

INFERRING PREVIOUSLY UNINSTALLED APPLICATIONS

FROM DIGITAL TRACES

Jim Jones†, Tahir Khan†, Kathy Laskey†, Alex Nelson‡, Mary Laamanen‡, Doug White‡

†George Mason University, Fairfax, Virginia, United States

‡National Institute of Standards and Technology, Gaithersburg, Maryland, United States

ABSTRACT

In this paper, we present an approach and experimental results to suggest the past presence of an

application after the application has been uninstalled and the system has remained in use. Current

techniques rely on the recovery of intact artifacts and traces, e.g., whole files, Windows Registry entries,

or log file entries, while our approach requires no intact artifact recovery and leverages trace evidence in

the form of residual partial files. In the case of recently uninstalled applications or an instrumented

infrastructure, artifacts and traces may be intact and complete. In most cases, however, digital artifacts

and traces are altered, destroyed, and disassociated over time due to normal system operation and

deliberate obfuscation activity. As a result, analysts are often presented with partial and incomplete

artifacts and traces from which defensible conclusions must be drawn. In this work, we match the sectors

from a hard disk of interest to a previously constructed catalog of full files captured while various

applications were installed, used, and uninstalled. The sectors composing the files in the catalog are not

necessarily unique to each file or application, so we use an inverse frequency-weighting scheme to

compute the inferential value of matched sectors. Similarly, we compute the fraction of full files

associated with each application that is matched, where each file with a sector match is weighted by the

fraction of total catalog sectors matched for that file. We compared results using both the sector-weighted

and file-weighted values for known ground truth test images and final snapshot images from the M57

Patents Scenario data set. The file-weighted measure was slightly more accurate than the sector-weighted

measure, although both identified all of the uninstalled applications in the test images and a high

percentage of installed and uninstalled applications in the M57 data set, with minimal false positives for

both sets. The key contribution of our work is the suggestion of uninstalled applications through weighted

measurement of residual file fragments. Our experimental results indicate that past application activity

can be reliably indicated even after an application has been uninstalled and the host system has been

rebooted and used. The rapid and reliable indication of previously uninstalled applications is useful for

cyber defense, law enforcement, and intelligence operations.

Keywords: digital forensics; digital artifact; digital trace; partial artifact; residual artifact; uninstalled

application

1. INTRODUCTION

The practice of digital forensics is the art and science of inferring and proving past activity given some set

of residual digital artifacts and traces. These artifacts and traces may be files, Windows Registry entries,

log entries, memory contents, network traffic, etc., and past activity of interest may be legitimate and

illegitimate user activity, system activity, application installation and usage, malware infection and

operation, etc. While whole artifacts may be recoverable in some cases, many situations require inferring

and proving past activity given residual partial artifacts and traces. We propose that past activity,

specifically application installation and usage, can be reliably suggested from digital traces, even when

the application in question has been uninstalled and usage of the system and media has continued. We

assume that full artifacts created by an activity degrade monotonically and non-linearly over time.

Specifically, files created as a consequence of application installation, usage, and uninstallation are

subsequently deleted, and some sectors from these deleted files will be overwritten while other sectors

may persist on the digital media. Given prior knowledge of the full file artifacts created by an application,

we can then search media of interest for traces in the form of matching partial artifacts, i.e., sectors from

the original full artifact, and reason over these matches to suggest past application presence. Our approach

complements existing methods that rely on evidence from intact full-file artifacts, an uncleansed

Windows Registry, intact log entries., or traces from other sources such as memory contents or network

traffic.

In the sections that follow, we discuss prior work in this area, then we describe the two core elements of

our approach: (i) building a catalog of sectors associated with specific applications, and (ii) reasoning

over sectors that match entries in that catalog. Subsequent sections present our experimental results

against a test set with known ground truth and the M57 Patents Scenario (Woods et al., 2011) disk

images, for which we have some ground truth. We close the paper with a summary of our conclusions,

limitations of this approach, and future research plans.

2. RELATED WORK

Related work to establish the presence of installed and uninstalled applications has generally relied on

intact file artifacts (Koppen et al., 2013; Quick et al., 2013), log file analysis (Forte, 2004), and

examination of the Windows registry when available (Laamanen et al., 2014; Nelson et al., 2014; Wong,

2007). Additional techniques and methods rely on traces such as email addresses, URLs, etc. extracted

from raw data (Garfinkel, 2013), or data structures and other known-layout data from memory (Ligh et

al., 2014). Intact file artifacts for uninstalled applications may be files remaining from an aborted or

poorly written uninstall application, or may be user files which are created during application use and are

deliberately not deleted as part of the application uninstall process, such as user preference files. Log files

include varying levels of detail depending on the application creating the log, and establishing the

integrity of the log file requires secure creation, transmission, and storage of the log file. Registry artifacts

may include application specific keys as well as command line execution arguments, recently accessed

files, and similar indicators of application installation and usage, whether the application in question has

been uninstalled or not. In contrast, our work does not require recovery of any intact artifacts and is

specifically designed to suggest applications that have been uninstalled.

Our work relies on recovery and analysis of file fragments in the form of disk sectors. Collange, Dandass,

Daumas, and Defour (Collange et al., 2009), Garfinkel, Nelson, White, and Roussev (Garfinkel et al.,

2010), and later Young, Foster, Garfinkel, and Fairbanks (Young et al., 2012) and Foster (Foster, 2012)

examined sector content uniqueness as it relates to specific file identification. This initial work

successfully identified files with distinct content, such as videos, from a limited number of sectors, but the

later work also hinted at issues with sector content common across multiple files. These issues fully

emerged in the work of Garfinkel and McCarrin (Garfinkel et al., 2015) in the form of "common data

structures found in Microsoft Office documents and multimedia files." Garfinkel and McCarrin label such

file fragments "non-probative blocks" and developed heuristics to account for these blocks and reliably

detect file presence from fragments. By comparison, we are inferring the past presence of applications

based on blocks from multiple files. Further, our approach pre-selects potentially probative blocks then

weights matching blocks based on their frequency in our catalog.

