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Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, 

and changes in index of refraction at an interface.  Optical parameter analysis is achieved by application of 

the Fresnel model to SPR data typically taken by an instrument in a prism based configuration.  We carry 

out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a 

high numerical aperture microscope objective.  The SPR microscope enables spatial resolution that 

approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to 

submicrometer changes in thickness of biological material at a surface.  However, unambiguous 

quantitative interpretation of SPR changes using the microscope system could not be achieved using the 

Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high 

numerical aperture objective.  To overcome this problem, we demonstrate a model to correct for 

polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate 

reflectivity to index of refraction values.  The calibration and correction strategy for quantitative analysis 

was validated by comparing the known indices of refraction of bulk materials with corrected SPR data 

interpreted with the Fresnel model.  Subsequently, we applied our SPR microscopy method to evaluate the 

index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the 

measurement with quantitative phase microscopy.  

 

I. INTRODUCTION 

Surface plasmon resonance (SPR) is a label-free surface sensitive technique that can be used to 

determine the refractive index of a material at a thin metal surface.1  Typically, the technique is used to 

perform kinetic analysis of binding interactions for DNA olgionucleiotides 2 or proteins 3 by tracking the 

change in the angle of minimum reflectance over time as more material binds or dissociates from the 
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surface.   It has been shown that the SPR reflectivity profile, i.e., the angle-dependent change in reflectivity, 

can be modeled and fit by the Fresnel equations, which allows determination of thickness, mass, and/or 

index of refraction of the surface bound material.4  Unlike critical angle refractometer measurements which 

are sensitive only to the bulk media, an SPR measured index of refraction is inherently sensitive to material 

within the evanescent field generated at the surface. 

SPR imaging (SPRI) is an application of SPR that provides the ability to monitor spatial changes 

in reflectivity at an angle that is close to the resonance minimum.5-9  Using a prism to disperse and couple 

the incident light into a surface at a fixed angle, the technique has been used to monitor the kinetics of 

protein or oligonucleotide binding in a 2-dimensional array format over areas of several square 

millimeters.10, 11  SPRI has also been applied to studies in cell biology, where it can be used to provide 

spatial measurement of cell-secreted proteins over time,12 and visualization of cellular adhesion and 

migration events that are not easily observed with transmission microscopy techniques.13  At a fixed angle 

of incident light, such as that achieved with a prism, the reflectivity values of the SPR image can be 

converted into mass or index of refraction values.  However, more accurate measurements of the index of 

refraction could be achieved if Fresnel modeling of the reflectivity measurements over a range of incident 

angles could be performed on the image data.   

SPR microscopy using a high numerical aperture (NA) objective has been demonstrated.14, 15  The 

approach has the potential advantage that the surface sensitive SPR measurements can be easily combined 

with other microscopic imaging modes such as bright field and fluorescence microscopy.  Although these 

previous studies have demonstrated imaging of reflectivity changes at a surface, quantitative interpretation 

of the index of refraction of imaged features using Fresnel equations has not been achieved.  Achieving 

accurate measures of index of refraction with SPR microscopy requires rectifying the Fresnel model to 

compensate for the optical aberrations in the objective lens, and applying the corrections required to 

compensate for the polarization apodization in a high NA objective, which creates a nonlinear, angle-

dependent decay in light intensity.      
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Here, we describe SPR microscopy (also referred to as SPRI) using a high NA objective and  a 

digital light projector (DLP) as the excitation light source.16  The DLP allows specific selection of the angle, 

or a range of angles, of the linearly polarized incident light that is provided through the high NA objective.    

Using a modified microscope platform, we can image both the back focal plane (BFP) and the image plane.  

The BFP can be imaged to provide the SPR angular response from a sample that is illuminated with light 

at a range of incident angles; the SPR reflectivity image can be collected from the image plane using light 

at a single angle of incidence.   

The SPR angular response in the BFP indicates an angle dependent polarization apodization which 

complicates direct fitting of the angle-dependent SPR signal with Fresnel equations.  Using these empirical 

data, we apply a correction to the SPR data, and fit the data with the Fresnel model to achieve an accurate 

interpretation of index of refraction.  We use this method to evaluate bulk materials and compare our 

measurements with known index values. Using both the angle-dependent SPR response from the BFP and 

the SPRI reflectivity data from the image plane, we demonstrate how to characterize the linear response 

range for the SPRI system, and provide a conversion of reflectivity to index of refraction values for each 

pixel in the image.  Subsequently, we use this system calibration to measure the index of refraction of 

porous polymer microspheres, and compare these values with an independent measurement by quantitative 

phase microscopy.  As a result of this effort, we identified a microsphere with an index of refraction near 

that of hydrated proteins that can serve as both a spatial and intensity calibrant for SPRI of biological 

samples. 

