, where P and Q are n × r matrices. Equivalently, rk∨(B) (resp., 
rk+(B)) is the minimum number of rectangles (resp., non-overlapping rectangles) that 
are required to cover all 1-entries of B. 

These cover numbers appear often in the study of communication complexity [20]. 
¯In this context, the matrix B = I—the boolean complement of the identity I—is the 

usual example demonstrating a large gap between the two concepts [20, Example 2.5]: 

rk∨(Ī) = Θ(log n), 

rk+(Ī) = n. 

We will use this gap to show that, up to polylogarithmic factors, 

C∨(Ī ⊗ A) ≈ rk∨(Ī) · n 2 , 

C+(Ī ⊗ A) ≈ rk+(Ī) · n 2 . 

In terms of the number of input variables N = n2, we will obtain (1). 

Upper bound for ∨-circuits. Suppose B = PQT where P and Q are n × rk∨(B) matrices. 
We can compute (5) as 

(A(XQ))P T , 
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which requires 3 matrix multiplications, each involving rk∨(B) as one of the dimensions 
(the other dimensions being at most n). 

If these 3 multiplications are naively implemented with an ∨-circuit of depth 3, each 
layer will contain at most rk∨(B)n2 wires so that C∨(B ⊗ A) ≤ 3 rk∨(B)n2 . However, 
one can still use Lupanov’s techniques to save an additional logarithmic factor: if 
rk∨(B) = O(log n), Corollary 1.35 in Jukna [16] can be applied to show that each of 

¯the three multiplications above can be computed using O(n2) wires. Thus, for B = I 
we get 

Lemma 4. C∨(Ī ⊗ A) = O(n2) for all A. 

Lower bound for +-circuits. Intuitively, since low-rank decompositions are not available 
¯ ¯for I in the semiring of non-negative integers, a +-circuit for I ⊗ A should be forced to 

compute rk+(Ī) = n independent copies of A. More generally, we ask the following. 

Direct sum question. Do we have C+(B ⊗ A) ≥ rk+(B) · C+(A) for all A, B? 

Alas, we can answer this affirmatively only in some special cases. For example, 
the trivial case B = I was discussed above (4), and it is not hard to generalise the 
argument to show that the lower bound holds in case B admits a fooling set of size 
rk+(B). (When B is viewed as an incidence matrix of a bipartite graph, a fooling set is 
a matching no two of whose edges induce a 4-cycle. See [20, §1.3].) However, since this 

¯will not be the case when B = I, we will settle for the following version, which suffices 
for the separation result. 

Theorem 5. For all (s, t)-free A, 

|A|
C+(B ⊗ A) ≥ rk+(B) · . (6)

st 

Note that if we set B = I in Theorem 5 we recover essentially an analogue of 
Theorem 3 restricted to +-circuits. 

For the purposes of the proof we switch to the combinatorial perspective: For A 
and B we introduce two sets of n formal variables XA and XB . Moreover, we let 
A1, . . . , An ⊆ XA and B1, . . . , Bn ⊆ XB denote the associated outputs. That is, each 
output Ai is defined by one row of A, and each output Bj is defined by one row of B. 
With this terminology, the input variables for B ⊗ A are the pairs in XA × XB ; we 
think of XA as indexing the rows and XB as indexing columns of the variable matrix 
XA × XB. Finally, B ⊗ A corresponds to computing the n2 outputs 

Ai × Bj , for i, j ∈ [n]. 

In the following proof we use the (s, t)-freeness of A to “zoom in” on that layer of 
the circuit which reveals the large wire complexity (similarly to Mehlhorn [23]). We 
advise the reader to first consider the case s = t = 1, as this already contains the main 
idea of the proof. 
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Proof of Theorem 5. Let C be a +-circuit computing B ⊗ A. As a first step, we simplify 
C by allowing input gates to have larger-than-singleton supports. Namely, let F consist 
of those gates of C whose supports are contained in a t-wide row cylinder of the form 
Y × XB where Y ⊆ XA and |Y | ≤ t. We simply declare that all computations done 
by gates in F come for free: we promote a gate in F to an input gate and delete all 
its incoming wires. We continue to denote the modified circuit by C—clearly, these 
modifications only decrease its wire complexity. 

Call a wire that is connected to an input gate an input wire and denote the set 
of input wires by W . The wire complexity lower bound (6) will follow already from 
counting the number |W | of input wires. 