3. APPROACH AND METHODOLOGY

The theory underpinning our approach is that application installation and use creates files, and application

uninstallation deletes these files. The sectors containing the contents of these deleted files are overwritten

over time, but some sectors may remain intact until subsequent examination. These residual sectors, or

traces, may be used to infer the likelihood that a particular application was previously installed on the

examined system.

It is important to note that just because we empirically establish that an application installation and use

creates a specific set of files and corresponding sectors, this does not imply that the presence of these

sectors or even intact files proves the current or past presence of the application in question. That is, if I

know A causes B and I subsequently find B, I cannot logically conclude that A occurred. On the other

hand, if A is established to be the only possible cause of B, then I can logically conclude that the presence

of B does prove A. In the context of files and associated sectors, prior research (Garfinkel et al.,

2010)(Garfinkel and McCarrin, 2015) showed that while a sector may not have only one possible

producer, in practice it is likely to have only one, especially for high entropy sectors. In our work, a pre-

processing step removes sectors appearing in our clean OS images, sectors with low entropy, and sectors

appearing more than 100 times in our initial catalog, thereby removing sectors known to be produced by,

or likely produced by, other processes. Further, we weight the influence of sectors based on the number of

different catalog applications in which they appear. In practice, this is accomplished by our Inverse

Document Frequency weight described below. Finally, we note that we are not proving the past presence

of an application. Rather, we are suggesting an increased likelihood that a particular application was

present at some past time, where proof to the standard required by the circumstances would have to be

obtained from additional evidence.

Our approach, summarized in Figure 1, reasons over media sectors that match entries in a catalog

associating sectors with specific application activities. The catalog was created for 16 Windows

applications in a controlled environment using virtual machine snapshots. Catalog entries are post-

processed to remove less useful sectors and to assess each sector's potential inferential value. We then

match sectors from a digital storage device of interest, e.g., a hard drive, to the entries in the catalog and

compute weighted measures that represent the likelihood that the associated application was previously

installed on the media of interest.

3.1. Catalog Creation and Post-processing

We are leveraging the NIST Diskprinting effort (Laamanen et al.,

2014) to collect application traces. Diskprinting uses virtual

machine snapshots to record the state of a system before and after

an action of interest. Each snapshot together with captured network

traffic is called a slice. A series of slices, which reflect sequential

activities regarding a single application, is called a diskprint. The

contents of two adjacent snapshots may then be compared to extract

differences (Figure 2). For our purposes, the file systems of

adjacent snapshots are compared to identify new, modified, or

deleted files. For the NIST diskprinting data, these activities are

application Install, Open, Close, Uninstall, and system Reboot

Figure 1: Approach Overview

(indicated as I, O, C, U, and R in Figure 3). Diskprints are made up of sequential and cumulative slices,

hence the nomenclature B (Base), BI (Base + Install), ..., BIOCUR (Base + Install + Open + Close +

Uninstall + Reboot) in Figure 3. Diskprints are created with shared baseline states, by rolling the virtual

machine state back to a common point before applications were installed, in order to isolate effects of the

operating system.

We use 29 application diskprints of the NIST diskprint data (NIST, 2015), representing 16 applications

across one or more different Windows platforms (Table 1) plus three clean Operating System diskprints:

one WinXP and two Win7. The applications were selected in part to facilitate subsequent testing against

the M57 Patents Scenario images.

Each NIST Diskprint slice contains a snapshot of the system

hard disk in the form of a VMDK file. For each pair of

adjacent slices, we computed file differences and 512-byte

sector-aligned MD5 hashes for each new or modified file

(Garfinkel et al., 2012). For experimental purposes, we used

MD5s because of their smaller bit count and acceptable

impact of false positives from MD5 weaknesses (Dandass et

al., 2008). However, an operational deployment of this

research would need to employ a more secure cryptographic

hash per NIST guidelines on hash selection (NIST, 2012).

The diskprint sector hash data currently computes the final

sector hash of each file based on file extant vs. padding the

final sub-sector fragment with zeros and computing a 512-

byte hash. We discard these sub-512 byte sector hashes since

they will never match our media of interest hashes, which are

always based on a full 512-byte sector hash. We have

Figure 2: Slices and differencing
Figure 3: A diskprint is a series of related slices

Table 1: NIST diskprints

discussed but not implemented padding sub-512 byte diskprint fragments with zeros prior to computing

the MD5 hash. We process the diskprint sector hash data as described in the following paragraphs and

ingest the data into a hashdb (NPS-DEEP, 2015) instance.

File differencing as implemented on the diskprint data has the potential to capture spurious traces, i.e., file

differences that are not related to the activity in question but are the product of unrelated system activity.

We describe this property of a file as attribution, where positive attribution means a file is a result of the

activity in question, negative attribution means the file is not the result of the activity in question, and

marginal attribution means the file is due to the activity in question but in a non-probative way (such as

the $BitMap or pagefile.sys files on a Windows system).

Positive attribution is determined by keyword searching of the filename and path associated with each

sector hash. This information is stored in files using differentially-annotated Digital Forensics XML, or

DFXML (Garfinkel, 2012; Nelson et al., 2014)), a language that associates file system metadata with file

content summaries, including file paths, full-file hashes, and sector-level hashes. The DFXML language

facilitates interaction between tools, such as those used in our processing steps.