 

II. MATERIALS AND METHODS 
 

A. SPR microscopy 

For SPR microscopy, we performed SPR on an inverted microscope (Olympus IX-70, Center Valley, PA)17 

with a high numerical aperture objective lens (100x, 1.65 NA, Olympus) by launching incident light into the lens and 

collecting reflected light from the sample on the microscope stage. The illumination source is a digital light projector 
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(DLP; Dell 3300MP; Dell, Round Rock, TX) that is controlled with a laptop computer using Power Point (Microsoft, 

Redmond, WA) to fully illuminate the back focal plane (BFP) with white light, or to transmit only some of the light 

in the form of specific crescent shapes.  The white light is transmitted through a transparent window on the internal 

DLP filter wheel, which allows subsequent selection of wavelength of incident light with an external filter.  The 

projector lens was removed and replaced with a 4X objective (Edmund Optics, Barrington, NJ).  The focused light 

was collimated with an achromatic lens (f=60 mm) and directed through a bandpass filter (centered at 590 nm; full-

width-half-maximum (FWHM) = 10 nm; Thorlabs, Newton, NJ), and a rotatable linear polarizer (Thorlabs).  This 

polarized monochromatic light is directed into a customized tube lens (f=100 mm), through a filter cube mounted with 

a pellicle beam splitter (Thorlabs), and onto the BFP of the high numerical aperture objective lens.  The incident light 

was projected onto the BFP by reducing the spot size to 1/3 through the choice of a collimating lens and a tube lens 

with appropriate focal lengths and distance between them according to the thin lens formula.18  Samples were prepared 

on coverslips (No. 0, Olympus), which were coated with a thin film of gold (described in Section II B), and which 

were coupled to the objective with refractive index (n) matching fluid, n = 1.78 (Cargille Laboratories, Cedar Grove, 

NJ).  Incident light couples to the plasmons in the gold film with a fraction of the p-polarized light being reflected or 

absorbed depending on the angle of incidence and the material at the surface.  The reflected SPR image is directed out 

the microscope body, through a series of lenses (effectively a Bertrand lens) that can be inserted or removed from the 

beam path so as to select for either the image plane or back focal plane, and onto a 12-bit Coolsnap FX charged-

coupled device (CCD) camera (Roper Scientific, Tucson, AZ).  Images were collected using Micro-Manager 

(www.micro-manager.org) open source microscopy software. 

B. Substrate Preparation 

Specialized coverslips (18 mm diameter, n = 1.78, Olympus) were acid washed with 7:3 volume ratio 

H2SO4:H2O2, rinsed with 18 MΩ distilled water, rinsed with ethanol, dried, and then coated with ≈1 nm chromium 

and ≈45 nm gold (99.99% purity by mass) by magnetron sputtering using an Edwards Auto 306 vacuum system 

(Edwards, Wilmington, MA) at 1x10-7 mbar.  For microsphere based experiments, a static fluidic chamber made out 

of polydimethylsiloxane (PDMS) was assembled on top of the coverslip and the bare gold surface under distilled water 

was used as the substrate and media.      

C. SPR BFP Collection and Correction 

http://www.micro-manager.org/
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To image the SPR signal on the BFP, the DLP is set to project non-patterned white light to fully illuminate 

the BFP field.  The excitation wavelength is selected by the 590 nm bandpass filter.  The lens assembly before the 

camera is set to project the BFP onto the camera CCD.  A homogeneous sample, for example, a gold coated coverslip 

in a water-filled chamber, is mounted via coupling fluid on the objective.  One image is taken with the linear polarizer 

oriented in the direction of the x-axis of the image.  This is labeled the p-polarized light image, and the minimum SPR 

reflectivity is visible at the periphery of the BFP in the x-axis but not in the y-axis.  A second s-polarized light image 

is taken by rotating the linear polarizer 90°, whereupon the SPR minimum is observed along the y-axis and not the x-

axis.   

An image of the BFP is obtained when the sample on the microscope stage is fully illuminated with projected 

light that is p-polarized.  The intensity of reflected light as a function of distance from the center of the image to the 

periphery is selected using a line scan in image analysis software.  The distance in pixels is converted to angles at 

which incidence light impinges on the sample according to the Abbe sine condition,19 d = A sin θ, where d is the 

distance from center to periphery of the BFP in pixels, A is a constant, and θ is the angle of incidence in degrees 

(Supplementary Material, Fig. S1).  The value of A is determined by measuring a known angle of incidence.  Here, it 

can be seen that for water (n = 1.33) on a coverslip (n = 1.78), the critical angle, i.e., the angle at which total internal 

reflection occurs, can be determined from the inflection point of the SPR reflectivity profile to be 48.49 degrees.  The 

same angle conversion is performed for an s-polarized line scan taken of the same length. 

