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Abstract. We develop a new and simple way to describe Karatsuba-like 
algorithms for multiplication of polynomials over F2. These techniques, 
along with interpolation-based recurrences, yield circuits that are better 
(smaller and with lower depth) than anything previously known. We use 
our optimization tools to actually build the circuits for n-term binary 
polynomial multiplication for values of n of practical interest. 

1 Introduction 

Let A, B be polynomials of degree n − 1 over F2. This paper is about fnding 
“good” circuits that compute the polynomial A · B. We consider circuits over 
the basis (∧, ⊕, 1) (that is, arithmetic over F2). We aim for circuits with as few 
gates as possible. 

Applications Binary polynomial multiplication is the main operation in the arith-
metic of fnite felds of characteristic two. It is of particular importance in elliptic 
curve cryptography (see [Ber09, BGTZ08] and the references therein). Addition-
ally fnite feld multiplication is used in the Galois Counter mode of operation 
[Dwo07]. Other important applications include binary Goppa codes and derived 
cryptosystems. 

Our Technique We consider generalizations of the algorithm due to Karatsuba. 
Karatsuba’s algorithm splits a polynomial into two parts and then does recur-
sive multiplication. Researchers have already considered generalizations of this 
algorithm which split the input into k ≥ 3 parts. We provide a unifying descrip-
tion of these generalized “Karatsuba-like” algorithms, allowing for a systematic 
search for such recurrences. 

Contributions For k = 4, 5, 6, 7 we improve on the recurrences for Karatsuba-like 
multiplication. We obtain smaller circuits than the previously known best bounds 
due to Cenk and Hasan [CH15] for almost all n of cryptographically relevant size. 
Moreover, we actually construct the circuits (in [CH15] only estimates on the 
sizes are given). Although we have not focused on depth, our circuits are of 
signifcantly lower depth than previous state of the art. For example for n = 66 
(the smallest value of n for which the interpolation method is used in [Ber09]), 
our methods yield a circuit with size 4041 and depth 15. The circuit in [Ber09] 
has size 4050 and depth 79. Table 4 in Section 6 shows circuit sizes and depths 
for a range of n. 
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2 Defnitions 

Polynomials The input to our problem will be polynomials of degree n − 1, 

n−1 n−1 
X X 

i iA = aix and B = bix (ai, bi ∈ {0, 1}). 
i=0 i=0 

We refer to a polynomial of degree n−1 as an n-term polynomial (even though 
some of the terms may be zero). For integers i < j, we identify a polynomial 

i i+1 jA = aix + ai+1x + . . . + aj x with the tuple (ai, ai+1, . . . , aj ), and denote 
A[i] = ai and A[i..j] = (ai, . . . , aj ). 

Symmetric Circuits For the purpose of this paper, we restrict ourselves to cir-
cuits with the following structure, which we call symmetric bilinear circuits. A 
symmetric bilinear circuit contains only binary XOR (addition) and binary AND 
(multiplication) gates. It consists of 

– a top layer consisting only of XOR gates1; 
– a multiplication layer that computes only functions of the form 

X X 
ai · bi (S ⊆ {0, . . . , n − 1}); 

i∈S i∈S 

– a bottom layer that uses only XOR gates and outputs c0 through c2n−1, 
where 

X 
ct = aibj . 

i+j=t 

For an integer n > 1, let M(n) be the size of the smallest circuit over (∧, ⊕, 1) 
computing the polynomial product of two n-term polynomials. We emphasize 
that there does not necessarily exist a symmetric boolean circuit of size M(n) 
for all n, although all the best sizes we know of can be achieved using circuits of 
this form. 

We will use three metrics for this class of circuits. Let C be a circuit in the 
class. The multiplicative cost of C, denoted M∧(C), is the number of AND gates. 
The upper additive cost of C, denoted M⊕(C), is the number of XOR gates in 
the top layer of C. The bottom additive cost of C, denoted M⊕(C), is the number 
of XOR gates in the bottom layer of C. 

Example: Consider A = a0 + a1x and B = b0 + b1x. The product of A and B is 
C = c0 + c1x + c2x

2, where 

c0 = a0b0; c1 = a0b1 + a1b0; c2 = a1b1. 

With respect to multiplicative complexity, there is only one optimal symmet-
ric boolean circuit for n = 2. The top layer calculates s1 = a0 + a1, s2 = b0 + b1. 
The multiplication layer calculates 

1 We visualize circuits as having the inputs at the top and the outputs at the bottom. 
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– c0 = a0b0 ; 
– c2 = a1b1; 
– t = s1s2 = (a0 + a1)(b0 + b1). 

The bottom layer calculates c1 = c0 + c2 + t. The multiplicative cost is three 
(which is optimal, among all boolean circuits). Both additive costs M⊕ and M⊕ 

are 2. 

a0 a1 b0 b1 

� � 

^c0 ^t ^ c2 

� 

� c1 

Fig. 1. Circuit C computing the product of two polynomials of degree 1. This circuit 
has M^(C) = 3 and M�(C) = (C) = 2. M�

For degree-2 polynomials, a computer search yields exactly six circuits of 
multiplicative complexity six in the prescribed class.2 Of these, two have bottom 
additive cost 6 (the other four circuits have bottom additive costs 7,7,8,8). 

Linear Operators and Representation of Circuits Let A be an n x m matrix 
over F2. The function x 7→ A · x can be computed using only XOR gates. We 
let s(A) be the smallest number of XOR gates in a circuit consisting only of 
XOR gates computing this mapping. For a symmetric bilinear circuit C in the 
variables a = (a0, . . . , an−1) and b = (b0, . . . , bn−1), there exists a unique matrix 
T , such that the ith AND gate computes the ith coordinate of (T ·a)⊤(T ·b). We 
call this matrix T the top matrix of C. Similarly, the bottom part of the circuit 
can be described as a matrix, which we call the main matrix of C, denoted R. A 
symmetric bilinear circuit C is completely described by the two matrices (T,R) 
along with XOR circuits computing them. 

3 Previous Work 

Asymptotic Complexity Much work has been put into giving asymptotically good 
algorithms for binary polynomial multiplication, see [KO63, Sch77, HvdHL14]. 
Currently, the asymptotically best algorithm is due to Harvey, van der Hoeven, 
and Lecerf who showed that M(n) ≤ O(n log n 8log

⋆ n), where log ⋆ (·) denotes 
the iterated logarithm, an unbounded but extremely slow growing function. 

2 Any symmetric bilinear circuit computing the product of two quadratic polynomials 
has at least six F2 multiplications. See Section 5. 
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Concrete Complexity For values of n that are interesting for cryptographic pur-
poses (say, n ≤ 600), the asymptotic bounds do not say much about the concrete 
circuit complexity. For this we need to employ a combination of di�erent recur-
sive relations. 

This problem has received much attention in recent years, see [Paa96, RHK03, 
Sun04, Mon05, EYK06, vzGS06a, WP06, Zim07, FH07, PL07, Bod07, BGTZ08, 
CKO09, FSGL10, Ber09, ZM10, ZMH10, DLV11, CH15]. 

Bernstein, in [Ber09], used various (new and old) recursive constructions to 
build small circuits for n-term polynomial multiplication for 2 ≤ n ≤ 1000. 
Notably he obtains results “better than anything that can be found in the hard-
ware literature” [Ber09, page 7], including results reported in [PL07, CKPL05, 
RHK03, vzGS06b, FSGL10]. 

In recent work [CH15], Cenk and Hasan show that smaller circuits exist for 
many values of n. These values were found by fnding new recurrence relations, 
improving on existing recurrence relations, and applying these in a manner sim-
ilar to that of [Ber09]. Recurrence relations suÿcient to obtain the values stated 
in [CH15] are shown on Table 1. 