For each application, sector hashes whose source file paths contain matching keywords from Table 2 are

retained. Keywords were derived by examining string frequencies in the collective file path names for

each application and selecting the most common, subject to human review.

Table 2: Keyword Whitelist

For example, whitelisting the Firefox19 on 64-bit Windows

7 (Win7x64) diskprint reduced trace files from 1,054 to

289, and reduced associated sector hashes from 16,096,960

to 157,530. This whitelisting approach is something of a

blunt instrument, yet we obtain good results in our

subsequent experiments. In the section on future work, we

propose alternative catalog construction techniques to

increase the quality of collected file fragments (sectors).

Sector hashes, including those from files with positive

attribution, are not necessarily unique. We describe this

property of a sector as its frequency, where distinct means

the sector only occurs once in the post-processed diskprint

data, application common means the sector occurs in one or

more application diskprints but not elsewhere, and global

means the sector occurs outside of the application diskprints

(i.e., in the baseline OS states).

We limit sector hash value frequency in the hashdb instance

to 100. While somewhat arbitrary, this limit allows for some

multi-application or multi-print hashes to remain while

removing hashes not likely to have discriminatory value and keeping the hashdb to a manageable size. If

desired, we can later select hash values below the f=100 threshold, or we can reprocess the original

diskprint sector hash data if results indicate that sector hashes with frequency greater than 100 have

inferential value.

Application keyword(s)

Adv Keylogger keylogger

Chrome chrome,google

Eraser eraser

Firefox firefox,mozilla

HxD hex editor hxd

Invisible Secrets "invisible secrets"

MS Office office,"microsoft shared"

Python python

Safari safari

Sdelete sdelete

Thunderbird thunderbird

TrueCrypt truecrypt

UPX upx

WinRar winrar

WinZip winzip

Wireshark wireshark

Table 3: Total hashes and files per application diskprint

As a practical matter, hashdb supports a

maximum frequency parameter when the

hashdb instance is created. However, this

only prevents the addition of more hash

values which have already reached the

maximum frequency - it does not remove

the hash value from the hashdb instance. To

prevent undesired

effects on our subsequent calculations, we

set a maximum frequency of 101 prior to

ingest, then we remove all hashes with

frequency of 101 after ingest is complete.

Without this extra step, the catalog would

contain all sector hashes in the original data

and all sector hashes with frequency greater

than 100 would be retained with frequency

equal to 101, regardless of the actual

frequency of these sector hashes. With this

extra step, the catalog contains sector

hashes with accurate frequency counts, and

only sector hashes with actual frequencies

of 100 or less.

Certain low entropy sector contents, such as

all zeros or all ones, occur with high

frequency in many sources and have no

discriminatory value. For example, the

following sector hashes with the noted

content occur thousands or millions of

times in the original NIST diskprint sector

hash data.

'bf619eac0cdf3f68d496ea9344137e8b' # repeated 00

'393a0fa0f348fb03871ab93726057ddc' # repeated 01

'de03fe65a6765caa8c91343acc62cffc' # repeated FF

'c5d77850e62433f25d5496bfad94c1b2' # repeated 00; 06 @offset 510

These sector hashes would be removed by our maximum frequency processing step above. However, we

filter these sector hashes out at an earlier processing stage simply to speed up subsequent processing.

Diskprint Total Hashes Total Files

AdvKeylogger-WinXP 4,716 23

Chrome28-W7x32 686,986 669

Chrome28-W7x64 670,051 499

Chrome28-WinXP 1,035,098 624

eraser-W7x32 69,984 24

Firefox19-W7x32 103,341 132

Firefox19-W7x64 106,270 146

Firefox19-WinXP 96,377 115

HxD171-W7x32 4,774 12

InvSecrets21-WinXP 6,689 19

OfficePro2003-W7x32 1,090,216 3,800

OfficePro2003-W7x64 1,077,126 3,804

OfficePro2003-WinXP 656,354 2,801

Python264-WinXP 86,287 2,355

Safari157-W7x32 316,224 907

Safari157-W7x64 569,645 1,504

Safari157-WinXP 343,824 918

sdelete-W7x32 642 5

sdelete-W7x64 642 4

Thunderbird2-WinXP 68,102 172

TrueCrypt63-WinXP 24,520 16

UPX-W7x32 1,796 19

UPX-W7x64 1,813 19

Winrar5beta-W7x32 9,196 41

Winrar5beta-W7x64 18,328 81

Winzip17pro-W7x32 240,229 149

Winzip17pro-W7x64 262,854 153

Wireshark-W7x32 171,515 617

Wireshark-W7x64 209,666 611

TOTALS 7,933,265 20,239

The NIST diskprint data includes diskprints of non-application activities on three operating system

variants: two WinXP and one Win7x64. Any hash value appearing in these base OS diskprints does not

have discriminatory value for a subsequently installed application, so we remove these hash values from

the hashdb instance. As a practical matter, this was accomplished by using hashdb's add_repository

command to build a hashdb instance of all OS hash values, then using hashdb's subtract_hash command

to remove those hash values from the original hashdb instance.

The combined whitelist and frequency limit processing resulted in an overall file count of 99,227 and

sector hash count of 44,677,825 (file and sector hash counts before whitelist and frequency limits were

not computed). Removing the base OS diskprint sector hash values reduced the overall file count to

20,239 and sector hash count to 7,933,265.

To facilitate later calculations of application likelihood, we count and store the total sector hashes and

total files per application in the final catalog. These totals (Table 3) are extracted from the final noise-

reduced hashdb instance using hashdb's hash_table command (v.1.0.0 and prior) with subsequent grep

expressions (for hash totals) and hashdb's sources command with subsequent grep expressions (for file

totals). These totals are for all slices in each diskprint, where each diskprint contains 5-6 slices. 5-slice

diskprints result from applications where the "Open" and "Close" steps were combined as a single "Run"

step.