The angle-dependent intensities of p-polarized light are then divided by the corresponding s-polarized light 

intensities.  Dividing the p- polarized by the s- polarized light provides a normalized value for reflectivity, and also 

normalizes reflectivity for spatial inhomogeneity in the incident light, as only p-polarized light interacts with the 

surface plasmons while the s-polarized light remains proportional to the incident light.  However, due to aberrations 

caused by the high NA objective, the s-polarized light no longer remains directly proportional to the incident light at 

high incident angles.20  To correct for this apodization, the p/s intensity profile is measured with an x-axis line scan 

and a y-axis line scan as described above using an optically thick gold coated glass, so as not to generate a surface 

plasmon, and this p/s intensity profile provides an apodization function. Dividing the original SPR p/s line scan by 

this apodization function yields the corrected SPR angle scan with appropriately normalized reflectivity units, which 

can be subsequently fit by the Fresnel model using literature values for the optical constants of the layers involved 
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(glass/gold/media).21-23  To apply the correction as a mathematical equation, this apodization profile can be expressed 

an exponential function of the form Ae(x/c) +y1, where x is the incident angle in degrees and the other values are fitted 

constants (A, c, and y1). 

D. Shaping the Projected Incident Light 

Prior to imaging the sample on the microscope stage, the angle and shape of the incident light are optimized 

by imaging the BFP.  A sample is mounted on the stage and coupled to the objective lens with index matching fluid, 

and the DLP is used to fully illuminate the BFP with p-polarized light.  The SPR minimum near the periphery of the 

image of the BFP can be viewed in the ocular objective or the CCD camera.  A software generated image projected 

from the DLP is then used to illuminate only a thin crescent-shaped beam of light of ≈40 arc degrees to impinge on 

the sample, and the resulting reflected light is viewed at the BFP.  The crescent-shape light is initially placed near 

where the SPR minimum was visualized when the BFP was fully illuminated.  Switching the optics from viewing the 

BFP to allow viewing of the image plane in the microscope ocular or the CCD camera, the position of the crescent-

shaped light is then finely tuned by using the software to translate the crescent-shaped image in the x-direction until 

the SPR intensity value in the image plane is minimized.  The corrected minimum reflectivity observed for the 

wavelength and gold thickness used in this imaging system is ≈0.05.  The position of the crescent shape is then adjusted 

to be slightly left of the SPR minimum (i.e. closer to the center of the objective), to achieve a reflectivity of ≈0.1, 

which ensures that the subsequent SPR imaging response will be in the linear response range.24  Therefore, the use of 

the BFP image allows one to obtain the average SPR-dependent reflectivity of the sample as a function of incident 

angle of light.  By employing this routine on a bulk sample of homogeneous refractive index, one can use the average 

reflectivity value from the image plane to accurately determine the incident angle of the illuminating light for the 

microscope system. For measurements of distilled water on bare gold, we determined that for this imaging system, 

the incident angle is calculated to be ≈56.5°. 

E. SPR Image Collection and Correction 

For each SPR image collected from the image plane, both a p- and s-polarized image are taken by rotating 

the linear polarizer 90° while using the crescent-shaped illumination.  The p-polarized image is divided by the s-

polarized image to reduce the spatial artifacts in the SPR image due to spatial inhomogeneity in the incident light.16  

The p/s intensities for each pixel are then divided by the apodization correction factor, which is a function of the 



7 
 

calculated incident angle.  The result is an image with normalized and corrected reflectivity units.  For incident light 

of 590 nm launched into the sample at a 56.5° incident angle, the apodization correction factor for this imaging system 

is 2.4.  For subsequent analysis and comparison, the images are further modified to convert the reflectivity units into 

Δ-reflectivity (ΔR) by using ΔR = R1 – R0 where R1 is the normalized reflectivity unit of the sample and R0 is the 

average reflectivity of the SPR image of water, which we use as a calibration material.  In the case of the polymer 

microsphere images, a background region of interest is used to calculate R0.  All image analysis was performed using 

ImageJ software with additional custom script programming.  Angle-dependent SPR data were analyzed using stock 

and custom code written in MATLAB (Mathworks, Natick, MA).          