3.1 Known Recursive Constructions 

Many di�erent recursive constructions for polynomial multiplications have been 
suggested. Most of these constructions are based on one of two ideas: 

Interpolation based algorithms Here, to multiply two kn-term polynomials, con-
sider both polynomials as being polynomials of degree k −1 with n-term polyno-
mials as coeÿcients. Then evaluate the polynomials at 2k−1 points, and perform 
pointwise multiplications recursively. Finally, obtain the resulting polynomial 
using interpolation. This general approach was suggested by Toom in [Too63]. 
Concrete constructions for k = 2, 3 have been proposed by Bernstein [Ber09] 
and by Cenk and Hasan [CH15] (specifcally, equations 6,7,9, and 15). These are 
included in Table 1. 

Karatsuba-like algorithms The main observation is that the recursive step in 
the algorithm for Karatsuba multiplication [KO63] is similar to a particular 
way of multiplying two 2-term polynomials. Conversely, Karatsuba’s algorithm 
uses a circuit for 2-term multiplication with few multiplications as a recursive 
way of multiplying 2n-term polynomials. A generalization of this is to use a 
particular circuit for multiplication of k-term polynomials as a recurrence for 
multiplying kn-term polynomials. This has been observed many times, notably 
by Montgomery [Mon05] and by Weimerskirch and Paar [WP06]. Such recursive 
constructions have also been proposed in [CHN14, Ber09] and [CH15] (equations 
7,18,20), and are listed in Table 1. 

We note that this distinction is not a perfect demarcation. In fact, Algorithm 
1 on Table 1 (the best known version of the classic Karatsuba algorithm) is 
presented as an interpolation-based algorithm in [Ber09]. However, as we shall 
argue in Section 4.2, one can just as well consider it a “Karatsuba-like” algorithm. 
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Other Recurrences Many other recurrence relations can be found in the lit-
erature. For example, Dyka et al. [DLV11] report the recurrences M(5n) ≤ 
13M(n)+66n − 23,M(6n) ≤ 17M(n)+96n − 34,M(7n) ≤ 22M(n)+133n − 47. 
Some recurrences have been patented, as in Montgomery’s patent [Mon08] and 
in Koç and Erdem’s patent [KE08]. Our general method for binary polynomial 
multiplication is described in section 4. It improves on all patented Karatsuba-
like recurrences we are aware of. 

4 Finding new Karatsuba-like recurrences 

This section describes our main technique for obtaining new recurrences. In 
section 4.1 we introduce Karatsuba-like algorithms and recall a generic way of 
transforming a circuit into a recursive construction. We then point out why this 
generic technique is suboptimal. In Section 4.2 we illustrate how to improve on 
this in the particular case of k = 2. In Section 4.3 we consider the case for general 
values of k. 

4.1 Generic Karatsuba-like constructions 

There is a standard way to convert any symmetric bilinear circuit C, for polyno-
mial multiplication of k bits, into a recurrence. The recurrence yields an upper 
bound on M(k · n) in the following way: to multiply two k · n-term polynomials 
A, B, divide A, B into k blocks. That is, write A as 

n n·(k−2) n·(k−1)A = A0 + A1x + . . . + Ak−2x + Ak−1x , 

with each Ai an n-term polynomial, and similarly write B as 

n n·(k−2) n·(k−1)B = B0 + B1x + . . . + Bk−2x + Bk−1x . 

The product A · B can be written as 

2k−2 
X 

A · B = Uix i·n , 
i=0 

P 
where Uk = Ai · Bj . To compute the polynomials U0, . . . , U2k−2 we use i+j=k 
the circuit C, where each XOR gate is replaced with polynomial addition (bitwise 
XOR) and each AND gate is replaced with a circuit for n-term multiplication. 
Each of the top XOR gates in C results in n gates, and each of the bottom 
XOR gates result in 2n − 1 gates. Each AND gate is replaced by a circuit for 
n-term multiplication, using M(n) gates. We immediately have that the cost of 
computing U0, . . . , U2k−2 is n · M⊕(C)+ (2n − 1)M⊕(C)+M∧(C) · M(n). Finally, 
to obtain the actual bits of the result, we have to take care of the overlap 

i·nbetween Uix and Ui+1x
(i+1)·n. One way to do this is by doing bitwise XOR 

with the high-order n − 1 bits from Ui and the low-order n bits from Ui+1 for 
i = 0, . . . , 2k − 3. This uses (2k − 2) · (n − 1) gates. 
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Table 1. List of known recurrence relations. K/I denotes whether it is a Karatsuba-like or interpolation based algorithm, alg denotes a 
unique algorithm number (used later when reporting how circuits are obtained), CH is the number of the algorithm used in [CHN14]. 
Several recurrences are di�erent from what is stated in [CH15]. We have been informed of these improvements by the authors. Most of 
these recurrences are included in [CH15]. 

K/I alg CH k s M(s) � reference 

- 0 1 - n + 1 M(n) + 4n Schoolbook 
K 1 2 2 2n 3M(n) + 7n − 3 [Ber09] 
K 2 2.1 2 2n − 1 2M(n) +M(n − 1) + 7n − 8 [CH15, Eq (3)] 
K N/A 2.2 2 2n − 2 2M(n) +M(n − 2) + 7n − 16 [CH15, Eq (3)] 
K 5 3 3 3n 6M(n) + 18n − 6 [CHN14] 
I 10 5 3 3n 3M(n) + 2M(n + 2) + 35n − 21 [Ber09, CH15] 
I 10 5 3 3n − 1 2M(n) +M(n − 1) + 2M(n + 1) + 35n − 26 [CH15, Eq 6] 
I 10 5 3 3n − 2 2M(n) +M(n − 2) + 2M(n + 1) + 35n − 36 [CH15, Eq 6] 
I N/A 5 3 3n − 3 2M(n) +M(n − 3) + 2M(n + 1) + 35n − 46 [CH15, Eq 6] 
I N/A 5 3 3n − 4 2M(n) +M(n − 4) + 2M(n + 1) + 35n − 56 [CH15, Eq 6] 
I 11 5.1 3 3n M(n) + 2M(n + 1) + M(n + 2) + M(n − 1) + 35n − 12 [CH15, Eq 15] 
I 12 5.2 3 3n − 2 2M(n) +M(n + 1) + 2M(n − 1) + 35n − 13 [CH15, Eq 9] 
K 3 6 4 4n M(2n) + 6M(n) + 27n − 8 [Ber09], [CH15, Eq 9] 
K 3 6.1 4 4n − 1 M(2n) + 5M(n) +M(n − 1) + 27n − 18 [Ber09], [CH15, Eq 10] 
K 3 6.2 4 4n − 2 M(2n) + 5M(n) +M(n − 2) + 27n − 34 [Ber09], [CH15, Eq 10] 
K 7 7 5 5n 13M(n) + 55n − 17 [CH15, Eq 18] 
K 7 7.1 5 5n − 1 12M(n) +M(n − 1) + 55n − 26 [CH15, Eq 20] 
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This gives the generic recurrence 

M(kn) ≤ M∧(C)M(n) +M⊕(C)n + M⊕(C)(2n − 1) + (n − 1)(2k − 2). (1) 

This idea has been used before, though we have not seen the above recurrence 
stated explicitly. 

The Bottom Layer To improve on this, we “zoom in” on how to obtain the output 
bits given the result of the recursive multiplications. Informally speaking, we lose 
information by obtaining the polynomials Ui and the overlap as independent 
tasks. This general idea appeared (somewhat independently) in several works 
[Mon05, ZM10, DLV11, Nèg14, CHN14]. 

4.2 Example: Karatsuba (k = 2) 

To illustrate how to optimize the bottom layer, we describe a way to obtain the 
Karatsuba-recurrence M(2n) ≤ 3M(n) + 7n − 3 in table 2. This recurrence is 
not novel, but this particular way of deriving it naturally generalizes to the more 
general approach we present in the next section. Let the input polynomials be 

2n−1 nA = a0 + a1x + . . . + a2n−1x = A0 + A1x , 

and 
2n−1 nB = b0 + b1x + . . . + b2n−1x = B0 + B1x , 

for n-term polynomials A0, A1, B0, B1. Let the result be 

C = A · B = c0 + c1x + . . . + c4n−2x 4n−2 , 

P 
and let Uk = Ai · Bj , for k = 0, 1, 2. Now instantiate Equation 1 with i+j=k 
the circuit described by the two matrices (also shown on Figure 2) 

    
1 0 1 0 0 

T = 1 1  , R = 1 1 1  . 
0 1 0 0 1 

The circuit is shown on Figure 1. We get 

M(2n) ≤ 3M(n) + 2n + 2 · (2n − 1) + (n − 1)(2 · 2− 2) = 3M(n) + 8n − 4. 