3.2. Image Processing

Media of interest is assumed to be a raw image of a hard disk or similar. We use the md5deep tool

(https://github.com/jessek/hashdeep) to compute sector-aligned 512-byte MD5 hashes for the entire disk

or disk image, storing the results in a DFXML file. We then use hashdb's scan_expanded command

(v1.0.0) to identify hash values in the DFXML file that match hash values from the hashdb instance. The

hashdb scan_expanded command output includes the file source and repository information from the

hashdb instance. We require these details, as we are using the repository name to hold the diskprint

(application) identifier, and the source file information allows us to compute which files in the catalog,

and how much of each file, is matched. Matches are written to an interim text file.

The matches text file is processed to compute the various measures of diskprint matching, i.e., application

presence. Output includes the number and fraction of distinct hashes matched for each diskprint

(application), the number and fraction of total files matched for each diskprint where a file match is

declared if one or more hash values from that file are matched. Output also includes weighted versions of

these two measures, which are discussed below.

After we eliminated weak or non-probative sector hash values in our noise reduction process, we then

applied weights to matching sector hashes based on their occurrence across applications, i.e., their

frequency in the catalog. A sector hash that occurs in N different diskprinted applications is weighted

with a factor 1/N (this is the hyperbolic formulation of Inverse Document Frequency described by Zobel

and Moffat (Zobel et al., 1998)). A sector hash value that occurs in only one diskprinted application is

weighted 1/1=1.0; a sector hash value that occurs in 2 different diskprinted applications is weighted

1/2=0.5; and so on. This calculation is shown below, and the results are shown in the sample output of

Table 4 under the heading w_sector% (weighted sector %). In the formula, each matching sector for a

given diskprint is weighted by its inverse frequency in the catalog; these weighted matching sector counts

are then summed and divided by the total number of sectors in the catalog for that diskprint to give a

weighted sector % for that diskprint.

Instead of declaring a file present if one or more hash values from that file are found (as the data in Table

4 under the heading "files_found" does), we compute the percent of each file that is matched and weight

the summation accordingly. For example, if we match M sectors for a file out of N total sectors in the

catalog for that file, then that file hit is worth M/N. We sum all of the weighted file hits for each diskprint

and divide by the total number of files in the catalog for that diskprint to give a weighted file % for that

diskprint. This calculation is shown below, and the results are shown in the sample output of Figure 4

under the heading w_file% (weighted file %).

Sample output for one of the test images is shown in Table 4 below. This Win7x64 test image had

Chrome installed, opened, closed, and uninstalled, then the system was rebooted and the snapshot taken.

The three Chrome diskprints (for Chrome on WinXP, Win7x32, and Win7x64) are the three highest

valued hits based on both weighted sector % and weighted file % (the sort key in the table). Other data are

included in this verbose output, to include the total sector hashes and total files for each diskprint, as well

as hits and % of total for each.

Table 4: Sample analysis output for source image "Chrome Win7x64"

diskprintName

sectors

found

sectors

total sector% w_sector%

files

found

files

total file% w_file%

Chrome28-W7x64 66795 670051 9.97% 3.63% 153 499 30.66% 21.46%

Chrome28-WinXP 40831 1035098 3.94% 1.16% 208 624 33.33% 21.10%

Chrome28-W7x32 66795 686986 9.72% 3.54% 152 669 22.72% 16.26%

Winzip17pro-W7x32 2186 240229 0.91% 0.46% 41 149 27.52% 3.63%

Winzip17pro-W7x64 2162 262854 0.82% 0.41% 42 153 27.45% 3.53%

Firefox19-W7x32 4183 103341 4.05% 0.59% 18 132 13.64% 2.44%

Firefox19-WinXP 4183 96377 4.34% 0.63% 17 115 14.78% 2.40%

Firefox19-W7x64 4184 106270 3.94% 0.57% 18 146 12.33% 2.37%

Thunderbird2-WinXP 17 68102 0.02% 0.01% 6 172 3.49% 1.09%

Winrar5beta-W7x64 9 18328 0.05% 0.01% 7 81 8.64% 0.38%

Winrar5beta-W7x32 9 9196 0.10% 0.02% 7 41 17.07% 0.38%

Safari157-WinXP 573 343824 0.17% 0.02% 31 918 3.38% 0.32%

Safari157-W7x32 573 316224 0.18% 0.02% 31 907 3.42% 0.30%

Safari157-W7x64 575 569645 0.10% 0.01% 35 1504 2.33% 0.24%

sdelete-W7x64 1 642 0.16% 0.04% 2 4 50.00% 0.17%

Wireshark-W7x32 51 171515 0.03% 0.01% 10 617 1.62% 0.16%

sdelete-W7x32 1 642 0.16% 0.04% 2 5 40.00% 0.14%

OfficePro2003-WinXP 1014 656354 0.15% 0.02% 33 2801 1.18% 0.13%

OfficePro2003-W7x32 1014 1090216 0.09% 0.01% 33 3800 0.87% 0.11%

OfficePro2003-W7x64 1014 1077126 0.09% 0.01% 33 3804 0.87% 0.08%

Wireshark-W7x64 11 209666 0.01% 0.00% 5 611 0.82% 0.02%

eraser-W7x32 21 69984 0.03% 0.02% 2 24 8.33% 0.01%

TrueCrypt63-WinXP 1 24520 0.00% 0.00% 1 16 6.25% 0.01%

Python264-WinXP 23 86287 0.03% 0.01% 6 2355 0.25% 0.00%

AdvKeylogger-WinXP 0 4716 0.00% 0.00% 0 23 0.00% 0.00%

InvSecrets21-WinXP 0 6689 0.00% 0.00% 0 19 0.00% 0.00%

UPX-W7x32 0 1796 0.00% 0.00% 0 19 0.00% 0.00%

HxD171-W7x32 0 4774 0.00% 0.00% 0 12 0.00% 0.00%

UPX-W7x64 0 1813 0.00% 0.00% 0 19 0.00% 0.00%

4. RESULTS

We generated eight test images, five containing the installation, use, and uninstallation of a single catalog

application and three containing the installation, use, and uninstallation of multiple catalog applications.