F. Index of Refraction Measurement of Bulk Materials by Critical Angle Refractometry 

Critical angle reflectance measurements were made to provide independent refractive index measurements 

to compare and validate SPR measurements. The critical angle reflectance data were collected on a custom-built 

variable-angle instrument designed for SPR measurements and described previously.25  The critical angle reflectivity 

curves were performed at 590 nm for 18 MΩ distilled water, phosphate-buffered saline (PBS) pH 7.2 solution (Life 

Technologies, Grand Island, NY), ethanol (100 %, The Warner-Graham Company, Cockeysville, MD), and a 

polymerized piece of polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, Midland, MI).  The initial calibration 

for the angle of incidence was performed by using the published values for the refractive index of water, n = 1.333.22  

Each critical angle reflectance data set was fit to a two-layer Fresnel model,26 using literature values for the optical 

constants of the prism,21 to calculate the refractive index of the bulk material (Supplementary Material, Fig. S2).  The 

error (standard deviation) in fitting the individual critical angle scan was 1x10-6 refractive index units.  The error 

between replicates was 1x10-4 refractive index units. 

G. Index of Refraction Measurement of Bulk Materials by SPRI 

 The materials described above for use as reference and test materials, water, PBS buffer, ethanol and PDMS, 

were each placed in a static fluid chamber on top of a gold coated coverslip.  SPR reflectivity as a function of incident 

angle was measured by imaging the fully illuminated BFP as described above.  Water was used as the reference 

material for determining the angle of incidence in the imaging system since the refractive index of water, n=1.333, is 

a highly reliable value. The angle of incidence was fine-tuned by fitting the Fresnel model to the angle dependent SPR 

reflectivity of water using literature values for the optical constants of the other optical layers (glass/gold).21-23  The 
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indices of refraction for the remaining materials were determined by fitting the Fresnel model to the angle-dependent 

SPR intensities using the same optical constants and the angles of incidence determined from the SPR reflectivity of 

the water reference.    

To assure accuracy of the refractive index determined from Fresnel modeling of the SPR intensities, the angle 

at which reflectivity is a minimum was determined by fitting a parabola to the angle-dependent resonance profile for 

each material.  Using water as a reference, the absolute angle of minimum reflectivity was converted to a relative 

angle (Δθmin) by subtracting the angle of minimum reflectivity for the substance from the value for water.  The Fresnel 

model, using the optical parameters fit to water as described above, was used to simulate a SPR refractive index 

response from n = 1.333 to 1.430.  The angle minimum (θmin) was extracted from each SPR angle simulation and 

converted to relative angle (Δθmin) to water.  The response of relative angle minimum (Δθmin) versus refractive index 

(n) serves as the comparison between the SPR measured materials and the Fresnel model simulation.   

For comparison of refractive index with the ∆-reflectivity values measured from the SPR reflectivity images, 

a simulation is performed with the Fresnel model originally fit to the water sample.  Keeping all other parameters 

fixed, the refractive index of the media is incremented from n = 1.333 to n = 1.430 and at each increment the reflectivity 

value of the model SPR curve from a 56.5 degree incident angle is plotted as a function of the refractive index.  The 

resulting plot is ∆R as a function of refractive index, and serves as comparison of the SPRI measured materials and 

Fresnel model simulation.  

H. Index of Refraction Measurement of Polymer Microspheres by SPRI 

Polymer microspheres of various materials and sizes were obtained as listed here: silica microspheres (n = 

1.42, diameter 6.1 µm; Bangs Laboratories, Inc., Fishers, IN), poly(methyl methacrylate) (PMMA) microspheres (n = 

1.48, diameter 63 µm to 75 µm; Cospheric, Santa Barbara, CA), gelatin-agarose microspheres (diameter 45 µm to 165 

µm; Sigma-Aldrich, St. Louis, MO), and Sephacryl S-300 microspheres (diameter 25 µm to 75 µm;  GE Healthcare 

Biosciences, Pittsburgh, PA).  In most cases, ≈100 µL of stock bead suspension was diluted 1/10 in distilled water.  