To improve on this, we consider the overlap more carefully. For a (2n − 1)-term 
polynomial D let L(D), M(D), and H(D) be the unique polynomials with n−1, 
1, and n − 1 terms, respectively, that satisfy 

n−1 nD = L(D) +M(D)x + H(D)x . 

Consider the recursion circuit as shown in Figure 2. Di�erent parts of the 
output C can be written in terms of the coeÿcients T0, T1, T2. Using the fact 
that U0 = P0, U1 = P0 + P1 + P2, U2 = P2, we can write the output bits as 
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1. C[0..n − 2] = L(U0) = L(P0), 

2. C[n − 1] = M(U0) = M(P0), 

3. C[n..2n − 2] = L(U1) +H(U0) = (L(P0) + L(P1) + L(P2)) +H(P0), 

4. C[2n − 1] = M(U1) = M(P0) +M(P1) +M(P2), 

5. C[2n..3n − 2] = L(U2) +H(U1) = L(P2) + (H(P0) +H(P1) +H(P2)), 

6. C[3n − 1] = M(U2) = M(P2), 

7. C[3n..4n − 2] = H(U2) = H(P2). 

Now we can write the outputs as linear functions of the low, middle, and 
high parts of the polynomials computed in the multiplication gates: 

      
C[n − 1] 1 0 0 M(P0) 

C[2n − 1]  = 1 1 1  · M(P1) , (2) 
C[3n − 1] 0 0 1 M(P2) 

and 
  
L(P0) 

    
 C[0..n − 2] 1 0 0 0 0 0 L(P1) 
  

     C[n..2n − 2] 1 1 1 1 0 0 L(P2) 
     = · . (3) 

 C[2n..3n − 2]  0 0 1 1 1 1  H(P0) 
  

C[3n..4n − 2] 0 0 0 0 0 1 H(P1) 

H(P2) 

Now it remains to fnd good circuits to compute the linear operators in Equa-
tions 2 and 3. Since these matrices are small, it is easy to see that the frst can 
be computed using two additions, and the second can be computed using fve 
additions. Each addition in the computation of the frst linear mapping costs 
1 XOR gate, and in second linear mapping each operation costs n − 1 XOR 
operations. The top part still uses 2n XOR gates. We have in total 

M(2n) ≤ 3M(n) + 2n + 5 · (n − 1) + 2 = 3M(n) + 7n − 3. (4) 

a0 a1 b0 b1 

+ + 

·P0 ·P1 · P2 

� 

� G 

Fig. 2. Circuit showing the recursion in the Karatsuba step. U0 = P1, U1 = G, U2 = P2. 
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4.3 Generalizing to k � 3 

Let C be a symmetric bilinear boolean circuit for multiplication of k-term poly-
nomials with top matrix T and main matrix R. Let Ri be the ith row of R. 
Consider C as a recursive circuit (as in the previous section). Let P0, . . . , Ps−1 

be the multiplication gates. The output polynomial C satisfes 
    

C[n − 1] M(P0) 
 C[2n − 1]   M(P1)  
    
 .  = R ·  .  . (5) 

. . 
 .   .  

C[(2k − 1)n − 1] M(Ps−1) 

Let the extended matrix E be defned as 
  

R1 0 
 R2 R1 
  
 . 

E =  . 
 . . 

  
 R2k−1 R2k−2 

0 R2k−1 

Letting L, M, H be as in the previous section, the remaining coeÿcients can be 
written as 

  
L(P0) 

  
 . 

C[0..n − 2] 
 . 

. 
  

 C[n..2n − 2] 

  
  L(Ps−1) 

  
 .  = E · . (6) 

.   
  H(P0).   

 . 

C[(2k − 1)n..2kn − 2] 
 . 

. 
H(Ps−1) 

We now have the recurrence 

M(kn) ≤ M∧(C) · M(n) + 2n · s(T ) + (n − 1) · s(E) + s(R). (7) 

Note that this allows for a succinct description of recursive circuit: each is 
described by XOR circuits for T , R and E. 

Matrix computation vs using common subexpressions For specifc values of k, 
similar approaches have been used. To quote Montgomery [Mon05, p. 365]: “by 
taking advantage of common subexpressions”, and Zhou and Michalik [ZM10]: 
“By reviewing the work of [Paa96]3, we show that the gate complexity of KA 
can be reduced by exploring the common subexpressions”. 

We remark that obtaining a circuit for linear operators purely using common 
subexpressions results in so-called “cancellation-free” circuits (also called SUM-
circuits). For some linear operators these circuits are highly suboptimal [BF15], 
see also [JS13, Section 5.3]. Indeed, for the extended matrix E in the 6-way split 
below, the only minimal sized circuit we have found has cancellation, so it could 
not have been obtained using only common subexpressions. 

3 reference name changed to be consistent with citations in this document 
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Finding Recursion Circuits The recurrence in Equation 7 suggests the following 
strategy to fnding recurrences upper bounding M(k · n) for a fxed k: First fnd 
circuits for k-term multiplication with the smallest possible number of AND 
gates. Among these, fnd one where Equation 7 is as good as possible. 

We remark that both of these tasks are computationally very challenging; 
computing the tensor rank is NP-hard [H°as90]. The problem of fnding the small-
est XOR circuit for a given matrix is NP-hard and max-SNP-hard [BMP13], 
meaning that if NP 6 P even fnding a circuit which is at most a particu-= 
lar constant larger than the optimum is intractable. For this work we used the 
heuristics of [BMP13]. 

4.4 New Recurrence Relations 

Using the approach described in the previous sections we obtain several new 
recurrence relations. These are shown on Table 2. We describe the recurrence by 
describing the two matrices T,R associated with the recurrence (the matrix E 
is derived from R). The straight-line programs computing each of the matrices 
are given in the appendix. We only include the recurrences in the case where the 
input is divisible by 4, 5, 6, 7, although these can easily be extended to give upper 
bounds for M(4n − 1),M(4n − 2),M(5n − 1), etc. We omit this in this version 
of the paper, though these algorithms are included in the software computing 
our circuits. 

Table 2. Recurrence relation for new Karatsuba-like algorithms 

alg recurrence reference 

6 M(4n) � 9M(n) + 34n − 12 Eq 8 
7 M(5n) � 13M(n) + 54n − 19 Eq 9 
8 M(6n) � 17M(n) + 85n − 29 Eq 10 
9 M(7n) � 22M(n) + 107n − 33 Eq 11 

3-way split A search gives the matrices 

  
1 0 0   

1 0 0 0 0 0 
 0 1 0 
   1 1 1 0 0 0 
   1 1 0 
   T = , R = 1 1 0 1 1 0 . 
   0 0 1 
  0 1 0 1 0 1  
1 0 1  

1 0 0 1 0 0 
0 1 1 

It is easily seen that s(T ) = 3, s(R) ≤ 6, and s(E) ≤ 12. This gives the recurrence 

M(3n) ≤ 6M(n) + 2 · 3n + (n − 1)12 + 6 = 6M(n) + 18n − 6, 

which is the same recurrence as reported in [CHN14]. 
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4-way split A computer search gives the matrices 

  
1 0 0 0 

  
 0 1 0 0 1 0 0 0 0 0 0 0 0 
  
   1 1 0 0 1 1 1 0 0 0 0 0 0 
    
   0 0 1 0 1 1 0 1 1 0 0 0 0 
    
   T = 1 0 1 0 , R = 1 1 1 1 1 1 1 1 1 , 
    
   0 0 0 1 0 1 0 1 0 1 1 0 0 
    
 0 1 0 1 0 0 0 1 0 1 0 1 0  
  
0 0 1 1  0 0 0 0 0 1 0 0 0 
1 1 1 1 

again it is not hard to verify that s(T ) ≤ 5, s(R) ≤ 12, s(E) ≤ 24, and that this 
uses 9 multiplications. We get the recurrence 

M(4n) ≤ 9M(n) + 2 · 5n + (n − 1)24 + 12 = 9M(n) + 34n − 12. (8) 

We note that this is a little better than what one would get by applying Equa-
tion 4 twice. 