We also processed the four final day disk images from the M57 Patents Scenario case. We also processed

WinXP, Win7x32, and Win7x64 images with no applications of interest installed and found no more than

1% matching sectors per application.

Table 5: Single application test case results

Source Image: Chrome28-W7x64 Source Image: UPX-W7x64

diskprintName w_sector% w_file% diskprintName w_sector% w_file%

Chrome28-W7x64 3.63% 21.46% UPX-W7x32 2.97% 52.16%

Chrome28-WinXP 1.16% 21.10% UPX-W7x64 2.94% 52.16%

Chrome28-W7x32 3.54% 16.26% Winzip17pro-W7x32 0.44% 3.52%

Winzip17pro-W7x32 0.46% 3.63% Winzip17pro-W7x64 0.41% 3.45%

Winzip17pro-W7x64 0.41% 3.53% Firefox19-W7x64 0.01% 1.69%

...

Source Image: Winrar5beta-W7x64 Source Image: Firefox19-W7x64

diskprintName w_sector% w_file% diskprintName w_sector% w_file%

Winrar5beta-W7x32 8.39% 56.18% Firefox19-WinXP 6.88% 57.32%

Winrar5beta-W7x64 4.21% 32.80% Firefox19-W7x32 6.42% 51.52%

Winzip17pro-W7x32 0.44% 3.53% Firefox19-W7x64 6.26% 47.25%

Winzip17pro-W7x64 0.41% 3.46% Winzip17pro-W7x32 0.44% 3.57%

sdelete-W7x32 0.04% 0.14% Winzip17pro-W7x64 0.41% 3.48%

...

Source Image: sdelete-W7x64

diskprintName w_sector% w_file%

sdelete-W7x64 7.75% 33.95%

sdelete-W7x32 7.75% 27.16%

Winzip17pro-W7x32 0.44% 3.52%

Winzip17pro-W7x64 0.41% 3.45%

Firefox19-W7x64 0.01% 1.67%

...

4.1. Single-application test cases

For each single application test case, we started with a fresh install of the appropriate OS (WinXP,

Win7x32, or Win7x64) and mimicked the diskprint activity as described in the diskprint data, e.g., install,

open, close, uninstall, and reboot. These test cases did not use NIST's source media for the OS or

application, and did not strictly follow the details of activity performed by NIST personnel when creating

the diskprint images. Results from the post-reboot snapshot of the seven single application test cases are

summarized in Table 5, where only the top 5 weighted file % results are shown. In each test case, the

installed/uninstalled application was correctly identified and the weighted sector % and weighted file %

measures indicate a sharp drop off for catalog applications that were not present on that test image.

4.2. Multiple-application test cases

Table 6: Multiple application test case results

Three test cases were constructed in a manner similar to the single application test cases, but multiple

applications were installed, used, and uninstalled, and multiple reboots occurred. Two of these test cases

incorporated two applications and one incorporated three applications. Results from the post-reboot

snapshot of these three multiple application test cases are summarized in Table 6. For these cases, the top

10 results based on weighted file % are shown. In all three cases, all installed/uninstalled applications are

correctly identified, after which the weighted file % drops off sharply.

4.3. M57 Patents Scenario images

The M57 Patents Scenario is a publicly available data set. The scenario was created for educational and

research purposes by faculty and students at the Naval Postgraduate School. The creators of the data set

mimicked criminal activity in a lab environment over the course of a month, capturing disk and device

images and network traffic during the exercise. Scenario documentation includes a description of the

systems and networks involved, characters, and a storyline. For our purposes, the final day snapshots are

sufficiently realistic system images, by merit of having been physical machines operated for a real-world

month. Also, we have some ground truth about installed and uninstalled applications based on the

scenario documentation (availability restricted to faculty at accredited institutions), work by Roussev &

Quates (Roussev et al., 2012) that analyzed the same images, and our own direct analysis of the scenario

Source Image: Firefox, Chrome, & Safari

Source Image: WinRAR & WinZip

diskprintName w_file% diskprintName w_file%

Safari157-W7x32 94.32% Winzip17pro-W7x64 35.60%

Safari157-WinXP 92.80% Winzip17pro-W7x32 34.88%

Safari157-W7x64 57.12% Winrar5beta-W7x32 9.97%

Firefox19-WinXP 46.57% Winrar5beta-W7x64 9.29%

Firefox19-W7x32 42.83% Firefox19-WinXP 2.66%

Firefox19-W7x64 37.73% Firefox19-W7x64 2.60%

Chrome28-WinXP 22.10% Firefox19-W7x32 2.23%

Chrome28-W7x64 12.88% Thunderbird2-WinXP 1.49%

Chrome28-W7x32 9.84% sdelete-W7x64 0.17%

Winzip17pro-W7x32 3.62% Wireshark-W7x32 0.16%

...