This dilution was centrifuged and then resuspended with 1 mL nanopure distilled water, repeated twice.  An aliquot 

of the distilled water-bead suspension was then added to a fluid chamber mounted on a gold coated substrate at room 

temperature.  If the microspheres were shipped dry, the first step was to add an aliquot of beads to a microfuge tube 

and resuspend in 1 mL distilled water.   
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SPR images of the beads were collected at an angle of incident light of 56.5° and at a wavelength of 590 nm, 

and image processing was performed as described above.  The reflectivity values in the images were then converted 

to ∆R units normalized to water.  All microspheres are in water media and therefore the relative intensities, ∆R, of the 

background region of the SPR images is considered to be ≈ 0.00.  Reflectivity was measured over the width of the 

microspheres and pixels with the largest reflectivity values were reported as ∆Rmax.  The reported standard deviation 

is from 6-10 measurements of each polymer material.  As described in Section II G to show the relationship between 

∆-reflectivity and refractive index, the ∆Rmax values for each microsphere are converted into refractive index values 

with associated standard deviation values.      

I. Quantitative Phase Imaging  

Quantitative phase imaging (QPI) was performed according to the transport of intensity equation (TIE) 

approach, where the phase intensity distribution is mathematically retrieved from multiple bright-field images with 

different focal planes.27  QPI was performed on an Olympus IX-70 microscope using Kohler illumination filtered at 

590 nm (FWHM = 10 nm; Thorlabs), and bright-field images were collected using a 40X 0.75 NA air objective 

(Olympus).    Images were acquired using a 12-bit, 2048 pixel x 2048 pixel, Retiga 4000 CCD camera (Qimaging, 

Surrey, Canada) and collected with Micro-Manager (www.micro-manger.org) open source microscopy software.  

Multiple bright-field images at differing focal planes were obtained by manual turning the z-direction optical focus (1 

µm gradations) in 5 µm increments.  The phase image was extracted and the index of refraction of the material was 

determined from the bright-field images using the TIE method described elsewhere27, 28 and implemented from custom 

software.29 

 

III. RESULTS 
 

A. Evaluation of the SPR angle scans in the BFP imaging plane 

The SPRI microscope system has been described previously16 and is shown here schematically 

(Fig. 1a).  Briefly, a high numerical aperture (NA) objective lens is used to direct and collect the incident 

and reflected light similar to the way an SPR coupling prism is used,30 except that a range of incident angles 

are provided simultaneously through the objective lens.  The excitation source is a digital light projector 

http://www.micro-manger.org/
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(DLP) that provides a broad spectrum of incident light that can be selectively patterned to illuminate only 

a specified range of incident angles.  A collection lens is used to direct the image of either the sample plane 

or back focal plane (BFP) onto the charged-coupled device (CCD) camera.   

The light reflected from the sample that is imaged onto the BFP of the objective lens allows for 

construction of the angle-dependent SPR reflectivity profile of the sample.  As shown in Figure 1b, the 

radial distance, d, of light from the center of the BFP image corresponds to the angle, θ, with which incident 

light impinges on the sample on the microscope stage; this is calculated according to the Abbe sine 

condition for a thick lens, where d = A sin (θ) (Supplementary Material, Fig. S1).19  While the use of an 

objective lens provides the great advantage of allowing analysis of reflectivity from sample at a range of 

incident angles, aberrations in the objective lens require compensation before the Fresnel optical model can 

be used accurately to fit the reflectivity/angle relationship.  This is because of the attenuation of the light 

near the periphery of the high NA objective, which results in the uneven attenuation in the intensity of the 

p- and s-polarized light.  Shown in Figure 1c is the SPR reflectivity profile presented as p-polarized divided 

by s-polarized (p/s) intensities as a function of incident angle (black line).  Performing a ratio of p and s 

intensities has been previously shown to provide a normalized reflectivity response,12 but in this case the 

reflectivity response shows an angle dependent aberration due to diattenuation20 of the p- and s-polarized 

light, which requires further consideration.  This polarization apodization function of the objective was 

measured using the reflectivity profile of a thick gold sample (no SPR response) and presented as a p/s ratio 

depicting the angle dependent change in intensity between p- and s-polarized light (Fig. 1c, blue line).  

Dividing the SPR reflectivity profile by the objective apodization function results in a normalized SPR 

reflectivity profile (green line) that can now be fit with a Fresnel model (magenta line) using published 

values for the prism/gold/water interface.21-23  The index of refraction for water (n = 1.333 at 590 nm) is 

used to calibrate the distance-angle relationship for this microscope system.  A step-by step description of 

the normalization of the SPR angle analysis through a high numerical aperture microscope objective is 

shown in Supplementary Material Figure S2, and described in Materials and Methods. 
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B. Validation of the index of refraction values generated by SPR angle scans and 
imaging 

To demonstrate that the apodization correction makes it possible to accurately measure index of 

refraction using SPR and a high NA objective, we validated the system calibration with bulk materials of 

known or independently measured index of refraction values.  Images of the BFP for water, PBS buffer, 

ethanol and polymerized PDMS samples are shown in Figure 2a showing that the angles of minimum 

reflectance vary.  The image data are plotted as corrected angle-dependent SPR intensity curves (Fig. 2b), 

and the Fresnel model results for the index of refraction values (Table I), are in agreement with index of 

refraction values observed by critical angle measurements (Supplementary Material, Fig. S3).  This 

indicates that the apodization correction allows reflectivity data obtained from the BFP to be fit by the 

Fresnel equations to generate accurate index of refraction values.  Also, the shift in SPR angle minimum, 

Δθmin, for each material is plotted versus its index of refraction as measured by critical angle, or as reported 

in the literature, and overlaid with a Fresnel model simulation (Fig. 2c) to show the linear relationship 

between Δθmin and index of refraction in agreement with theory.30 

For achieving an SPR image of a sample, incident light at a single angle is projected on the BFP 

and the image plane is visualized.  This is achieved by generating a crescent shaped illumination band using 

the DLP and spatially positioning it on the BFP to correspond to a single angle of incidence (Fig. 2d).  We 

chose 56.5° as depicted by the green line in Figure 2b, because this incident angle is lower than the 

resonance minimum and that the reflectivity intensity will increase as index of refraction values increase.  

The resulting SPR images are shown in Figure 2e for each bulk material, reported as ΔR reflectivity, in 

which the reflectivity values are normalized to the water sample. Since these are homogeneous bulk 

samples, there are no image features to be observed; however, we show these images to indicate the 

homogeneity of the samples and the differences in their reflectivity values.  These ΔR values are plotted as 

a function of the index of refraction for each material and this plot is overlaid with a Fresnel model 

simulation of ΔR values versus index of refraction extracted from SPR reflectivity calculations for an 

incident angle of 56.5° (Fig. 2f). This shows that the relationship between SPRI reflectivity and index of 
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refraction may be non-linear depending on the magnitude of the differences and the angle of reflectance 

that is used for normalization.  Thus, this method is important for determining the dynamic ranges of an 

imaging system.   Additionally, the measurement error in index of refraction for the materials in both Figure 

2c and 2f (x-axis error, σ ≈ 0.001) are similar and small except for that derived from the reflectivity 

measurement of PDMS in Figure 2f (x-axis error, σ = 0.010).  This indicates that at large change in 

reflectivity (e.g. ΔR = 0.59) and a small amount of measurement error in reflectivity translates into about 

10x the error in determining the index of refraction than if the same magnitude of error occurred at a lower 

reflectivity value (e.g. ΔR = 0.40).   

C. SPRI measured index of refraction for polymer microspheres 

We investigated the ability to measure the SPRI reflectivity for several polymer microspheres in 

water to determine index of refraction values based upon the system calibration used to convert reflectivity 

values into index of refraction values.   Figure 3a shows bright field and SPR images of several 

microspheres of different sizes and composition, namely gelatin impregnated in 4% agarose, Sephacryl, 

and silica.  Sephacryl is the trade-name for a covalently cross-linked allyl dextrose gel formed into beads.  

While the transmission-mode bright field images depict each microspheres’ entire diameter, the SPR 

images show only the portion of the bead that is within the detectable limit of the evanescent wave 

penetration depth, as described previously.16  We are interested in measuring the maximum reflectivity for 

each of the microsphere materials relative to water (ΔR); we do this by determining reflectivity across the 

center of the bead (Fig. 3b) where the mass of material, and therefore the reflectivity, is greatest and where 

there is minimal contribution from surrounding media.  The average ΔRmax values are reported (Fig. 3c) for 

a selection of polymer microsphere materials, each of which have distinct ΔRmax values but similar standard 

deviations in measurement error.  By plotting the ΔRmax values of the microspheres overlaid on the previous 

plot transforming ΔR values into index of refraction (Fig. 3d), we can determine the index of refraction for 

the hydrated gelatin, Sephacryl, and silica, microspheres.  As shown for the PDMS material (Figure 2e), 

the silica microsphere has a large ΔRmax value which propagates the small measurement error into a much 
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larger uncertainty error in the index of refraction value when compared to that calculated for the gelatin or 

Sephacryl microspheres. The PMMA material showed the largest ΔRmax value (displayed only in Figure 

3c), however, the magnitude was large enough to be effectively off-scale and cannot be accurately 

converted into index of refraction with the current experimental conditions. 

The index of refraction measurements for the polymer microspheres were independently measured 

with quantitative phase imaging (QPI), using bright field imaging and transport of intensity equations 

(Supplementary Material, Fig. S4).27, 31  These index of refraction measurements along with those measured 

by SPRI and literature reported values32 are reported in Table II.  The comparison of index of refraction 

values between QPI and SPRI shows good agreement within the error of measurement.  We are unaware 

of published values for refractive index of hydrated gelatin or Sephacryl microspheres.  

 

IV. DISCUSSION 
 

A. SPR polarization apodization correction 

It has been shown that in prism-based SPRI, dividing the p- polarized image by the s- polarized 

image improves image quality in two ways.  First, it effectively increases the spatial homogeneity of the 

incoming illumination, and second it allows ratiometric normalization of the reflectivity intensity values.12  

In a similar manner, when using a high NA objective for SPRI, the procedure has been shown to improve 

image quality.16  However, due to the diattenuation observed at the steep angles in a high numerical aperture 

objective, an additional procedure is required to measure the apodization function and perform a 

mathematical correction to accurately normalize the SPR reflectivity response.  This correction is critical 

to successfully model the reflectivity curve with the Fresnel equations to extract accurate optical 

parameters.  While we have performed a mathematical correction here, there are optical methods described 

to rectify the differential attenuation, and this is a strategy that may be evaluated in the future.19 
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Other strategies to correct for diattenuation are to only use the p-polarized SPR scan or image and 

either use only a p-polarized attenuation function or simply normalize to arbitrary reflectivity units.  These 

simple conversions appear more straight-forward, but the images show larger background noise and are 

more sensitive to the quality and spatial homogeneity of the incoming illumination (data not shown).  

Retaining the apodization function as a p/s intensity ratio as demonstrated here improves these aspects of 

the image data and appears to be fairly robust to minor changes in optical alignment. 

B. SPR and SPRI index of refraction measurements 

 The bulk materials selected for SPR index of refraction measurements were selected to contain a 

wide range of index of refraction values that are biologically relevant.  They are homogeneous materials 

with no specific features (Fig. 2e) so that measurements from the SPR angle scan in the BFP can be readily 

compared with SPRI measurements from the image plane.  The reflectivity values in the image can be 

averaged across the whole image and the averaged value directly compared to the reflectivity value of the 

selected SPR angle in the BFP.  This methodology facilitates the application of the SPR angle scan in the 

BFP to aid with SPRI set-up, calibration, and quantitation. 

 When performing SPR imaging at a fixed angle, the reflectivity to index of refraction relationship 

will have both near linear and nonlinear regions, the extent of which is highly system dependent.  This 

response has been observed here using the measurement of selected materials, and also by simulation with 

Fresnel theory (Fig. 2f). It is important to characterize and understand the ranges of linear and nonlinear 

response. Operating within the linear response range allows for straightforward downstream analysis where 

errors in the measured index of refraction values are small.   The system described here has an 

approximately linear response in the ∆R range below ≈ 0.4.  This is likely to be ideal for many biologically 

relevant measurements in aqueous media, since all of the time-dependent reflectivity measurements we 

have made thus far using SPRI on single cells and extracellular matrix, have had measured ∆R values < 

0.3.12, 13, 16  Assuring that measurements are in the linear range facilitates conversion of reflectivity units 

into index of refraction and other derived units such as mass of material deposited at the surface.   
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 As shown in the right-hand scale of Figure 2c, the Δθmin SPR response remains entirely linear across 

large refractive index changes, as expected and corroborated by theory.33  If it becomes important to 

accurately measure index of refraction across a wide dynamic range, an experimental method to collect 

SPR images from multiple incident angles can be designed, and from that series of images acquired with 

different incident light angles, a composite image of Δθmin or index of refraction values can be determined.  

C. SPR image intensity analysis of polymer microspheres  

In previous work with polymer microspheres of various index of refraction values, we have 

reported limits of detection associated with the SPR penetration depth16 which were similar for all measured 

microspheres.  From this current study we conclude that the SPRI measured ∆R values for many of those 

microspheres were large and in the non-linear response range close to the SPRI signal saturation.  Only two 

of the polymer microsphere materials measured here, the hydrated 4% agarose with gelatin bead and the 

hydrated Sephacryl bead, are distinctly within the linear response range and can be reliably converted to an 

index of refraction value with minimal error using the calibration process and optical models. 

 As shown in Table II, the solid materials (silica and PMMA) have index of refraction values larger 

than n = 1.42. These materials are less accurately measured by SPRI under the conditions used in this study.  