5-way split For n = 5, a computer search gave matrices T, M, E with s(T ) ≤ 8, 
s(R) ≤ 19, and S(E) ≤ 38, using 13 multiplications. The matrices along with 
straight-line programs are given in Section A.1. This gives the recurrence 

M(5n) ≤ 13M(n) + 2 · 8n + 38(n − 1) + 19 = 13M(n) + 54n − 19. (9) 

6-way split For n = 6, a computer search found matrices T, M, E with s(T ) ≤ 13 
gates, s(R) ≤ 30, and s(E) ≤ 59, using 17 multiplications. The matrices along 
with straight-line programs are given in Section A.2 This gives the recurrence 

T (6n) ≤ 17M(n) + 2 · 13n + (n − 1) · 59 + 30 = 17M(n) + 85n − 29. (10) 

7-way split Similarly for n = 7 a computer search found matrices T, M, E with 
s(T ) ≤ 16, s(R) ≤ 41, and that s(E) ≤ 75 gates, using 22 multiplications. The 
matrices along with straight-line programs are given in Section A.3 This leads 
to the recurrence 

M(7n) ≤ 22M(n) + 2 · 16n + 75(n − 1) + 41 = 22M(n) + 107n − 34. (11) 

5 Multiplicative Complexity of Polynomial Multiplication 

A natural question about the recurrences in the previous section is whether they 
can be improved; Do matrices giving better recurrence relations exist? In par-
ticular, is it possible to fnd matrices giving a smaller number of multiplications 
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in the recursion. It turns out that using this technique, for k = 2, 3, 4, 5, 6 there 
is not, but for k ≥ 7 there could be. In this section we will briefy sketch why. 

There is a known relationship between error correcting codes and quadratic 
boolean circuits computing fnite feld or polynomial multiplication (see [BD80], 
[LSW83]). Roughly speaking, any quadratic boolean circuit computing n-term 
polynomial multiplication induces an error correcting code with certain param-
eters. Therefore the nonexistence of certain codes can be used to prove the 
nonexistence of certain circuits. More specifcally, Kaminski [Kam85] shows that 
if there exists a method for multiplying two n-term polynomials in F2[X ] which 
uses l multiplications over F2, then there exists a linear code of length l, weight 
2n − d, and dimension d. This holds for all n ≤ d < 2n. Table 3 gives multi-
plicative complexity lower bounds derived using known bounds for the length 
of linear codes (see e.g. [Gra07]). We leave it as open problems to close the gap 
between 20 and 22 for k = 7, and to fnd recurrences with better low-order terms 
than what we provide in the previous section. 

Table 3. Best upper and lower bound on the multiplicative complexity of polynomial 
multiplication. The column (l, d, w) indicates parameters for a code with length l, 
dimension d and weight w that does not exist and therefore establishes the lower 
bound. 

n lower (l, d, w) upper 
2 3 (2, 2, 2) 3 
3 6 (5, 3, 3) 6 
4 9 (8, 3, 5) 9 
5 13 (12, 5, 5) 13 
6 17 (16, 3, 9) 17 
7 20 (19, 5, 9) 22 

6 Results 

We use the technique of section 4 to obtain circuits inductively: frst fnd small 
circuits for n = 2, 3 . . . , k. Then, to fnd a circuit for multiplication of (k + 1)-
term polynomials, apply each of the applicable recursive constructions, using 
the previously found circuits as base cases. Then look at obvious ineÿciencies 
(unused gates, two distinct gates computing the same function, etc.). Finally, 
select the smallest circuit and continue. Table 4 shows the obtained circuit sizes 
along with their depths. Since the depths of circuits that use interpolation may 
be too large for practical applications, we also include the sizes and depths of 
circuits that do not use interpolation. All circuits for n = 2, 3, . . . , 109 and n = 
135, 136, 137, 189, 191, 233, 283 are attached in this submission. As an example, 
in Section B, we include a circuit for n = 15. Note for even this small value we 
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fnd a circuit using fve fewer gates and has a depth 3 smaller (reducing with 
1.5% and 18.75%, respectively). 
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Table 4: Circuit sizes and depths. sCH , dCH refer to the sizes and 
depths reported in [CH15]. 
Alg denotes what recurrence is used, the number of the algorith, 
following the numbers given on Table 1 and 2. 
The * for n = 11 indicates that the circuit published in [Per14] is 
used. 

all algorithms Karatsuba algorithms only 

n 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

sCH s dCH d alg. 
5 5 2 2 (0) 
13 13 3 3 (0) 
25 25 4 4 (0) 
41 41 5 5 (0) 
57 57 6 6 (1) 
81 81 7 7 (0) 

100 100 7 7 (1) 
126 126 7 7 (5) 
155 154 8 8 (7) 
186 186 7 7 * 
207 207 7 8 6 
255 255 8 9 0 
289 289 10 9 1 
317 312 16 13 7 
349 349 8 9 6 
407 406 10 9 2 
438 438 10 9 1 
498 495 11 15 2 
527 522 8 14 7 
596 573 11 14 9 
632 632 10 10 1 
676 675 10 11 2 
702 702 10 11 1 
791 784 18 14 7 
853 853 11 12 1 
912 912 11 10 5 
956 944 15 15 9 
1020 1009 19 16 2 
1053 1038 19 16 1 
1119 1113 19 15 2 
1156 1156 11 12 1 
1274 1271 13 12 2 
1335 1333 13 12 4 
1393 1392 15 11 3 
1429 1428 15 12 6 
1559 1552 14 18 2 

sCH s dCH sd alg. 
5 5 2 2 (0) 
13 13 3 3 (0) 
25 25 4 4 (0) 
41 41 5 5 (0) 
57 57 6 6 (1) 
81 81 7 7 (0) 

100 100 7 7 (1) 
126 126 7 7 (5) 
155 154 8 8 (7) 
186 186 7 7 * 
207 207 7 8 6 
255 255 8 9 0 
289 289 10 9 1 
317 312 16 13 7 
349 349 8 9 6 
407 406 10 9 2 
438 438 10 9 1 
498 495 11 15 2 
527 522 8 14 7 
596 573 11 14 9 
632 632 10 10 1 
676 675 10 11 2 
702 702 10 11 1 
791 784 18 14 7 
853 853 11 12 1 
912 912 11 10 5 
956 944 15 15 9 
1020 1009 19 16 2 
1053 1038 19 16 1 
1119 1113 19 15 2 
1156 1156 11 12 1 
1274 1271 13 12 2 
1335 1333 13 12 4 
1393 1392 15 11 3 
1429 1428 15 12 6 
1559 1552 14 18 2 
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38 1616 1604 
39 1680 1669 
40 1718 1703 
41 1858 1806 
42 1929 1862 
43 1996 1982 
44 2037 2036 
45 2116 2105 
46 2182 2179 
47 2229 2228 
48 2260 2259 
49 2451 2436 
50 2545 2523 
51 2668 2663 
52 2726 2725 
53 2858 2841 
54 2922 2878 
55 3006 2987 
56 3060 3022 
57 3191 3145 
58 3256 3212 
59 3304 3273 
60 3334 3306 
61 3500 3472 
62 3571 3553 
63 3632 3626 
64 3674 3673 
65 3927 3919 
66 4040 3998 
67 4110 4075 
68 4167 4153 
69 4296 4271 
70 4374 4332 
71 4476 4449 
72 4535 4510 
73 4701 4654 
74 4839 4813 
75 4929 4847 
76 5097 5050 
77 5205 5186 
78 5297 5255 
79 5359 5329 
80 5400 5366 
81 5630 5578 
82 5723 5655 