Source Image: Chrome & Firefox
 diskprintName w_file%

Firefox19-WinXP 57.21%

Firefox19-W7x32 52.04%

Firefox19-W7x64 47.33%

Chrome28-W7x64 20.45%

Chrome28-WinXP 20.37%

Chrome28-W7x32 15.58%

Winzip17pro-W7x32 3.64%

Winzip17pro-W7x64 3.53%

Thunderbird2-WinXP 1.68%

Winrar5beta-W7x64 0.42%

... ...

images. Results from processing the final day (2009-12-11) images for the four scenario users (Charlie,

Jo, Pat, and Terry) are summarized in Table 7, where the host OS is indicated after the system name.

Table 7: M57 Patents Scenario results

Charlie (XP) Jo (XP) Pat (XP) Terry (Vista)
diskprintName w_file% diskprintName w_file% diskprintName w_file% diskprintName w_file%

Python264-WinXP 98.98% Python264-WinXP 98.83% Python264-WinXP 98.91% Python264-WinXP 85.52%

InvSecrets21-WinXP 63.16% TrueCrypt63-WinXP 50.00% Thunderbird2-WinXP 24.94% Thunderbird2-WinXP 27.81%

Thunderbird2-WinXP 61.00% Thunderbird2-WinXP 24.73% AdvKeylogger-WinXP 21.97% Winzip17pro-W7x64 10.37%

Safari157-W7x32 10.25% Safari157-W7x32 11.35% HxD171-W7x32 8.39% Winzip17pro-W7x32 10.05%

Safari157-WinXP 10.16% Safari157-WinXP 11.26% Firefox19-WinXP 3.17% HxD171-W7x32 8.37%

Safari157-W7x64 6.69% Safari157-W7x64 7.37% Firefox19-W7x64 2.93% Safari157-W7x32 5.46%

Firefox19-WinXP 3.26% Firefox19-WinXP 3.24% Firefox19-W7x32 2.78% Safari157-WinXP 5.35%

Firefox19-W7x32 2.77% Firefox19-W7x32 2.74% Winzip17pro-W7x64 2.03% Chrome28-WinXP 4.83%

Firefox19-W7x64 2.50% Firefox19-W7x64 2.62% Chrome28-WinXP 1.64% Chrome28-W7x64 4.81%

Chrome28-WinXP 2.11% Chrome28-WinXP 2.15% Chrome28-W7x64 1.63% Firefox19-WinXP 3.59%

Winzip17pro-W7x64 2.08% Chrome28-W7x64 2.03% Winzip17pro-W7x32 1.50% Chrome28-W7x32 3.59%

Chrome28-W7x64 2.02% Chrome28-W7x32 1.52% Chrome28-W7x32 1.22% Firefox19-W7x64 3.56%

Chrome28-W7x32 1.52% sdelete-W7x64 1.35% TrueCrypt63-WinXP 1.22% Firefox19-W7x32 3.55%

Winzip17pro-W7x32 1.51% Winzip17pro-W7x64 1.26% Winrar5beta-W7x64 0.85% Safari157-W7x64 3.47%

sdelete-W7x64 1.35% sdelete-W7x32 1.08% Winrar5beta-W7x32 0.84% Winrar5beta-W7x64 2.21%

sdelete-W7x32 1.08% Winrar5beta-W7x64 0.95% Safari157-WinXP 0.62% Winrar5beta-W7x32 2.19%

TrueCrypt63-WinXP 0.73% Winrar5beta-W7x32 0.94% Safari157-W7x32 0.54% TrueCrypt63-WinXP 0.97%

Winrar5beta-W7x32 0.64% Winzip17pro-W7x32 0.72% OfficePro2003-WinXP 0.47% OfficePro2003-W7x32 0.39%

Winrar5beta-W7x64 0.64% OfficePro2003-WinXP 0.43% OfficePro2003-W7x32 0.45% OfficePro2003-WinXP 0.35%

OfficePro2003-WinXP 0.37% OfficePro2003-W7x32 0.41% OfficePro2003-W7x64 0.42% OfficePro2003-W7x64 0.35%

OfficePro2003-W7x32 0.32% OfficePro2003-W7x64 0.37% Safari157-W7x64 0.39% Wireshark-W7x32 0.09%

OfficePro2003-W7x64 0.31% Wireshark-W7x32 0.07% Wireshark-W7x32 0.10% eraser-W7x32 0.05%

Wireshark-W7x32 0.06% HxD171-W7x32 0.04% Wireshark-W7x64 0.02% Wireshark-W7x64 0.05%

eraser-W7x32 0.01% eraser-W7x32 0.02% eraser-W7x32 0.02% AdvKeylogger-WinXP 0.03%

AdvKeylogger-WinXP 0.01% Wireshark-W7x64 0.02% InvSecrets21-WinXP 0.00% InvSecrets21-WinXP 0.00%

Wireshark-W7x64 0.00% AdvKeylogger-WinXP 0.01% UPX-W7x32 0.00% UPX-W7x32 0.00%

UPX-W7x32 0.00% InvSecrets21-WinXP 0.00% sdelete-W7x32 0.00% sdelete-W7x32 0.00%

HxD171-W7x32 0.00% UPX-W7x32 0.00% UPX-W7x64 0.00% UPX-W7x64 0.00%

UPX-W7x64 0.00% UPX-W7x64 0.00% sdelete-W7x64 0.00% sdelete-W7x64 0.00%

Legend True positive True negative False positive False negative Different OS

In the M57 results of Table 7, green cells indicate true positives, which are confirmed installed or

uninstalled programs based on the scenario documentation, other published analysis, and direct forensic

examination of the scenario images. White cells are true negatives, similarly verified. Red cells indicate

false positives, which we define as weighted file % scores above the lowest true positive. Blue cells are

false negatives, which we define as a known installed applications with a weighted file % lower than at

least one true negative. Yellow cells indicate other OS versions of detected applications. For the true

positives, Python and Firefox installations are confirmed for all four systems. For the Charlie system,

Thunderbird is also confirmed by the scenario documentation, and Invisible Secrets is suggested by the

scenario documentation ("...emails proprietary information steganographically hidden in JPEG image...")

and confirmed by Roussev and Quates as well as a direct examination of the image. The presence of

TrueCrypt on the Jo system, Advanced Keylogger on the Pat system, and Chrome on the Terry system are

all confirmed in the scenario documentation. Advanced Keylogger is also confirmed in the scenario

documentation to have been uninstalled prior to the Pat 2009-12-11 image.