For i ∈ [n] denote by Ci the subcircuit of C computing the n outputs Ai × Bj , j ∈ [n], 
and denote by W (i) the input wires of Ci; we claim that 

|Ai||W (i)| ≥ rk+(B) · . (7)
t 

Before we prove (7), we note how it implies the theorem. Each input wire w ∈ W 
is feeding into a non-input gate having their support not contained in a t-wide row 

n     
cylinder. Due to (s, t)-freeness of A this means that w can appear only in at most s 

    
different Ci. |W (i)| counts w at most s times and, more generally, 

n

e 
Thus, the sum i 

we have
 
n |W (i)|
|W | =
 W (i)
 ≥
 ,
 
s
 

i=1 i=1 

which implies (6) given (7). 
It now remains to prove (7). Fix i ∈ [n]. If Ai is empty the claim is trivial. Otherwise 

fix a variable x ∈ Ai and consider the structure of Ci when restricted to the variables 
{x}× XB. Since this set of variables can be naturally identified with XB by ignoring the 
first coordinate, we can view Ci as computing a copy of B on the variables {x} × XB. 

Indeed, we define the x-support suppx(w) of an input wire w ∈ W (i) to be the set 
of y ∈ XB such that the variable (x, y) is contained in the support of w. (The support 
of w is simply the support of the adjacent input gate.) Moreover, we let 

Wx(i) := {w ∈ W (i) : supp  (w) = ∅}.x

Put otherwise, Wx(i) consists of the input wires that are used by Ci in computing a 
copy of B on the variables {x} × XB . Associate to each w ∈ Wx(i) a rectangle 

Rx(w) := co-suppx(w) × suppx(w), 

where co-suppx(w) is the set of j ∈ [n] such that w appears in the subcircuit Cij of Ci 
that computes the output Ai × Bj . Now, the crucial observation is that the collection of 
rectangles {Rx(w) : w ∈ Wx(i)} is a non-overlapping cover of B, because Ci computes a 
copy of B by taking disjoint unions of the supports {supp (w) : w ∈ Wx(i)}. Therefore,x

we must have that 
|Wx(i)| ≥ rk+(B). (8) 
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x 

To finish the proof, we note that a single input wire w ∈ W (i), being t-wide, can 
only be contained in the sets Wx(i) for at most t different x ∈ Ai. Thus, the sum e 

|Wx(i)| counts w at most t times and, more generally, we have 


 n |Wx(i)||W (i)| = Wx(i) ≥ , 
t 

x∈Ai x∈Ai 

which implies (7) given (8). 

It is easy to check (and well-known in the context of random graphs [3, §11]) that a 
random matrix A ∈ {0, 1}n×n is O(log n)-free w.h.p. Since a random matrix has weight 
|A| = Θ(n2) w.h.p., we obtain from Theorem 5 the following corollary, which, together 
with Lemma 4, proves Theorem 1. 

Corollary 6. A random A satisfies C+(Ī ⊗ A) = Ω(n3/ log2 n) w.h.p. 

5. Rewriting 

Overview. In this section we study what would happen if (∨, +)-Rewrite or (∨, ⊕)
Rewrite could be solved in subquadratic time. Namely, we show that this eventuality 
would contradict the strong exponential time hypothesis. This will prove Theorem 2. 
As discussed in Section 2, we interpret this as evidence for our conjectures gap+/∨(n) = 

1−o(1)n1−o(1) and gap⊕/∨(n) = n . 

Preliminaries. For purposes of computations, we assume that |C| ≥ n for any n-
input circuit C considered in this section. This is to make each C admit a binary 
representation of length Õ(|C|) where the Õ notation hides factors polylogarithmic in n. 
For concreteness, C might be represented as two lists: (i) the list of gates in C, with 
output gates indicated, and (ii) the list of wires in C; both lists are given in topological 
order, with the input wires of each gate forming a consecutive sublist of the list of wires. 
Whatever the encoding, we assume it is efficient enough so that the following property 
holds. 

Proposition 7. On input an X-circuit C and a vector x, the output C(x) can be 
˜computed in time O(|C|) (in the usual RAM model of computation). 

The following proposition records a similar observation for circuit rewriting. 

˜Proposition 8. Both (∨, +)-Rewrite and (∨, ⊕)-Rewrite can be solved in time O(|C|2). 

Proof. Suppose we are given an ∨-circuit C as input. The matrix A computed by C can 
˜be easily extracted from C in time O(|C|2). We then simply output the trivial depth-1 

+-circuit for A that has size at most n2 ≤ |C|2 . 
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Rewriting and the strong exponential time hypothesis. The main technical ingredient in 
our proof is Lemma 9 below, which states that if subquadratic-time rewriting algorithms 
exist, then certain simple covering problems can be solved faster than in a trivial manner. 

In the following we consider set systems defined by L1, . . . , Ln and R1, . . . , Rn that 
are (not necessarily distinct) subsets of [m]. We say that (i, j) is a covering pair if 
Lj ∪ Ri = [m]. 

Lemma 9. Suppose we are given sets L1, . . . , Ln, R1, . . . , Rn ⊆ [m] as input. 

˜(a)	 If (∨, +)-Rewrite can be solved in time O(|C|2−E) for some constant e > 0, then the 
number of covering pairs can be computed in time Õ((nm)2−E). 

˜(b)	 If (∨, ⊕)-Rewrite can be solved in time O(|C|2−E) for some constant e > 0, then the 
parity of the number of covering pairs can be computed in time Õ((nm)2−E). 

Proof. We begin by proving (a). Let A = (aij ) be an n × n matrix defined by aij = 1 iff 
(i, j) is a covering pair. We show how to compute |A| without constructing A explicitly. 

Suppose for a moment that we had a small +-circuit C for A. The value |A| can be 
˜recovered from the circuit C in time O(|C|) via the following trick: evaluate C (over the 

integers) on the all-1 vector  to obtain y = C( ) ∈ Nn; but now 

|A| =  
TA =  

TC( ) = y1 + · · · + yn.	 (9) 

Unfortunately, we do not know how to construct a small +-circuit for A. Instead, 
¯our key observation below will be that the complement matrix A admits an ∨-circuit 

C∨ of size only |C∨| = O(nm). By assumption, we can then rewrite C∨ as a +-circuit C+ 

in time Õ(|C∨|2−E) = Õ((nm)2−E). In particular, the size of the new circuit must also be   
˜|C+| = O (nm)2−E . 

˜Analogously to (9) we can then recover |A| from C+ in time O(|C+|): 

|A| = n 2 − | Ā| = n 2 −  
TC+( ). 

It now remains to describe how to construct C∨ for Ā in time Õ(nm). Define a 
depth-2 circuit C∨ as follows: The 0-th layer of C∨ hosts input gates lj , j ∈ [n]; the 
1-st layer contains intermediate gates gk, k ∈ [m]; and the 2-nd layer contains output 
gates ri, i ∈ [n]. Each input gate lj is connected to gates gk for k ∈ [m] ' Lj ; similarly, 
each output gate ri is connected to gates gk for k ∈ [m] ' Ri. To see that C∨ computes 
Ā note that there is a path from input li to output rj iff there is a k ∈ [m] such that 
k /∈ Li ∪ Rj iff (i, j) is not a covering pair. Note also that |C∨| ≤ 2nm and that the 

˜circuit can be constructed in time O(nm). 
Finally, we observe that (b) can be proven by the same argument as (a), except that 

the arithmetic is performed over GF(2). 

Next, we reduce #CNF-SAT and ⊕CNF-SAT to the covering problems in Lemma 9. 
Here we are essentially applying a technique of Williams [28, Theorem 5]. 
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Theorem 10. We have the following reductions: 

˜(a)	 If (∨, +)-Rewrite can be solved in time O(|C|2−E) for some e > 0, then #CNF-SAT 
can be solved in time 2(1−E/2)n poly(n, m). 

(b)	 If (∨, ⊕)-Rewrite can be solved in time Õ(|C|2−E) for some e > 0, then ⊕CNF-SAT 
can be solved in time 2(1−E/2)n poly(n, m). 

Proof. Let ϕ = {C1, . . . Cm} be an instance of CNF-SAT over variables x1, . . . , xn. With
out loss of generality (by inserting one variable as necessary), we may assume that n is 
even. Call the variables x1, . . . , xn/2 left variables and the variables xn/2+1, . . . , xn right 
variables. 

For each truth assignment s ∈ {0, 1}n/2 to the left variables, let Ls ⊆ ϕ be the set 
of clauses satisfied by s. Similarly, for assignment t ∈ {0, 1}n/2 to the right variables, 
let Rt ⊆ ϕ be the set of clauses satisfied by t. Clearly, the compound assignment 
(s, t) to all the variables satisfies ϕ if and only if Ls ∪ Rt = ϕ. That is, the number 
of satisfying assignments is precisely the number of covering pairs of the set system 
{Ls, Rt}, s, t ∈ {0, 1}n/2 . Thus, both claims follow from Lemma 9. 

We can now finish the proof of Theorem 2. For (∨, +)-Rewrite the result follows 
immediately from Theorem 10 since an algorithm for #CNF-SAT implies an algorithm 
for CNF-SAT. For (∨, ⊕)-Rewrite, however, the result does not immediately follow from 
Theorem 10—it is non-trivial to convert an algorithm for ⊕CNF-SAT into an algorithm 
for CNF-SAT. Here we can invoke the main result (an “Isolation Lemma” for k-CNFs) of 
Calabro et al. [6]. They show that any 2(1−E)n poly(n, m) time algorithm for ⊕CNF-SAT 
(in fact, even for CNF-SAT under the promise that there is at most one satisfying 
assignment) can be turned into an 2(1−E')n poly(n, m) time randomised algorithm for 

'CNF-SAT where e > 0. (This is the only step in our proof that required the use of 
randomness.) This concludes the proof of Theorem 2. 
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