
Separating OR, SUM, and XOR Circuits*

Magnus Finda,1, Mika Göösb,c, Matti Järvisaloc, Petteri Kaskid ,

Mikko Koivistoc, Janne H. Korhonenc

aNational Institute of Standards and Technology, USA

bDepartment of Computer Science, University of Toronto, Canada

cHIIT & Department of Computer Science, University of Helsinki, Finland

dHIIT & Department of Information and Computer Science, Aalto University, Finland

Abstract

Given a boolean n × n matrix A we consider arithmetic circuits for computing the
transformation x → Ax over different semirings. Namely, we study three circuit models:
monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers),
and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating
OR-circuits from the two other models in terms of circuit complexity:

(1)	 We show how to obtain matrices that admit OR-circuits of size O(n), but require
SUM-circuits of size Ω(n3/2/ log2 n).

(2)	 We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove
that any subquadratic-time algorithm for this task violates the strong exponential
time hypothesis.

Keywords:
arithmetic circuits, boolean arithmetic, idempotent arithmetic, monotone separations,
rewriting

*A preliminary version of our second contribution has appeared in SAT 2012 [15].
1This work was partially conducted while M.F. was at University of Southern Denmark and visiting

University of Toronto.

1

1. Introduction

Arithmetic circuit models. A basic question in arithmetic complexity is to determine
the minimum size of an arithmetic circuit that evaluates a linear map x → Ax; see, e.g.,
the recent survey of Jukna and Sergeev [17]. In this work we approach this question
from the perspective of relative complexity by varying the circuit model while keeping
the matrix A fixed, with the goal of separating different circuit models. That is, our
goal is to show the existence of matrices A that admit small circuits in one model but
have only large circuits in a different model.

We will focus on boolean arithmetic and the following three circuit models. Our
circuits consist of either

1. only ∨-gates (i.e., boolean sums; rectifier circuits),
2. only +-gates (i.e., integer addition; cancellation-free circuits), or
3. only ⊕-gates (i.e., integer addition mod 2).

These three types of circuits have been studied extensively in their own right (see
Section 3), but fairly little is known about their relative powers.

Each model admits a natural description both from an algebraic and a combinatorial
perspective.

Algebraic perspective. In the three models under consideration, each circuit with inputs
x1, . . . , xn and outputs y1, . . . , ym computes a vector of linear forms

nn
yi = aij xj , i = 1, . . . , m.

j=1

That is, y = Ax, where A = (aij) is an m by n boolean matrix with aij ∈ {0, 1} and
the arithmetic is either

1. in the boolean semiring ({0, 1}, ∨, ∧),
2. in the semiring of non-negative integers (N, +, ·), or
3. in GF(2).

As an example, Figure 1 displays two circuits for computing y = Ax for the same A
using two different operators; the circuit on the right requires one more gate.

Combinatorial perspective. A circuit computing y = Ax for a boolean matrix A can
also be viewed combinatorially: every gate g is associated with a subset of the formal
variables {x1, . . . , xn}; this set is called the support of g and it is denoted supp(g). The
input gates correspond to the singletons {xj }, j = 1, . . . , n, and every non-input gate
computes either

1. the set union (∨),
2. the disjoint set union (+), or
3. the symmetric difference (⊕) of its children.

2

x₁

x₂

x₃

x₄

x₅ x₁ ∨ x₂ ∨ x₃ ∨ x₄ ∨ x₅

∨ x₁ ∨ x₂

x₁ ∨ x₂ ∨ x₃

x₁ ∨ x₄

x₁ ∨ x₄ ∨ x₅

∨

∨

∨

∨

x₁

x₂

x₃

x₄

x₅ x₁ + x₂ + x₃ + x₄ + x₅

x₁ + x₂

x₁ + x₂ + x₃

x₁ + x₄

x₁ + x₄ + x₅

Figure 1: An ∨-circuit (left) and a +-circuit (right).

This way an output gate yi will have supp(yi) = {xj : aij = 1}.
Note the special structure of a +-circuit: there is at most one directed path from

any input xj to any output yi. In fact, from this perspective, every +-circuit for A
is easy to interpret both as an ∨-circuit for A, and as a ⊕-circuit for A (equivalently,
there are onto homomorphisms from (N, +, ·) to ({0, 1}, ∨, ∧) and GF(2)). In this sense,
both ∨- and ⊕-circuits are at least as efficient as +-circuits.