We examined the scenario images directly using Autopsy 4.0.0 in an effort to understand the apparent

false positives and the lone false negative (eraser on the Terry image). A summary of our preliminary

findings is below in Table 8. A more extensive analysis is underway to establish if these are in fact false

positives, or if some of them represent as yet undocumented true positives. The results of this analysis

will be reported in future work.

Table 8: False positive and false negative preliminary analysis

(System(s))

Application

Preliminary Analysis

(Charlie/Jo/Terry)

Safari

Apple's QuickTime and Apple's software update applications are

present on the Charlie and Jo systems and may explain the Safari results

due to catalog artifacts in common (Safari would include the Apple

software update application and possibly QuickTime as well). The Terry

system also indicated Safari, although at a lower level than the Charlie

and Jo systems, but the Terry system does not show indications of a

QuickTime installation.

(Jo/Pat/Terry)

Thunderbird

Thunderbird is known to have been installed on the Charlie system on

11-12-2009, but is not documented or apparent on the other three

systems. It is possible that Thunderbird was installed on all four systems

on 11-12-2009 but immediately uninstalled on the three non-Charlie

systems.

(Pat/Terry)

HxD

HxD may have been installed and uninstalled between snapshots, hence

no entries were found in locations like Program Files. The Cygnus hex

editor was confirmed on the Charlie system, so the scenario operators

are know to have installed a hex editor, although a different one than

HxD detected on the Pat and Terry systems.

(Terry)

Winzip

Possibly due to compression libraries bundled in Windows Vista and

also used by Winzip, but not bundled in Windows XP.

(Terry)

Eraser

Likely due to a difference in application versions between the catalog

and the M57 image. Most of the eraser sectors in the catalog come from

the eraser.exe file, hence a minor change in the compiled code would

prevent sector matches. The eraser application has a small number of

files, hence is more susceptible to such a variation than other

applications with large numbers of files and hence unchanged sectors

across versions.

Of particular interest in the M57 results is the successful detection of Advanced Keylogger on the Pat

system after uninstallation and continued use. Such detections are the main goal of our work and is

distinct from other work such as Roussev and Quates that relied on mid-scenario snapshots to detect

Advanced Keylogger. In contrast, our approach detected Advanced Keylogger using only the final

scenario snapshot, after Advanced Keylogger had been uninstalled and the system used for five additional

days. Figure 4 shows the presence and persistence of Advanced Keylogger sector artifacts over the life of

the scenario. The data consists of 17 snapshots over 26 calendar days, where days without snapshots are

indicated by an asterisk along the X-axis of Figure 4. The vertical axis in the graph, sector %, is the

matched sectors as a fraction of the total sectors associated with Advanced Keylogger in the catalog.

Advanced Keylogger was installed between the 12/2 and 12/3 snapshots, and uninstalled between the

12/4 and 12/7 snapshots. Subsequent system usage further destroyed probative sectors, yet our weighted

file % measure still detected Advanced Keylogger in the 12/11 snapshot (21.97% based on the remaining

24 sectors from 8 different files). We speculate that 100% of the catalog sectors were not matched in the

12/3 and 12/4 snapshots due to slight differences in artifacts created during installation and use of

Advanced Keylogger the different systems of the catalog and the M57 scenario.

One unresolved issue is to determine the threshold at which an application should be considered present

or previously present. While the M57 results might indicate a weighted file % threshold of about 3%, the

contents of deleted files are modified (destroyed) over time, so a single threshold for uninstalled

applications is unlikely to exist. However, we are conducting related work to model the persistence of

deleted files over time under different artifact and system usage conditions. This related works aims to

provide a basis for asserting the implications of a particular weighted file % for a specific application

after a known amount of time and activity. Additionally, our catalog of 16 applications tested on the four

images of the M57 data set is not large enough to conclude statistical significance. However, as a

practical matter, the current use cases for our approach are (a) for an analyst to work down the list in

decreasing weighted file % score until applications are no longer confirmed or no longer of interest, or (b)

to have a specific set of applications of interest and only seek to confirm those in decreasing order of

weighted file %. Regarding the first use case, our M57 results indicate that present or previously present

applications almost always score higher than non-present or never installed applications. The second use

case also addresses part of the scalability question, in that our approach need not catalog a great number

of applications in order to be of use, but rather only catalog applications of interest to the analyst.

5. CONCLUSIONS AND FUTURE WORK

In this work, we leveraged an existing catalog of full-file artifacts from specific applications to detect and

reason over matching sectors recovered from media of interest. We used these matching sectors to suggest

past uninstalled applications on test images and the drive images of the M57 Patents Scenario. Our results

suggest that:

 Partial file contents (traces) remain after files are deleted due to application uninstallation

 These traces can be used to suggest the past presence of uninstalled applications

Figure 4: Sector artifact persistence for Advanced Keylogger on Pat's M57 system

Current approaches to determine prior application presence rely on intact artifact recovery, log analysis,

Windows registry analysis, and trace evidence analysis. Our approach complements these methods,

especially when intact artifacts and traces are not available and the Windows registry has been cleaned or

is unavailable, e.g., on a non-Windows system.