16 45 10 3927 3920 16 15 2 

20 48 12 4798 4781 18 24 7 
101 24 7 4892 4813 29 24 7 
101 24 7 4929 4847 29 24 7 
29 51 12 5109 5075 18 19 1 

103 51 10 5241 5198 16 19 3 
101 19 3 5297 5255 16 19 3 
16 20 3 5359 5329 29 20 3 
29 20 6 5400 5366 21 20 6 
21 56 11 5713 5593 17 20 2 

110 56 12 5854 5702 16 20 1 

13 16 
13 17 
11 17 
14 17 
13 17 
15 16 
15 13 
20 17 
15 17 
15 13 
15 14 
21 17 
21 23 
16 16 
16 15 
14 24 
14 24 
20 18 
20 18 
22 18 
22 19 
20 18 
20 19 
22 18 
22 18 
21 18 
16 15 

86 45 
88 45 
88 45 
97 47 
99 47 
99 47 
99 26 

4 1616 1604 13 16 4 
3 1680 1669 13 17 3 
1 1718 1703 11 17 1 
2 1858 1806 14 17 2 
9 1929 1862 13 17 9 
2 1996 1982 15 16 2 
6 2037 2036 15 13 6 
7 2116 2105 20 17 7 
3 2182 2179 15 17 3 
3 2229 2228 15 13 3 
6 2260 2259 15 14 6 
2 2451 2436 21 17 2 
7 2545 2523 21 23 7 
2 2668 2663 16 16 2 
6 2726 2725 16 15 6 
8 2858 2841 14 24 8 
8 2922 2878 14 24 8 
2 3006 2987 20 18 2 
9 3060 3022 20 18 9 
3 3191 3145 22 18 3 
4 3256 3212 22 19 4 
3 3304 3273 20 18 3 
6 3334 3306 20 19 6 
2 3500 3472 22 18 2 
1 3571 3553 22 18 1 
3 3632 3626 21 18 3 
6 3674 3673 16 15 6 

11 4048 4041 16 15 1 
12 4159 4152 18 14 3 
10 4228 4220 18 14 3 
11 4356 4353 18 14 2 
12 4420 4417 20 14 3 
10 4494 4478 20 26 8 
8 4535 4510 20 26 8 
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83 5818 5760 112 56 10 5983 5769 18 20 9 
84 5929 5804 112 20 9 6064 5804 18 20 9 
85 6007 5913 11 56 12 6209 6118 23 19 2 
86 6091 6015 115 56 10 6284 6224 20 20 4 
87 6204 6128 115 57 11 6369 6344 20 19 3 
88 6302 6210 116 57 12 6415 6413 20 16 1 
89 6388 6322 118 57 10 6576 6516 23 29 8 
90 6500 6443 118 58 10 6660 6550 23 29 8 
91 6572 6497 117 57 12 6794 6776 23 20 2 
92 6662 6623 120 57 10 6851 6842 20 19 3 
93 6831 6790 120 60 11 6944 6929 23 19 3 
94 6931 6883 120 60 12 7013 7010 18 16 1 
95 7073 7049 122 60 10 7076 7073 20 17 2 
96 7112 7110 120 17 1 7112 7110 20 17 1 
97 7337 7296 20 60 12 7496 7465 21 20 2 
98 7503 7481 121 60 10 7684 7636 24 25 4 
99 7636 7611 121 63 11 7859 7801 26 25 3 
100 7766 7740 124 63 10 7934 7847 21 25 7 
101 7894 7873 126 63 10 8230 8197 24 27 2 
102 7979 7977 126 63 11 8345 8318 24 27 8 
103 8097 8057 129 63 12 8466 8361 23 25 9 
104 8178 8160 129 63 10 8538 8398 21 25 9 
105 8358 8329 129 70 11 8805 8435 19 25 9 
106 8450 8406 129 70 12 8932 8861 19 27 8 
107 8603 8574 131 70 10 8998 8904 31 27 8 
108 8758 8719 131 67 10 9040 8947 31 27 8 
109 8874 8813 131 67 12 9311 9221 23 20 3 
135 12453 12273 163 81 11 13077 12988 23 47 3 
136 12422 12360 165 81 12 13148 13061 23 47 3 
137 12522 12491 163 81 10 13415 13332 21 49 3 
189 20671 20621 218 108 11 21766 21745 25 22 3 
191 21048 21014 218 108 10 21919 21910 25 19 3 
233 29156 29058 274 129 10 31381 31365 43 26 7 
283 38432 38555 414 153 12 42468 42316 45 53 6 

7 Conclusion 

In this work we proposed a new way to describe, fnd, and analyze Karatsuba-like 
recurrences, and found better recurrences than previously known for splitting 
into 4, 5, 6, and 7 blocks. Using these recurrences together with known recur-
rences we constructed circuits for binary polynomial multiplication better than 
previously known. These circuits may be used as components in software for 
cryptographic purposes, such at batch evaluations of fnite feld multiplications 
or multiparty computation. They may also be used as a basis for a hardware 
implementation of polynomial or fnite feld multiplication. To do this one would 
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take a particular circuit and do additional optimizations to accommodate prac-
tical constraints, and maybe use additional techniques to decrease size or depth. 
The circuits were verifed by computing the algebraic normal form of the outputs. 

The software used in this project is fexible in terms of evaluation criteria. 
In this work we have focused on size, but future work includes focusing on the 
number of multiplications, area or energy optimization, as well as other criteria. 
Additional future work is to apply the ideas used in this work to other operations, 
such as matrix multiplication and fnite feld multiplication. 

We point out that the circuits for our new recurrence relations (section 4.4) 
were computed without using depth as a secondary optimality criteria. This 
causes the depth of circuits reported here to be much larger than we can actually 
obtain. For example, for n = 15 Table 4 reports a depth of 13. The actual depth 
we can obtain, without increasing the size, is no bigger than 9. The fnal version 
of this paper will contain the recomputed depths and circuits. 
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A Matrices and Their Straight-Line Programs 

A.1 5-way Split 

Top matrix The following is a straight-line program computing the top matrix 
from the 5-way split in Section 4.4. 

8 gates 
5 inputs 
a0 a1 a2 a3 a4 
13 outputs 
baseA0 baseA1 baseA2 baseA3 baseA4 baseA5 baseA6 
baseA7 baseA8 baseA9 baseA10 baseA11 baseA12 
begin 
baseA0 = a0 
baseA1 = a1 
baseA3 = a2 
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baseA5 = a3 
baseA7 = a4 
X5 = a0 + a1 
baseA2 = X5 
X6 = a0 + a2 
baseA4 = X6 
X7 = a2 + a4 
baseA8 = X7 
X8 = a1 + X7 
baseA9 = X8 
X9 = a3 + a4 
baseA10 = X9 
X10 = a3 + X6 
baseA6 = X10 
X11 = X5 + X9 
baseA11 = X11 
X12 = a2 + X11 
baseA12 = X12 
end 

Main matrix The following is a straight-line program computing the main matrix 
from the 5-way split in Section 4.4. 

19 gates 
13 inputs 
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 
9 outputs 
row0 row1 row2 row3 row4 row5 row6 row7 row8 
begin 
row0 = T0 
row8 = T7 
X13 = T0 + T1 
X14 = T2 + X13 
row1 = X14 
X15 = T5 + T7 
X16 = T10 + X15 
row7 = X16 
X17 = T3 + T4 
X18 = X13 + X17 
row2 = X18 
X19 = T3 + T8 
X20 = X15 + X19 
row6 = X20 
X21 = T6 + T12 
X22 = T0 + T11 
X23 = X20 + X21 
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X24 = X22 + X23 
row3 = X24 
X25 = T9 + X14 
X26 = X16 + X21 
X27 = X25 + X26 
row4 = X27 
X28 = T7 + T9 
X29 = T11 + T12 
X30 = X18 + X28 
X31 = X29 + X30 
row5 = X31 
end 

Extended matrix The following is a straight-line program computing the ex-
tended matrix from the 5-way split in Section 4.4. 