Relative complexity. More generally we fix a boolean matrix A and ask how the circuit
complexity of computing y = Ax depends on the underlying arithmetic. To make this
quantitative, denote by C∨(A), C+(A), and C⊕(A) the minimum number of wires in an
unbounded fan-in circuit for computing y = Ax in the respective models. For simplicity,
we restrict our attention to the case of square matrices so that m = n.

For X, Y ∈ {∨, +, ⊕}, we are interested in the complexity ratios

gapX/Y(n) := max CX(A)/CY(A).
A∈{0,1}n×n

For example, we have that gap∨/+(n) = gap⊕/+(n) = 1 and that gap+/⊕(n) ≥ gap∨/⊕(n)
for all n, by the above fact that each +-circuit can be interpreted as an ∨-circuit and
as a ⊕-circuit.

We review the motivation for studying separation bounds in Section 3. We next
state our results in Section 2; these are summarised in Figure 2 along with the prior
separation results.

Notation. A circuit C is a directed acyclic graph where the vertices of in-degree (or
fan-in) zero are called input gates and all other vertices are called arithmetic gates. One
or more arithmetic gates are designated as output gates. The size |C| of the circuit is
the number of edges (or wires) in the circuit. We abbreviate [n] := {1, . . . , n}.

2. Results

+/∨-Separation. We begin by studying the monotone complexity of tensor product
matrices of the form

A = B1 ⊗ B2,

3

+ +

Ω(n1/2/ log2 n),Ω(n/ log2 n)

∨

1

⊕

1 1−o(1)][n
1−o(1)][n

Ω(n/ log2 n)
∨ ⊕

(a) (b)

Figure 2: Separation bounds from (a) prior work, and (b) present work. An arrow from Y to X is
labelled with gapX/Y(n); bounds for (X, Y)-Rewrite are given inside square brackets.

where ⊗ denotes the usual Kronecker product of matrices. In Section 4, we prove a direct
sum type theorem on their monotone complexity. As a corollary, we obtain matrices that
are easy for ∨-circuits, C∨(A) = O(n), but hard for +-circuits, C+(A) = Ω(n3/2/ log2 n).

Theorem 1. gap+/∨(n) = Ω(n1/2/ log2 n).

We are not aware of any prior lower bound techniques that work against +-circuits,
but not against ∨-circuits. Hence, as far as we know, Theorem 1 is a first step in this
direction. We also mention that, after a preprint of this work appeared, Jukna and
Sergeev [17] have given an alternative proof and extensions of our Theorem 1.

While we are unable to enlarge the gap in Theorem 1, or prove any super-constant
lower bounds on gap⊕/∨, we still conjecture that all the non-trivial complexity gaps

1−o(1)between the three models are of order n . Our second result provides some evidence
towards these conjectures.

Circuit rewriting. In Section 5, we show that if certain ∨-circuits that are derived from
CNF formulas could be efficiently rewritten as equivalent +- or ⊕-circuits, this would
imply unexpected consequences for exponential-time algorithms. More precisely, we
study the following problem.

The (X, Y)-Rewrite problem. On input an X-circuit C, output a Y-circuit that computes
the same matrix as C.

Both (∨, +)-Rewrite and (∨, ⊕)-Rewrite admit simple algorithms that output a circuit
of size O(|C|2) in time O(|C|2). However, we show that any significant improvement on
these algorithms would give a randomised 2(1−E)n poly(n, m) time algorithm for deciding
whether an n-variable m-clause CNF formula is satisfiable. This would directly violate
the strong exponential time hypothesis [7, 13, 14], which states that no such randomised
algorithm exists. (See [13] for a more careful definition of the hypothesis.)

Theorem 2. Neither (∨, +)-Rewrite nor (∨, ⊕)-Rewrite can be solved in time O(|C|2−E)
for any constant e > 0, unless the strong exponential time hypothesis fails.

4

Theorem 2 provides evidence, e.g., for the conjecture gap⊕/∨(n) = n1−o(1) in the
1−o(1)following sense. If there is a family of matrices A witnessing C⊕(A)/C∨(A) = n ,

then clearly no O(|C|2−E)-time algorithm exists for (∨, ⊕)-Rewrite: if we are given a
minimum-size ∨-circuit for A as input, there is no time to write down a legal output.

Our proof of Theorem 2 shows, in particular, that an O(|C|2−E)-time algorithm
for (∨, +)-Rewrite would give an improved algorithm for counting the number of
satisfying assignments to a given CNF formula (#CNF-SAT). Similarly, an O(|C|2−E)
time algorithm for (∨, ⊕)-Rewrite would give an improved algorithm for deciding whether
the number of satisfying assignments is odd (⊕CNF-SAT).

3. Related work

Upper bounds. The trivial depth-1 circuit for a boolean matrix A uses |A| wires, where
we denote by |A| the weight of A, i.e., the number of 1-entries in A. Even though
|A| might be of order Θ(n2), Lupanov [22] (as presented by Jukna [16, Lemma 1.2])
constructs depth-2 circuits (applicable in all the three models) of size O(n2/ log n) for
any A. This implies the universal upper bound

gapX/Y(n) = O(n/ log n). (Lupanov)

Lower bounds. Standard counting arguments [16, §1.4] show that most n × n matrices
have wire complexity Ω(n2/ log n) in each of the three models. Combining this with
Lupanov’s upper bound we conclude that a random matrix does little to separate our
models:

Fact 1. For a uniformly random A, the ratio CX(A)/CY(A) is a constant w.h.p.

Unsurprisingly, it can also be shown that finding a minimum-size circuit for a
given matrix is NP-hard in all the models. For ∨- and +-circuits this follows from
the NP-completeness of the Ensemble Computation problem as defined by Garey and
Johnson [10, PO9]. For ⊕-circuits this was proved by Boyar et al. [5].

∨-circuits. The study of ∨-circuits has been centered around finding explicit matrices
that are hard for ∨-circuits. Here, dense rectangle-free matrices and their generalisations,
(s, t)-free matrices, are a major source of lower bounds.

Definition. A matrix A is called (s, t)-free if it does not contain an (s + 1) × (t + 1)
all-1 submatrix. Moreover, A is simply called k-free if it is (k, k)-free.

Nechiporuk [24] and independently Lamagna and Savage [21] we the first to apply a
construction of dense 1-free matrices (e.g., incidence matrices of finite projective planes)
to give a lower bound of C∨(A) = Ω(n3/2) for an explicit matrix A. Subsequently,
Mehlhorn [23] and Pippenger [26] established the following theorem that gives a general
template for this type of lower bound; we use it extensively later.

Theorem 3 (Mehlhorn–Pippenger). If A is (s, t)-free, then C∨(A) ≥ |A|/(st).

5

Currently, the best lower bound for an explicit A is obtained by applying Theorem
3 to a matrix construction of Kollár et al. [19]; the lower bound is C∨(A) ≥ n2−o(1) (see
also Gashkov and Sergeev [11, §3.2]).

⊕-circuits. It is a long-standing open problem to exhibit explicit matrices requiring
super-linear size ⊕-circuits. No such lower bounds are known even for log-depth circuits,
and the only successes so far are in the case of bounded depth [1, 9; 16, §13.5]. This,
together with Fact 1, makes it particularly difficult to prove lower bounds on gap⊕/∨.

However, in the opposite direction, complexity gaps exist: Sergeev et al. [11, 12]
1−o(1)obtained a bound gap∨/⊕(n) = n . This was subsequently improved to gap∨/⊕(n) =

Ω(n/ log2 n) by Boyar and Find [4] with an alternative proof given by Jukna and
Sergeev [17].

+-circuits. Additive circuits have been studied extensively in the context of the addition
chain problem (see Knuth [18, §4.6.3] for a survey) and its generalisations [27].

Algebraic complexity. A particular motivation for studying the separation between ∨
and +-circuits is to understand the complexity of zeta transforms on partial orders [2].
Indeed, the characteristic matrix of every partial order ≤ has an ∨-circuit proportional
to the number of covering pairs in ≤, but the existence of small +-circuits (and hence
fast zeta transforms) is currently not understood satisfactorily.

Strong exponential time hypothesis. Theorem 2 is similar to other recent lower bound
results for polynomial-time solvable problems based on the strong exponential time
hypothesis [25]. See also Cygan et al. [8].

4. +/∨-Separation

Overview. In this section we give a direct sum type theorem for the monotone complexity
of tensor product matrices. Using this, we obtain a separation of the form

C∨(B ⊗ A) = O(N),
(1)

C+(B ⊗ A) = Ω(N3/2/ log2 N),

where ⊗ denotes the usual Kronecker product of matrices and N = n2 denotes the
number of input and output variables. This will prove Theorem 1.

Tensor products. As a first example, let A be a fixed boolean n × n matrix and consider
the matrix product

X → AX , (2)

where we think of X as a matrix of N = n × n input variables. If we arrange these
variables into a column vector x by stacking the columns of X on top of one another,
then (2) becomes

x → (I ⊗ A)x, (3)

6

where I is the n × n identity matrix. That is, I ⊗ A is the block matrix having n copies
of A on the diagonal.

The transformation (3) famously admits non-trivial ⊕-circuits due to the fact that
fast matrix multiplication algorithms can be expressed as small bilinear circuits over
GF(2). However, it is easy to see that in the case of our monotone models, no non-trivial
speed-up is possible: any ∨-circuit for (3) must compute A independently n times, that
is, we have

C∨(I ⊗ A) = n · C∨(A). (4)

This follows from the observation that two subcircuits corresponding to two different
columns of X cannot share gates due to monotonicity.

Our approach. We will generalise the above setting slightly and use tensor products of
the form B ⊗ A to separate ∨- and +-circuits. Analogously to (2), one can check that
the matrix B ⊗ A corresponds to computing the mapping

X → AXBT. (5)

We aim to show that for suitable choices of A and B computing B ⊗ A is easy for
∨-circuits but hard for +-circuits. We will choose A to have large complexity (e.g.,
choose A at random), and think of B as dictating how many independent copies of A a
circuit must compute.

More precisely, define rk∨(B) and rk+(B) as the minimum r such that B can be
written as B = PQT over the boolean semiring or over the semiring of non-negative
integers, respectively, where P and Q are n × r matrices. Equivalently, rk∨(B) (resp.,
rk+(B)) is the minimum number of rectangles (resp., non-overlapping rectangles) that
are required to cover all 1-entries of B.

These cover numbers appear often in the study of communication complexity [20].
¯In this context, the matrix B = I—the boolean complement of the identity I—is the

usual example demonstrating a large gap between the two concepts [20, Example 2.5]:

rk∨(Ī) = Θ(log n),

rk+(Ī) = n.

We will use this gap to show that, up to polylogarithmic factors,

C∨(Ī ⊗ A) ≈ rk∨(Ī) · n 2 ,

C+(Ī ⊗ A) ≈ rk+(Ī) · n 2 .

In terms of the number of input variables N = n2, we will obtain (1).

Upper bound for ∨-circuits. Suppose B = PQT where P and Q are n × rk∨(B) matrices.
We can compute (5) as

(A(XQ))P T ,

7

which requires 3 matrix multiplications, each involving rk∨(B) as one of the dimensions
(the other dimensions being at most n).

If these 3 multiplications are naively implemented with an ∨-circuit of depth 3, each
layer will contain at most rk∨(B)n2 wires so that C∨(B ⊗ A) ≤ 3 rk∨(B)n2 . However,
one can still use Lupanov’s techniques to save an additional logarithmic factor: if
rk∨(B) = O(log n), Corollary 1.35 in Jukna [16] can be applied to show that each of

¯the three multiplications above can be computed using O(n2) wires. Thus, for B = I
we get

Lemma 4. C∨(Ī ⊗ A) = O(n2) for all A.

Lower bound for +-circuits. Intuitively, since low-rank decompositions are not available
¯ ¯for I in the semiring of non-negative integers, a +-circuit for I ⊗ A should be forced to

compute rk+(Ī) = n independent copies of A. More generally, we ask the following.

Direct sum question. Do we have C+(B ⊗ A) ≥ rk+(B) · C+(A) for all A, B?

Alas, we can answer this affirmatively only in some special cases. For example,
the trivial case B = I was discussed above (4), and it is not hard to generalise the
argument to show that the lower bound holds in case B admits a fooling set of size
rk+(B). (When B is viewed as an incidence matrix of a bipartite graph, a fooling set is
a matching no two of whose edges induce a 4-cycle. See [20, §1.3].) However, since this

¯will not be the case when B = I, we will settle for the following version, which suffices
for the separation result.

Theorem 5. For all (s, t)-free A,

|A|
C+(B ⊗ A) ≥ rk+(B) · . (6)

st

Note that if we set B = I in Theorem 5 we recover essentially an analogue of
Theorem 3 restricted to +-circuits.

For the purposes of the proof we switch to the combinatorial perspective: For A
and B we introduce two sets of n formal variables XA and XB . Moreover, we let
A1, . . . , An ⊆ XA and B1, . . . , Bn ⊆ XB denote the associated outputs. That is, each
output Ai is defined by one row of A, and each output Bj is defined by one row of B.
With this terminology, the input variables for B ⊗ A are the pairs in XA × XB ; we
think of XA as indexing the rows and XB as indexing columns of the variable matrix
XA × XB. Finally, B ⊗ A corresponds to computing the n2 outputs

Ai × Bj , for i, j ∈ [n].

In the following proof we use the (s, t)-freeness of A to “zoom in” on that layer of
the circuit which reveals the large wire complexity (similarly to Mehlhorn [23]). We
advise the reader to first consider the case s = t = 1, as this already contains the main
idea of the proof.

8

Proof of Theorem 5. Let C be a +-circuit computing B ⊗ A. As a first step, we simplify
C by allowing input gates to have larger-than-singleton supports. Namely, let F consist
of those gates of C whose supports are contained in a t-wide row cylinder of the form
Y × XB where Y ⊆ XA and |Y | ≤ t. We simply declare that all computations done
by gates in F come for free: we promote a gate in F to an input gate and delete all
its incoming wires. We continue to denote the modified circuit by C—clearly, these
modifications only decrease its wire complexity.

Call a wire that is connected to an input gate an input wire and denote the set
of input wires by W . The wire complexity lower bound (6) will follow already from
counting the number |W | of input wires.

For i ∈ [n] denote by Ci the subcircuit of C computing the n outputs Ai × Bj , j ∈ [n],
and denote by W (i) the input wires of Ci; we claim that

|Ai||W (i)| ≥ rk+(B) · . (7)
t

Before we prove (7), we note how it implies the theorem. Each input wire w ∈ W
is feeding into a non-input gate having their support not contained in a t-wide row

n
cylinder. Due to (s, t)-freeness of A this means that w can appear only in at most s

different Ci. |W (i)| counts w at most s times and, more generally,

n

e
Thus, the sum i

we have

n |W (i)|
|W | =
 W (i)
 ≥
 ,

s

i=1 i=1

which implies (6) given (7).
It now remains to prove (7). Fix i ∈ [n]. If Ai is empty the claim is trivial. Otherwise

fix a variable x ∈ Ai and consider the structure of Ci when restricted to the variables
{x}× XB. Since this set of variables can be naturally identified with XB by ignoring the
first coordinate, we can view Ci as computing a copy of B on the variables {x} × XB.

Indeed, we define the x-support suppx(w) of an input wire w ∈ W (i) to be the set
of y ∈ XB such that the variable (x, y) is contained in the support of w. (The support
of w is simply the support of the adjacent input gate.) Moreover, we let

Wx(i) := {w ∈ W (i) : supp (w) = ∅}.x

Put otherwise, Wx(i) consists of the input wires that are used by Ci in computing a
copy of B on the variables {x} × XB . Associate to each w ∈ Wx(i) a rectangle

Rx(w) := co-suppx(w) × suppx(w),

where co-suppx(w) is the set of j ∈ [n] such that w appears in the subcircuit Cij of Ci
that computes the output Ai × Bj . Now, the crucial observation is that the collection of
rectangles {Rx(w) : w ∈ Wx(i)} is a non-overlapping cover of B, because Ci computes a
copy of B by taking disjoint unions of the supports {supp (w) : w ∈ Wx(i)}. Therefore,x

we must have that
|Wx(i)| ≥ rk+(B). (8)

9

x

To finish the proof, we note that a single input wire w ∈ W (i), being t-wide, can
only be contained in the sets Wx(i) for at most t different x ∈ Ai. Thus, the sum e

|Wx(i)| counts w at most t times and, more generally, we have

 n |Wx(i)||W (i)| = Wx(i) ≥ ,
t

x∈Ai x∈Ai

which implies (7) given (8).

It is easy to check (and well-known in the context of random graphs [3, §11]) that a
random matrix A ∈ {0, 1}n×n is O(log n)-free w.h.p. Since a random matrix has weight
|A| = Θ(n2) w.h.p., we obtain from Theorem 5 the following corollary, which, together
with Lemma 4, proves Theorem 1.

Corollary 6. A random A satisfies C+(Ī ⊗ A) = Ω(n3/ log2 n) w.h.p.

5. Rewriting

Overview. In this section we study what would happen if (∨, +)-Rewrite or (∨, ⊕)
Rewrite could be solved in subquadratic time. Namely, we show that this eventuality
would contradict the strong exponential time hypothesis. This will prove Theorem 2.
As discussed in Section 2, we interpret this as evidence for our conjectures gap+/∨(n) =

1−o(1)n1−o(1) and gap⊕/∨(n) = n .

Preliminaries. For purposes of computations, we assume that |C| ≥ n for any n-
input circuit C considered in this section. This is to make each C admit a binary
representation of length Õ(|C|) where the Õ notation hides factors polylogarithmic in n.
For concreteness, C might be represented as two lists: (i) the list of gates in C, with
output gates indicated, and (ii) the list of wires in C; both lists are given in topological
order, with the input wires of each gate forming a consecutive sublist of the list of wires.
Whatever the encoding, we assume it is efficient enough so that the following property
holds.

Proposition 7. On input an X-circuit C and a vector x, the output C(x) can be
˜computed in time O(|C|) (in the usual RAM model of computation).

The following proposition records a similar observation for circuit rewriting.

˜Proposition 8. Both (∨, +)-Rewrite and (∨, ⊕)-Rewrite can be solved in time O(|C|2).

Proof. Suppose we are given an ∨-circuit C as input. The matrix A computed by C can
˜be easily extracted from C in time O(|C|2). We then simply output the trivial depth-1

+-circuit for A that has size at most n2 ≤ |C|2 .

10

Rewriting and the strong exponential time hypothesis. The main technical ingredient in
our proof is Lemma 9 below, which states that if subquadratic-time rewriting algorithms
exist, then certain simple covering problems can be solved faster than in a trivial manner.

In the following we consider set systems defined by L1, . . . , Ln and R1, . . . , Rn that
are (not necessarily distinct) subsets of [m]. We say that (i, j) is a covering pair if
Lj ∪ Ri = [m].

Lemma 9. Suppose we are given sets L1, . . . , Ln, R1, . . . , Rn ⊆ [m] as input.

˜(a)	 If (∨, +)-Rewrite can be solved in time O(|C|2−E) for some constant e > 0, then the
number of covering pairs can be computed in time Õ((nm)2−E).

˜(b)	 If (∨, ⊕)-Rewrite can be solved in time O(|C|2−E) for some constant e > 0, then the
parity of the number of covering pairs can be computed in time Õ((nm)2−E).

Proof. We begin by proving (a). Let A = (aij) be an n × n matrix defined by aij = 1 iff
(i, j) is a covering pair. We show how to compute |A| without constructing A explicitly.

Suppose for a moment that we had a small +-circuit C for A. The value |A| can be
˜recovered from the circuit C in time O(|C|) via the following trick: evaluate C (over the

integers) on the all-1 vector to obtain y = C() ∈ Nn; but now

|A| =
TA =

TC() = y1 + · · · + yn.	 (9)

Unfortunately, we do not know how to construct a small +-circuit for A. Instead,
¯our key observation below will be that the complement matrix A admits an ∨-circuit

C∨ of size only |C∨| = O(nm). By assumption, we can then rewrite C∨ as a +-circuit C+

in time Õ(|C∨|2−E) = Õ((nm)2−E). In particular, the size of the new circuit must also be
˜|C+| = O (nm)2−E .

˜Analogously to (9) we can then recover |A| from C+ in time O(|C+|):

|A| = n 2 − | Ā| = n 2 −
TC+().

It now remains to describe how to construct C∨ for Ā in time Õ(nm). Define a
depth-2 circuit C∨ as follows: The 0-th layer of C∨ hosts input gates lj , j ∈ [n]; the
1-st layer contains intermediate gates gk, k ∈ [m]; and the 2-nd layer contains output
gates ri, i ∈ [n]. Each input gate lj is connected to gates gk for k ∈ [m] ' Lj ; similarly,
each output gate ri is connected to gates gk for k ∈ [m] ' Ri. To see that C∨ computes
Ā note that there is a path from input li to output rj iff there is a k ∈ [m] such that
k /∈ Li ∪ Rj iff (i, j) is not a covering pair. Note also that |C∨| ≤ 2nm and that the

˜circuit can be constructed in time O(nm).
Finally, we observe that (b) can be proven by the same argument as (a), except that

the arithmetic is performed over GF(2).

Next, we reduce #CNF-SAT and ⊕CNF-SAT to the covering problems in Lemma 9.
Here we are essentially applying a technique of Williams [28, Theorem 5].

11

Theorem 10. We have the following reductions:

˜(a)	 If (∨, +)-Rewrite can be solved in time O(|C|2−E) for some e > 0, then #CNF-SAT
can be solved in time 2(1−E/2)n poly(n, m).

(b)	 If (∨, ⊕)-Rewrite can be solved in time Õ(|C|2−E) for some e > 0, then ⊕CNF-SAT
can be solved in time 2(1−E/2)n poly(n, m).

Proof. Let ϕ = {C1, . . . Cm} be an instance of CNF-SAT over variables x1, . . . , xn. With
out loss of generality (by inserting one variable as necessary), we may assume that n is
even. Call the variables x1, . . . , xn/2 left variables and the variables xn/2+1, . . . , xn right
variables.

For each truth assignment s ∈ {0, 1}n/2 to the left variables, let Ls ⊆ ϕ be the set
of clauses satisfied by s. Similarly, for assignment t ∈ {0, 1}n/2 to the right variables,
let Rt ⊆ ϕ be the set of clauses satisfied by t. Clearly, the compound assignment
(s, t) to all the variables satisfies ϕ if and only if Ls ∪ Rt = ϕ. That is, the number
of satisfying assignments is precisely the number of covering pairs of the set system
{Ls, Rt}, s, t ∈ {0, 1}n/2 . Thus, both claims follow from Lemma 9.

We can now finish the proof of Theorem 2. For (∨, +)-Rewrite the result follows
immediately from Theorem 10 since an algorithm for #CNF-SAT implies an algorithm
for CNF-SAT. For (∨, ⊕)-Rewrite, however, the result does not immediately follow from
Theorem 10—it is non-trivial to convert an algorithm for ⊕CNF-SAT into an algorithm
for CNF-SAT. Here we can invoke the main result (an “Isolation Lemma” for k-CNFs) of
Calabro et al. [6]. They show that any 2(1−E)n poly(n, m) time algorithm for ⊕CNF-SAT
(in fact, even for CNF-SAT under the promise that there is at most one satisfying
assignment) can be turned into an 2(1−E')n poly(n, m) time randomised algorithm for

'CNF-SAT where e > 0. (This is the only step in our proof that required the use of
randomness.) This concludes the proof of Theorem 2.

Acknowledgements. We are grateful to Stasys Jukna and Igor Sergeev for comments
and pointers to the literature. Furthermore, we thank Jukka Suomela for discussions,
and the anonymous referee for comments.

This research is supported in part by Academy of Finland, grants 132380 and 252018
(M.G.), 132812 and 251170 (M.J.), 252083 and 256287 (P.K.), and by Helsinki Doctoral
Programme in Computer Science - Advanced Computing and Intelligent Systems (J.K.).

References

[1]	 N. Alon, M. Karchmer, and A. Wigderson. Linear circuits over GF(2). SIAM
Journal on Computing, 19(6):1064–1067, 1990. doi:10.1137/0219074.

[2]	 A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, J. Nederlof, and P. Parviainen.
Fast zeta transforms for lattices with few irreducibles. In Proceedings of the

12

http://dx.doi.org/10.1137/0219074

23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pages
1436–1444. SIAM, 2012.

[3]	 B. Bollobás. Random Graphs. Number 73 in Cambridge studies in advanced
mathematics. Cambridge University Press, 2nd edition, 2001.

[4]	 J. Boyar and M. G. Find. Cancellation-free circuits in unbounded and bounded
depth. In Fundamentals of Computation Theory, volume 8070 of Lecture Notes in
Computer Science, pages 159–170. Springer, 2013. doi:10.1007/978-3-642-40164-0 17.

[5]	 J. Boyar, P. Matthews, and R. Peralta. Logic minimization techniques with
applications to cryptology. Journal of Cryptology, 26:280–312, 2013. doi:10.1007/

s00145-012-9124-7.

[6]	 C. Calabro, R. Impagliazzo, V. Kabanets, and R. Paturi. The complexity of unique
k-SAT: An isolation lemma for k-CNFs. Journal of Computer and System Sciences,
74(3):386–393, 2008. doi:10.1016/j.jcss.2007.06.015.

[7]	 C. Calabro, R. Impagliazzo, and R. Paturi. The complexity of satisfiability
of small depth circuits. In 4th International Workshop on Parameterized and
Exact Computation (IWPEC 2009), pages 75–85. Springer Berlin Heidelberg, 2009.
doi:10.1007/978-3-642-11269-0 6.

[8]	 M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi,
S. Saurabh, and M. Wahlstrom. On problems as hard as CNF-SAT. In Proceedings
of the 27th Conference on Computational Complexity (CCC 2012), pages 74–84.
IEEE, 2012. doi:10.1109/CCC.2012.36.