Our approach requires that applications of interest be processed into the catalog prior to trace detection

and computation. While processing new applications is relatively straightforward, it does require

resources as well as knowledge of, and access to, applications of interest. Additionally, utilities that

overwrite unallocated space would likely defeat our approach as we rely on fragments of deleted files

residing in this unallocated space. Our approach is also vulnerable to deliberate deception, as the

placement of specific file fragments in the unallocated space of a device or image, or even the creation

and deletion of selected full-file artifacts, would cause spurious suggestion of an application that in fact

had never been installed.

We are considering combining the weighted sector and weighted file measures, and also adding sector

entropy and relative partial artifact location on the media to our measure of application presence

calculation. Additionally, we are examining methods for more robust and precise noise reduction at the

point of catalog creation, and we are considering sector differencing as an alternative to file differencing.

Future work will extend our approach to malware applications and mobile platforms.

ACKNOWLEDGEMENTS

[removed for review]

AUTHOR BIOGRAPHIES

[removed for review]

REFERENCES

Collange, S., Dandass, Y. S., Daumas, M., & Defour, D. (2009). Using graphics processors for

parallelizing hash-based data carving. In System Sciences, 2009. HICSS'09. 42nd Hawaii International

Conference on (pp. 1-10). IEEE.

Dandass, Y. S., Necaise, N. J., & Thomas, S. R. (2008). An empirical analysis of disk sector hashes for

data carving. Journal of Digital Forensic Practice, 2(2), 95-104.

NPS-DEEP. (2015). Hashdb. Last accessed 10.4.15, https://github.com/NPS-DEEP/hashdb.

Forte, D. V. (2004). The “Art” of log correlation: Tools and Techniques for Correlating Events and Log

Files. Computer Fraud & Security, 2004(8), 15-17.

Foster, K. (2012). Using distinct sectors in media sampling and full media analysis to detect presence of

documents from a corpus (Doctoral dissertation, Monterey, California. Naval Postgraduate School).

Garfinkel, S. (2012). Digital forensics XML and the DFXML toolset. Digital Investigation, 8(3), 161-

174.

Garfinkel, S. L. (2013). Digital media triage with bulk data analysis and bulk_extractor. Computers &

Security, 32, 56-72.

Garfinkel, S. L., & McCarrin, M. (2015). Hash-based carving: Searching media for complete files and file

fragments with sector hashing and hashdb. Digital Investigation, 14, S95-S105.

Garfinkel, S., Nelson, A., White, D., & Roussev, V. (2010). Using purpose-built functions and block

hashes to enable small block and sub-file forensics. digital investigation, 7, S13-S23.

Garfinkel, S., Nelson, A. J., & Young, J. (2012). A general strategy for differential forensic analysis.

Digital Investigation, 9, S50-S59.

https://github.com/NPS-DEEP/hashdb

Koppen, J., Gent, G., Bryan, K., DiPippo, L., Kramer, J., Moreland, M., & Fay-Wolfe, V. (2013).

Identifying Remnants of Evidence in the Cloud. In Digital Forensics and Cyber Crime (pp. 42-57).

Springer Berlin Heidelberg.

Laamanen, M., Nelson, A. (2014). NSRL Next Generation - Diskprinting. Forensics @ NIST,

Gaithersburg, MD, December 3, 2014. Last accessed 10.4.15,

http://www.nsrl.nist.gov/Documents/Diskprints.pdf.

Ligh, M. H., Case, A., Levy, J., & Walters, A. (2014). The art of memory forensics: detecting malware

and threats in windows, linux, and Mac memory. John Wiley & Sons.

Nelson, A., Laamanen, M., Tebbutt, J., Long, D. (2014) Indexing the Windows® Registry for Software

Detection. The American Academy of Forensic Sciences 66th Annual Scientific Meeting , February 20,

2014, Seattle, WA. Last accessed 10.4.15,

http://www.nsrl.nist.gov/Documents/20140220%20Diskprint%20AAFS.pdf.

Nelson, A. J., Steggall, E. Q., & Long, D. D. (2014). Cooperative mode: Comparative storage metadata

verification applied to the Xbox 360. Digital Investigation, 11, S46-S56.

NIST. (2015). Diskprint Data Downloads. Last accessed 10.4.15,

http://www.nsrl.nist.gov/dskprt/sequence.html.

NIST. (2012). Recommendation for Applications Using Approved Hash Algorithms, Special Publication

800-107 Revision 1. 2012. Last accessed 10.5.15. http://csrc.nist.gov/publications/nistpubs/800-107-

rev1/sp800-107-rev1.pdf

Quick, D., & Choo, K. K. R. (2013). Digital droplets: Microsoft SkyDrive forensic data remnants. Future

Generation Computer Systems, 29(6), 1378-1394.

Roussev, V., & Quates, C. (2012). Content triage with similarity digests: the M57 case study. Digital

Investigation, 9, S60-S68.

Wong, L. W. (2007). Forensic analysis of the Windows registry. Forensic Focus, 1.

Woods, K., Lee, C. A., Garfinkel, S., Dittrich, D., Russel, A., & Kearton, K. (2011). Creating realistic

corpora for forensic and security education. ADFSL Conference on Digital Forensics, Security and Law.

Young, J., Foster, K., Garfinkel, S., & Fairbanks, K. (2012). Distinct sector hashes for target file

detection. Computer, (12), 28-35.

Zobel, J., & Moffat, A. (1998). Exploring the similarity space. In ACM SIGIR Forum (Vol. 32, No. 1, pp.

18-34). ACM.

http://www.nsrl.nist.gov/Documents/Diskprints.pdf
http://www.nsrl.nist.gov/Documents/20140220%20Diskprint%20AAFS.pdf
http://www.nsrl.nist.gov/dskprt/sequence.html
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf

