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Abstract: Empirical studies have shown that most software 
interaction faults involve one or two variables interacting, with 
progressively fewer triggered by three or more, and no failure 
has been reported involving more than six variables interacting. 
This paper introduces a hypothesis for the origin of this 
distribution, with implications for removal of interaction faults 
and reliability growth. 
Keywords – combinatorial testing; software fault; testing 

I. INTRODUCTION 
Empirical studies have shown that software interaction 

faults involve 1 to 6 variables, with no failures involving 
more than six reported. Interaction faults are denoted as t-way 
faults when t factors or variables induce the fault. For 
example, if a fault occurs when x > 10 and y < 55, this is a 2-
way fault. Table 1 and Fig. 1 show the cumulative percentage 
of failures at different interaction t values, for a variety of 
applications, with the average indicated in Table 1 (headings 
keyed to references). For consistency, single factor faults are 
denoted 1-way faults. Thus for the various applications, the 
proportion of failures caused by 1-way or single factors 
ranged from 9% to 67%, and the proportion caused by either 
1-way or 2-way faults ranged from 47% to 97%. 

TABLE I. CUMULATIVE PERCENT OF FAILURES AT t = 1..6 
t [1] [2]a [2]b [3] [4] [5] [6] average 
1 66 28 41 67 18 9 49 39.71 
2 97 76 70 93 62 47 86 75.86 
3 99 95 89 98 87 75 97 91.43 
4 100 97 96 100 97 97 99 98.00 
5 99 96 100 100 100 99.00 
6 100 100 100 

The fault distributions were derived from failure reports 
for fielded software products, including medical devices [1], 
browser [2]a and server [2]b, TCP/IP [4], server [5], and SQL 
[6]. An additional distribution is from initial testing of a large 
distributed database application [3]. Empirically derived fault 
distributions such as these have provided the rationale for 
advances in the field of combinatorial testing over the past 
decade. While the distributions have been documented and 
analyzed thoroughly, relatively little is known about why the 
distributions have this consistent form or how they evolve as 
systems are tested and used. While it seems natural for more 
complex faults to be less common than simpler faults, we 
want to go beyond such a simple qualitative hypothesis and 
develop a model for estimating how the proportion of t-way 
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faults varies with t, as testing or use progresses. We propose 
an explanation based on the two assumptions below. 
•	 t-way faults occur in proportion to t-way conditions in 

code 
•	 t-way faults are removed in proportion to t-way 

combinations in inputs 

Fig. 1. Distribution of failures at t = 1..6 

II. ANALYSIS 
For an estimate of the proportion of t-way conditions in 

code, we use the distribution of conditions in a collection of 
7,685 branching statements from four avionics applications 
[7]. Note from Table II that this distribution is relatively close 
to the distribution of t-way faults discovered in initial testing 
in a database system described in reference [3]. 

TABLE II. t-WAY CONDITIONS, BRANCH STATEMENTS VS. INITIAL TEST 
t: 1 2 3 4 5 6 7 8 

Branch cond % 74.1 19.6 4.5 1.2 .3 .1 .1 .1 
Initial test [3] 67 26 5 2 0 0 0 0 

As software is tested or used, interaction faults will be 
discovered when a t-way combination that triggers a fault 
occurs in a set of inputs. Each set of inputs includes C(n,t) 
combinations at each level of t, for n variables, where C(n,t) 
= n!/t!(n-t)!. For variables with v values each, the total 
number of combination settings is vt x C(n,t), so each test or 
input set can cover 1/vt of the total number of settings. The 
number of values, v, must of course be at least 2, but may be 
larger. As t increases, the proportion of combinations covered 
in each test is reduced, i.e., the proportion of (t+1)-way 
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combinations covered is 1/v of the proportion of t-way 
combinations covered. 

We make the simplifying assumption that 1-way faults 
are removed at rate r for some number of test sets, and the 
proportion remaining after k sets will be (1–r)k . Since the 
discovery of a t-way fault depends on the presence of t-way 
combinations in input, and the proportion of (t+1)-way faults 
is 1/v of t-way faults, the fault discovery rate will be reduced 
by this proportion, or r/v for 2-way, r/v2 for 3-way, etc. We 
can consider 2 the minimum value of v, and boolean or binary 
variables are also extremely common in practice. Then for k 
test sets we would have (1 – r)k 1-way faults remaining, (1 – 
r/2)k 2-way faults, (1 – r/4)k 3-way faults, and so on. 

Now consider the evolution of the fault distribution as 
tests are run. Table III shows an example starting from the 
assumption that t-way faults occur approximately in 
proportion to the occurrence of t-way conditions in branching 
statements. For a fault detection rate of r = .05 per test set, k 
= 48 sets will produce a nearly matching value for the 
proportion of 1-way faults in the average of Table I. But the 
distribution of faults for t = 2..6 is also quite close to the 
average, as would be predicted if these faults are removed in 
proportion to r/2, r/4, r/8 etc. For example, starting with 74.1 
1-way faults, after 48 test blocks, we would have 74.1(1 -
.05)48 = 6.3 1-way faults; 19.6(1 - .05/2)48 = 5.8 2-way faults, 
4.5(1 - .05/4)48 3-way faults, etc. Normalizing this to 100%, 
we have the distribution shown in Table III, line (2), which is 
quite close to the average (3). 

TABLE III. FAULTS REMAINING AT t = 1..6 AFTER 48 SETS OF TESTS, r = .05 
t: 1 2 3 4 5 6+ 

Orig distrib % 74.1 19.6 4.5 1.2 0.3 0.3 
After 48 sets 39.9 36.7 15.6 5.6 1.6 0.6 
Avg, Tbl 1 39.7 37.6 15.5 6.6 1.0 1.0 

FIG. 3. FAULT DISTRIBUTION FOR t = 1..6 AS TESTING PROGRESSES. 

Notice that in Table III, after 48 test sets the proportion 
of faults for lower levels of t declines, while the proportion 
for higher t increases. Because an individual test contains a 
higher proportion of 1-way combinations than 2-way, the 1-
way faults decline faster than others, and thus represent a 
smaller proportion of total remaining faults after testing. In 

general, t-way faults will decline faster than u-way faults for 
any u>t. This is consistent with intuition, as 2-way faults are 
in some sense “simpler” than 3-way faults, and thus likely to 
be found more quickly. Thus experience suggests that as 
testing progresses, the proportion of simpler faults should be 
reduced faster than more complex faults, shifting the 
distribution curves down at lower levels of t. This shift can 
be seen clearly in Fig. 3, which shows the proportion of faults 
at each level of t left after sets of tests for r = .05. 

Fault reduction continues as bugs are detected in fielded 
products, and this process would result in different 
distributions of faults at each level of t, depending on how 
extensively a product is used. Data reported in two studies 
allow us to consider this model for a specific product. Both 
[2] and [5] report bug data for the Apache server, for two 
periods: 2001 – 2002 [2], and 2002 – 2006 [5], although some 
variation is likely introduced as versions were changed. 
Comparing columns [2]b and [5] in Table I, it can be seen 
that the proportion of less complex (lower t-way) faults is 
reduced over the time period, as expected. Starting from the 
distribution in [2], with r = .05 and k = 54 test sets, the 
distribution evolves as shown in Table IV. 

TABLE IV. FAULTS REMAINING AT t = 1..6 AFTER 54 SETS OF TESTS, r = .05 
t 1 2 3 4 5 6+ 

Rpt [2] 41 29 19 7 0 4 
Rpt [5] 9 38 28 22 3 0 
54 test sets 9.1 26.2 34.1 17.8 0 13.0 

III. CONCLUSIONS AND IMPLICATIONS FOR TESTING 
Preliminary results suggest that the model described in 

Sect. II is relatively successful in reproducing the fault 
distributions observed in empirical data. Additional 
empirical data will be needed to evaluate validity thoroughly. 

The most significant implication for testing is that t-way 
interaction faults for t = 4, 5, 6 are exceedingly difficult to 
discover without tests specifically designed as covering arrays 
to include all t-way combinations at these levels. 
Disclaimer: Products may be identified in this document, but identification does 
not imply recommendation or endorsement by NIST, nor that the products 
identified are necessarily the best available for the purpose 
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