38 gates 
26 inputs 
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 
8 outputs 
row0 row1 row2 row3 row4 row5 row6 row7 
begin 
X26 = u0 + v0 
X27 = u7 + v7 
X28 = v5 + X27 
X29 = v10 + X28 
row7 = X29 
X30 = u1 + X26 
X31 = u2 + X30 
row0 = X31 
X32 = u3 + v1 
X33 = u5 + v3 
X34 = X28 + X33 
X35 = u10 + X34 
X36 = v8 + X35 
row6 = X36 
X37 = X30 + X32 
X38 = v2 + X37 
X39 = u4 + X38 
row1 = X39 
X40 = u9 + v6 
X41 = u12 + v12 
X42 = X40 + X41 
X43 = X32 + X33 
X44 = v4 + X43 
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X45 = u8 + X44 
X46 = X39 + X42 
X47 = u11 + X29 
X48 = v9 + X46 
X49 = X47 + X48 
row4 = X49 
X50 = X36 + X42 
X51 = X31 + X50 
X52 = v11 + X51 
X53 = u6 + X52 
row3 = X53 
X54 = X27 + X45 
X55 = v12 + X54 
X56 = v0 + v9 
X57 = X55 + X56 
X58 = v11 + X57 
row5 = X58 
X59 = X26 + X55 
X60 = X41 + X59 
X61 = v7 + X60 
X62 = u6 + X61 
X63 = u11 + X62 
row2 = X63 
end 

A.2 6-way Split 

The matrices used in the 6-way split are as follows: 

  
1 0 0 0 0 0 

 0 1 0 0 0 0 
  
 1 1 0 0 0 0 
  
 0 1 1 0 0 0 
  
 1 1 1 0 0 0  
  
 0 0 1 1 0 0 
  
 0 0 0 0 1 0 
  
 0 1 0 0 1 0 
  
 T = 0 0 0 1 1 0 , 
  
 1 1 0 1 1 0 
  
 0 0 0 0 0 1 
  
 1 0 1 0 0 1 
  
 1 0 0 1 0 1  
  
 1 0 1 1 0 1 
  
 0 0 0 0 1 1 
  
 0 1 1 0 1 1  

0 0 0 1 1 1 
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and 
  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  
 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
  
 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 
  
 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 
  
 R = 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 . 
  
 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 
  
 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0  
  
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 
  
 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0  

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Top matrix The following is a straight-line program computing the top matrix 
from the 6-way split in Section 4.4. 

13 gates 
6 inputs 
a0 a1 a2 a3 a4 a5 
17 outputs 
baseA0 baseA1 baseA6 baseA10 baseA2 baseA3 baseA4 baseA7 baseA5 
baseA8 baseA14 baseA16 baseA9 baseA15 baseA13 baseA12 baseA11 
begin 
baseA0 = a0 
baseA1 = a1 
baseA6 = a4 
baseA10 = a5 
baseA2 = baseA0 + baseA1 
baseA3 = baseA1 + a2 
baseA4 = baseA0 + baseA3 
baseA7 = baseA1 + baseA6 
baseA5 = a2 + a3 
baseA8 = a3 + baseA6 
baseA14 = baseA6 + baseA10 
baseA16 = a3 + baseA14 
baseA9 = baseA2 + baseA8 
baseA15 = baseA3 + baseA14 
baseA13 = baseA9 + baseA15 
baseA12 = a2 + baseA13 
baseA11 = a3 + baseA13 
end 

Main matrix The following is a straight-line program computing the main matrix 
from the 7-way split in Section 4.4. 

30 gates 
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17 inputs 
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 
11 outputs 
row0 row10 row8 row2 row7 row3 row9 row1 row6 row4 row5 
begin 
row0 = u0 
row10 = u10 
X17 = u1 + u13 
X18 = u14 + u16 
row8 = u8 + X18 
X20 = u2 + u4 
row2 = u3 + X20 
X22 = u6 + X17 
X23 = u5 + X22 
X24 = u11 + X23 
X25 = u12 + X23 
X26 = u7 + X25 
X27 = u8 + X25 
row7 = row2 + X27 
X29 = row8 + X24 
row3 = u3 + X29 
X31 = u6 + u10 
row9 = u14 + X31 
X33 = u1 + u2 
row1 = u0 + X33 
X35 = u4 + X26 
X36 = X33 + X35 
X37 = u14 + u15 
row6 = X36 + X37 
X39 = row7 + X35 
X40 = row3 + X39 
X41 = u6 + u9 
row4 = X40 + X41 
X43 = X26 + X31 
X44 = X17 + X24 
X45 = u0 + X44 
row5 = X43 + X45 
end 

Extended matrix The following is a straight-line program computing the ex-
tended matrix from the 8-way split in Section 4.4. 

59 gates 
34 inputs 
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 
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10 outputs 
row1 row8 row9 row0 row7 row2 row4 row6 row3 row5 
begin 
TR1 = u12 + v7 
TR2 = u16 + v3 
TR3 = u7 + v11 
TR4 = u8 + v4 
X26 = v1 + v13 
X27 = u13 + u6 
X28 = u10 + v14 
X29 = u2 + v0 
X30 = u3 + v2 
X31 = u14 + v8 
X32 = v6 + X26 
X33 = v12 + X32 
X34 = u5 + X27 
X35 = u1 + u11 
X36 = TR2 + TR4 
X37 = u4 + X29 
X38 = u14 + X34 
X39 = X30 + X37 
row1 = v1 + X39 
X41 = v5 + X33 
X42 = v16 + X28 
X43 = u6 + X42 
row8 = X31 + X43 
X45 = TR1 + TR3 
X46 = X34 + X41 
X47 = v6 + X28 
row9 = v10 + X47 
X49 = u1 + X29 
row0 = u0 + X49 
X51 = u2 + X46 
X52 = X36 + X41 
X53 = X31 + X52 
row7 = v2 + X53 
X55 = X36 + X38 
X56 = X30 + X35 
row2 = X55 + X56 
X58 = X37 + X38 
X59 = X33 + X58 
X60 = X45 + X59 
X61 = v10 + X60 
X62 = X49 + X51 
X63 = row1 + X62 
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X64 = TR4 + X63 
X65 = TR1 + X64 
X66 = v14 + X65 
X67 = v13 + X60 
X68 = row8 + row2 
X69 = X67 + X68 
X70 = X66 + X69 
X71 = X49 + X70 
X72 = X47 + X71 
X73 = row7 + X69 
X74 = u13 + X73 
X75 = u0 + row1 
X76 = X74 + X75 
row4 = X76 + v9 
row6 = X66 + v15 
row3 = X72 + u9 
row5 = X61 + u15 
end 

A.3 7-way Split 

The matrices used in the 7-way split are as follows: 

T = 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
1 1 0 0 0 0 0 
0 0 1 0 0 0 0 
1 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 1 0 1 0 0 0 
0 0 0 0 1 0 0 
1 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 1 0 1 0 
0 1 1 0 1 1 0 
1 1 0 1 1 1 0 
0 0 0 0 0 0 1 
0 0 1 0 0 0 1 
0 0 0 0 1 0 1 
1 1 0 1 1 0 1 
0 0 0 0 0 1 1 
1 1 0 0 0 1 1 
1 0 1 1 0 1 1 
0 1 1 1 0 1 1 
1 1 1 1 1 1 1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 
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and 
  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  
 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  
 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 
  
 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
  
 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 
  
 R = 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 . 
  
 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 
  
 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 
  
 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 
  
 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 
  
 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Top matrix The following is a straight-line program computing the top matrix 
from the 7-way split in Section 4.4. 

16 gates 
7 inputs 
a0 a1 a2 a3 a4 a5 a6 
22 outputs 
baseA0 baseA1 baseA2 baseA3 baseA4 baseA5 baseA6 baseA7 baseA8 baseA9 
baseA10 baseA11 baseA12 baseA13 baseA14 baseA15 baseA16 baseA17 baseA18 baseA19 
baseA20 baseA21 
begin 
baseA0 = a0 
baseA1 = a1 
baseA3 = a2 
baseA5 = a3 
baseA7 = a4 
baseA9 = a5 
baseA13 = a6 
X7 = a0 + a1 
baseA2 = X7 
X8 = a0 + a2 
baseA4 = X8 
X9 = a0 + a4 
baseA8 = X9 
X10 = a1 + a3 
baseA6 = X10 
X11 = a2 + a6 
baseA14 = X11 
X12 = a3 + a5 
baseA10 = X12 
X13 = a4 + a6 
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baseA15 = X13 
X14 = a5 + a6 
baseA17 = X14 
X15 = X7 + X14 
baseA18 = X15 
X16 = a1 + X12 
X17 = X9 + X16 
baseA12 = X17 
X18 = X11 + X16 
baseA20 = X18 
X19 = X7 + X18 
baseA19 = X19 
X20 = X9 + X18 
baseA21 = X20 
X21 = X14 + X17 
baseA16 = X21 
X22 = X19 + X21 
baseA11 = X22 
end 

Main matrix The following is a straight-line program computing the main matrix 
from the 7-way split in Section 4.4. 

41 gates 
22 inputs 
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 
13 outputs 
row0 row12 row11 row1 row10 row2 row8 row4 row3 row7 row5 row9 row6 
begin 
row0 = T0 
row12 = T13 
X22 = T9 + row12 
row11 = T17 + X22 
X24 = row0 + T1 
row1 = T2 + X24 
X26 = T5 + T7 
X27 = T3 + T6 
X28 = T10 + X26 
X29 = T5 + X27 
X30 = T15 + X22 
row10 = T7 + X30 
X32 = T8 + X29 
X33 = T4 + X24 
row2 = T3 + X33 
X35 = T14 + X28 
X36 = T11 + T21 
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X37 = T16 + T17 
X38 = T2 + T19 
X39 = T4 + T20 
X40 = X29 + X39 
X41 = T15 + X28 
X42 = T12 + X41 
X43 = X22 + X35 
row8 = T3 + X43 
X45 = X24 + X32 
row4 = T7 + X45 
X47 = X38 + X40 
X48 = T18 + X47 
row3 = T17 + X48 
X50 = X36 + X38 
X51 = X30 + X50 
row7 = X32 + X51 
X53 = X36 + X37 
X54 = X33 + X53 
row5 = X35 + X54 
X56 = X37 + X42 
X57 = T2 + T18 
row9 = X56 + X57 
X59 = T21 + X40 
X60 = X42 + X59 
X61 = row0 + X60 
row6 = row12 + X61 
end 

Extended matrix The following is a straight-line program computing the ex-
tended matrix from the 7-way split in Section 4.4. 

75 gates 
44 inputs 
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 
v18 v19 v20 v21 
12 outputs 
row10 row1 row0 row3 row9 row11 row7 row6 row5 row8 row4 row2 
begin 
PA0 = u7 + v5 
PA1 = u5 + v3 
PA2 = v0 + v1 
PA3 = v6 + PA1 
PA4 = v9 + v13 
PA5 = v7 + v10 
PA6 = u13 + v15 
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10

20

30

40

50

PA7 = u15 + PA5 
PA8 = u9 + PA6 
PA9 = u6 + v4 
PA = u10 + PA0 
PA11 = u4 + PA2 
PA12 = u3 + PA9 
PA13 = u0 + u1 
PA14 = PA7 + PA8 
PA15 = PA11 + PA12 
PA16 = PA7 + PA10 
PA17 = PA11 + PA13 
PA18 = PA4 + PA8 
PA19 = PA3 + PA12 
PA = v18 + PA0 
PA21 = PA3 + PA10 
PA22 = v14 + PA16 
PA23 = v17 + PA20 
PA24 = v20 + PA19 
PA25 = v11 + v21 
PA26 = v12 + PA14 
PA27 = v2 + PA23 
PA28 = u17 + PA1 
PA29 = u20 + PA15 
PA = u17 + v7 
PA31 = v8 + PA21 
PA32 = u18 + PA28 
PA33 = u14 + PA31 
PA34 = u12 + PA22 
PA35 = u13 + v17 
PA36 = u11 + u21 
PA37 = u8 + PA24 
PA38 = u2 + PA32 
PA39 = u3 + v2 
PA = u2 + v0 
PA41 = PA37 + PA40 
PA42 = PA36 + PA41 
PA43 = PA34 + PA38 
PA44 = PA33 + PA36 
PA45 = PA33 + PA39 
PA46 = PA34 + PA35 
PA47 = PA29 + PA38 
PA48 = PA29 + PA46 
PA49 = PA25 + PA48 
PA = PA30 + PA44 
PA51 = PA27 + PA37 
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PA52 = PA25 + PA45 
PA53 = PA26 + PA42 
PA54 = PA26 + PA27 
PA55 = PA18 + PA52 
row10 = PA18 + PA30 
PA57 = PA17 + PA50 
row1 = PA17 + PA39 
PA59 = v21 + PA53 
row0 = PA13 + PA40 
PA61 = PA13 + PA51 
PA62 = PA4 + PA43 
row3 = v19 + PA61 
row9 = v16 + PA54 
row11 = PA4 + PA35 
PA66 = v16 + PA49 
row7 = v19 + PA55 
PA68 = v13 + PA59 
row6 = u19 + PA68 
PA70 = u21 + PA66 
row5 = u0 + PA70 
row8 = u16 + PA62 
row4 = u16 + PA57 
row2 = u19 + PA47 
end 

B Sample Circuits for 10 and 15 

B.1 n = 10 

B.2 n = 15 

312 g a t e s 
30 i nputs 
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 
29 outputs 
C0 C1 C2 C27 C28 C26 C5 C23 C8 C20 C11 C14 C17 C24 
C25 C3 C4 C21 C22 C6 C7 C15 C16 C12 C13 C18 C19 C9 C10 
beg in 
T1 = A0 + A3 
T2 = A1 + A4 
T3 = A2 + A5 
T4 = A0 + A6 
T5 = A1 + A7 
T6 = A2 + A8 
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20

30

40

50

T7 = A6 + A12 
T8 = A7 + A13 
T9 = A8 + A14 
T = A3 + T7 
T11 = A4 + T8 
T12 = A5 + T9 
T13 = A9 + A12 
T14 = A10 + A13 
T15 = A11 + A14 
T16 = A9 + T4 
T17 = A10 + T5 
T18 = A11 + T6 
T19 = T1 + T13 
T = T2 + T14 
T21 = T3 + T15 
T22 = A6 + T19 
T23 = A7 + T20 
T24 = A8 + T21 
T25 = B0 + B3 
T26 = B1 + B4 
T27 = B2 + B5 
T28 = B0 + B6 
T29 = B1 + B7 
T = B2 + B8 
T31 = B6 + B12 
T32 = B7 + B13 
T33 = B8 + B14 
T34 = B3 + T31 
T35 = B4 + T32 
T36 = B5 + T33 
T37 = B9 + B12 
T38 = B10 + B13 
T39 = B11 + B14 
T = B9 + T28 
T41 = B10 + T29 
T42 = B11 + T30 
T43 = T25 + T37 
T44 = T26 + T38 
T45 = T27 + T39 
T46 = B6 + T43 
T47 = B7 + T44 
T48 = B8 + T45 
T49 = A0 x B0 
T = A0 x B1 
T51 = A0 x B2 
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T52 = B0 x A1 
T53 = B0 x A2 
T54 = T50 + T52 
T55 = T51 + T53 
T56 = A1 x B1 
T57 = A1 x B2 
T58 = B1 x A2 
T59 = T57 + T58 
T60 = A2 x B2 
T61 = T55 + T56 
T62 = A3 x B3 
T63 = A3 x B4 
T64 = A3 x B5 
T65 = B3 x A4 
T66 = B3 x A5 
T67 = T63 + T65 
T68 = T64 + T66 
T69 = A4 x B4 
T70 = A4 x B5 
T71 = B4 x A5 
T72 = T70 + T71 
T73 = A5 x B5 
T74 = T68 + T69 
T75 = T1 x T25 
T76 = T1 x T26 
T77 = T1 x T27 
T78 = T25 x T2 
T79 = T25 x T3 
T80 = T76 + T78 
T81 = T77 + T79 
T82 = T2 x T26 
T83 = T2 x T27 
T84 = T26 x T3 
T85 = T83 + T84 
T86 = T3 x T27 
T87 = T81 + T82 
T88 = A6 x B6 
T89 = A6 x B7 
T90 = A6 x B8 
T91 = B6 x A7 
T92 = B6 x A8 
T93 = T89 + T91 
T94 = T90 + T92 
T95 = A7 x B7 
T96 = A7 x B8 
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T97 = B7 x A8 
T98 = T96 + T97 
T99 = A8 x B8 
T100 = T94 + T95 
T101 = T4 x T28 
T102 = T4 x T29 
T103 = T4 x T30 
T104 = T28 x T5 
T105 = T28 x T6 
T106 = T102 + T104 
T107 = T103 + T105 
T108 = T5 x T29 
T109 = T5 x T30 
T110 = T29 x T6 
T111 = T109 + T110 
T112 = T6 x T30 
T113 = T107 + T108 
T114 = A9 x B9 
T115 = A9 x B10 
T116 = A9 x B11 
T117 = B9 x A10 
T118 = B9 x A11 
T119 = T115 + T117 
T120 = T116 + T118 
T121 = A10 x B10 
T122 = A10 x B11 
T123 = B10 x A11 
T124 = T122 + T123 
T125 = A11 x B11 
T126 = T120 + T121 
T127 = T16 x T40 
T128 = T16 x T41 
T129 = T16 x T42 
T130 = T40 x T17 
T131 = T40 x T18 
T132 = T128 + T130 
T133 = T129 + T131 
T134 = T17 x T41 
T135 = T17 x T42 
T136 = T41 x T18 
T137 = T135 + T136 
T138 = T18 x T42 
T139 = T133 + T134 
T140 = A12 x B12 
T141 = A12 x B13 
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T142 = A12 x B14 
T143 = B12 x A13 
T144 = B12 x A14 
T145 = T141 + T143 
T146 = T142 + T144 
T147 = A13 x B13 
T148 = A13 x B14 
T149 = B13 x A14 
T150 = T148 + T149 
T151 = A14 x B14 
T152 = T146 + T147 
T153 = T7 x T31 
T154 = T7 x T32 
T155 = T7 x T33 
T156 = T31 x T8 
T157 = T31 x T9 
T158 = T154 + T156 
T159 = T155 + T157 
T160 = T8 x T32 
T161 = T8 x T33 
T162 = T32 x T9 
T163 = T161 + T162 
T164 = T9 x T33 
T165 = T159 + T160 
T166 = T10 x T34 
T167 = T10 x T35 
T168 = T10 x T36 
T169 = T34 x T11 
T170 = T34 x T12 
T171 = T167 + T169 
T172 = T168 + T170 
T173 = T11 x T35 
T174 = T11 x T36 
T175 = T35 x T12 
T176 = T174 + T175 
T177 = T12 x T36 
T178 = T172 + T173 
T179 = T13 x T37 
T180 = T13 x T38 
T181 = T13 x T39 
T182 = T37 x T14 
T183 = T37 x T15 
T184 = T180 + T182 
T185 = T181 + T183 
T186 = T14 x T38 
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T187 = T14 x T39 
T188 = T38 x T15 
T189 = T187 + T188 
T190 = T15 x T39 
T191 = T185 + T186 
T192 = T19 x T43 
T193 = T19 x T44 
T194 = T19 x T45 
T195 = T43 x T20 
T196 = T43 x T21 
T197 = T193 + T195 
T198 = T194 + T196 
T199 = T20 x T44 
T200 = T20 x T45 
T201 = T44 x T21 
T202 = T200 + T201 
T203 = T21 x T45 
T204 = T198 + T199 
T205 = T22 x T46 
T206 = T22 x T47 
T207 = T22 x T48 
T208 = T46 x T23 
T209 = T46 x T24 
T210 = T206 + T208 
T211 = T207 + T209 
T212 = T23 x T47 
T213 = T23 x T48 
T214 = T47 x T24 
T215 = T213 + T214 
T216 = T24 x T48 
T217 = T211 + T212 
T218 = T61 + T74 
T219 = T87 + T218 
T220 = T126 + T152 
T221 = T191 + T220 
T222 = T100 + T113 
T223 = T218 + T222 
T224 = T100 + T165 
T225 = T220 + T224 
T226 = T139 + T217 
T227 = T61 + T204 
T228 = T225 + T226 
T229 = T227 + T228 
T230 = T178 + T219 
T231 = T221 + T226 
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T232 = T230 + T231 
T233 = T152 + T178 
T234 = T204 + T217 
T235 = T223 + T233 
T236 = T234 + T235 
T237 = T49 + T59 
T238 = T54 + T60 
T239 = T140 + T150 
T240 = T145 + T151 
T241 = T124 + T239 
T242 = T125 + T240 
T243 = T189 + T241 
T244 = T190 + T242 
T245 = T62 + T237 
T246 = T67 + T238 
T247 = T75 + T245 
T248 = T80 + T246 
T249 = T88 + T72 
T250 = T93 + T73 
T251 = T114 + T98 
T252 = T119 + T99 
T253 = T241 + T251 
T254 = T242 + T252 
T255 = T179 + T253 
T256 = T184 + T254 
T257 = T163 + T255 
T258 = T164 + T256 
T259 = T245 + T249 
T260 = T246 + T250 
T261 = T85 + T259 
T262 = T86 + T260 
T263 = T101 + T261 
T264 = T106 + T262 
T265 = T166 + T137 
T266 = T171 + T138 
T267 = T205 + T215 
T268 = T210 + T216 
T269 = T265 + T267 
T270 = T266 + T268 
T271 = T249 + T251 
T272 = T250 + T252 
T273 = T111 + T271 
T274 = T112 + T272 
T275 = T153 + T273 
T276 = T158 + T274 
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T277 = T263 + T269 
T278 = T264 + T270 
T279 = T192 + T243 
T280 = T197 + T244 
T281 = T176 + T277 
T282 = T177 + T278 
T283 = T279 + T281 
T284 = T280 + T282 
T285 = T257 + T269 
T286 = T258 + T270 
T287 = T247 + T285 
T288 = T248 + T286 
T289 = T202 + T287 
T290 = T203 + T288 
T291 = T127 + T289 
T292 = T132 + T290 
T293 = T239 + T275 
T294 = T240 + T276 
T295 = T215 + T293 
T296 = T216 + T294 
T297 = T59 + T176 
T298 = T60 + T177 
T299 = T295 + T297 
T300 = T296 + T298 
T301 = T202 + T299 
T302 = T203 + T300 
T303 = T237 + T295 
T304 = T238 + T296 
T305 = T267 + T303 
T306 = T268 + T304 
T307 = T150 + T305 
T308 = T151 + T306 
T309 = T127 + T307 
T310 = T132 + T308 
T311 = T192 + T309 
T312 = T197 + T310 
C0 = T49 
C1 = T54 
C2 = T61 
C27 = T150 
C28 = T151 
C26 = T152 
C5 = T219 
C23 = T221 
C8 = T223 
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C20 = T225 
C11 = T229 
C14 = T232 
C17 = T236 
C24 = T243 
C25 = T244 
C3 = T247 
C4 = T248 
C21 = T257 
C22 = T258 
C6 = T263 
C7 = T264 
C15 = T283 
C16 = T284 
C12 = T291 
C13 = T292 
C18 = T301 
C19 = T302 
C9 = T311 
C10 = T312 
end 
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