[9]	 A. Gál, K. A. Hansen, M. Koucký, P. Pudlák, and E. Viola. Tight bounds on
computing error-correcting codes by bounded-depth circuits with arbitrary gates.
In Proceedings of the 44th Annual ACM Symposium on Theory of Computing
(STOC 2012), pages 479–494. ACM, 2012. doi:10.1145/2213977.2214023.

[10]	 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[11]	 S. B. Gashkov and I. S. Sergeev. On the complexity of linear Boolean operators
with thin matrices. Journal of Applied and Industrial Mathematics, 5:202–211,
2011. doi:10.1134/S1990478911020074.

[12]	 M. I. Grinchuk and I. S. Sergeev. Thin circulant matrixes and lower bounds on
complexity of some Boolean operators. Diskretny̆ı Analiz i Issledovanie Operatsĭı,
18:38–53, 2011.

[13]	 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer
and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

13

http://dx.doi.org/10.1007/978-3-642-40164-0_17
http://dx.doi.org/10.1007/s00145-012-9124-7
http://dx.doi.org/10.1007/s00145-012-9124-7
http://dx.doi.org/10.1016/j.jcss.2007.06.015
http://dx.doi.org/10.1007/978-3-642-11269-0_6
http://dx.doi.org/10.1109/CCC.2012.36
http://dx.doi.org/10.1145/2213977.2214023
http://dx.doi.org/10.1134/S1990478911020074
http://dx.doi.org/10.1006/jcss.2000.1727

[14]	 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

[15]	 M. Järvisalo, P. Kaski, M. Koivisto, and J. H. Korhonen. Finding efficient circuits
for ensemble computation. In Proceedings of the 15th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2012), pages 369–382.
Springer, 2012. doi:10.1007/978-3-642-31612-8 28.

[16]	 S. Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of
Algorithms and Combinatorics. Springer, 2012.

[17]	 S. Jukna and I. Sergeev. Complexity of linear boolean operators. Foundations and
Trends in Theoretical Computer Science, 9(1):1–123, 2013. doi:10.1561/0400000063.

[18]	 D. E. Knuth. The Art of Computer Programming, volume 2. Addison–Wesley, 3rd
edition, 1998.

[19]	 J. Kollár, L. Rónyai, and T. Szabó. Norm-graphs and bipartite Turán numbers.
Combinatorica, 16(3):399–406, 1996. doi:10.1007/BF01261323.

[20]	 E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

[21]	 E. A. Lamagna and J. E. Savage. Computational complexity of some monotone
functions. In IEEE Conference Record of 15th Annual Symposium on Switching
and Automata Theory, pages 140–144, 1974. doi:10.1109/SWAT.1974.9.

[22]	 O. B. Lupanov. On rectifier and switching-and-rectifier schemes. In Doklady
Akademii Nauk SSSR, volume 111, pages 1171–1174, 1956. In Russian.

[23]	 K. Mehlhorn. Some remarks on Boolean sums. Acta Informatica, 12:371–375, 1979.
doi:10.1007/BF00268321.

´ [24]	 E. I. Nechiporuk. On a Boolean matrix. Systems Theory Research, 21:236–239,
1971.

[25]	 M. Pǎtraşcu and R. Williams. On the possibility of faster SAT algorithms. In
Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2010), pages 1065–1075. SIAM, 2010.

[26]	 N. Pippenger. On another Boolean matrix. Theoretical Computer Science, 11(1):
49–56, 1980. doi:10.1016/0304-3975(80)90034-1.

[27]	 N. Pippenger. On the evaluation of powers and monomials. SIAM Journal on
Computing, 9(2):230–250, 1980. doi:10.1137/0209022.

14

http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-642-31612-8_28
http://dx.doi.org/10.1561/0400000063
http://dx.doi.org/10.1007/BF01261323
http://dx.doi.org/10.1109/SWAT.1974.9
http://dx.doi.org/10.1007/BF00268321
http://dx.doi.org/10.1016/0304-3975(80)90034-1
http://dx.doi.org/10.1137/0209022

[28]	 R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implica
tions. Theoretical Computer Science, 348(2–3):357–365, 2005. doi:10.1016/j.tcs.2005.
09.023.

15

http://dx.doi.org/10.1016/j.tcs.2005.09.023
http://dx.doi.org/10.1016/j.tcs.2005.09.023

	Introduction
	Results
	Related work
	Sum/Or-Separation
	Rewriting