However, an accurate measurement of Sephacryl, which has not been previously optically characterized, 

can be made by SPRI, and indicates an index of refraction value that is lower than most solid polymer 

microspheres.  It is presumed that these microsphere materials do not have a reported refractive index value 

because they are highly porous and therefore the overall index of refraction for the microsphere will be 

highly dependent on the solvent they are suspended in.  Despite this, the Sephacryl microsphere in aqueous 

media, which has a ∆R value of 0.357 and index of refraction value of 1.358, maybe able to serve as suitable 

SPRI benchmark artifact that can be used as both an intensity benchmark, having similar ∆R values to that 

of cells, as well as a measurement tool to detect the SPR penetration depth, as described previously.16  
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   Identifying materials that mimic the optical properties of biological samples is important for the 

purpose of calibrating and optimizing SPRI as well as other measurement techniques sensitive to optical 

properties, such as quantitative phase imaging. In this study, the use of SPRI allowed a simple measurement 

of index of refraction for low index of refraction materials in aqueous solutions.  This strategy may be 

useful for identifying and generating new reference materials that can be used to calibrate optical detection 

methods including and beyond SPRI to facilitate the use of these techniques as quantitative tools for probing 

biological systems.  Because the SPR microscope system described here can be adapted to existing 

microscopes in many laboratories, the identification and use of calibration materials will enable data 

comparability between the laboratories.   

 

V. CONCLUSION 

Previously, we demonstrated that a high NA microscope objective for SPR imaging can be used to 

achieve near-diffraction-limited spatial resolution and to measure sub-cellular features including focal 

adhesions.16  Here we aid the quantitative interpretation of the reflectivity intensity values with an objective-

specific apodization correction, calibration materials with indices of refractions close to biological cells, 

and a validation strategy along with supporting optical modeling.  The SPR microscope provides 

measurements of the sample in both the back focal plane (to provide angle-dependent reflectivity data) and 

in the imaging plane (to provide pixel-level image data at a single optimized angle of incidence).  We show 

how to correlate the distance-dependent data from the BFP with the SPRI reflectivity intensities at the 

selected angles of illumination.  A variety of polymer microspheres were assessed as potential intensity 

calibrants by measuring their range of reflectivity and index of refraction values.  A comparatively low 

refractive index material, such as hydrated Sephacryl microspheres, seems to be ideally suited as an 

intensity benchmark material.  This material has a reflectivity that is similar in magnitude to that of cells, 

extracellular matrix, and other biological materials.  Taken together, this work provides a framework to 

extract accurate, quantitative optical parameters from biological specimens such as cells, sub-cellular 
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features, and extracellular deposited materials, with the use of material, models and procedures for 

benchmarking, calibrating and determining the dynamic range of an SPR microscope imaging system.  

     

VI. FIGURES 
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FIG. 1. Instrument schematic for SPR imaging using a high NA objective and imaging of the back focal plane 
(BFP).  A)  A digital light projector generates and patterns light to control the angle of incident light, which is 
collimated, wavelength selected, linearly polarized, and directed through an inverted microscope platform.  The 
image that is reflected from the sample is captured on a CCD camera.  A movable lens assembly before the CCD 
camera selects for either the image plane or BFP.  B) The image in the BFP formed by light reflected from a sample 
of water that is fully illuminated with 590 nm light linearly polarized in the x-direction and collected with the 
objective lens in optical contact with a coverslip coated with a 45 nm film of gold under water.  The darkest crescent 
shaped regions indicate the angle at which the p-polarized incident light maximally couples to surface plasmons. P-
polarized light couples maximally at high incident angle in the x-axis, and not in the y-axis where the light is s-
polarized.  The red line depicts the angular distribution of incident light onto the image plane from the center of the 
BFP (0°) to the periphery (≈ 68° – based upon SPR data fitting).   C) The angle dependence of the p-polarized 
divided by the s-polarized light intensities from the line scan shown in B) converted from a distance measurement to 
an angle of incidence according to equation shown.  The uncorrected SPR angle scan (C1 - black line) shows an 
angular dependent distortion in reflectivity values due to objective aberrations at high NA angles.  The objective 
apodization is measured by using a p/s line scan of a reflective thick gold sample (C2).  The original SPR data 
divided by the apodization function results in a normalized SPR angle scan (green line) that can be modeled and fit 
with the Fresnel optical model using literature values for a glass/gold/water layer interface (magenta line) (C3).      
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FIG. 2. Four bulk materials with different values of index of refraction are measured by SPR with a range incident 
angles through the high NA objective lens; the fully illuminated sample is imaged in the BFP.  A) Select region of 
the BFP images for each of the 4 different index of refraction materials, water, phosphate buffered saline (PBS), 
ethanol, polydimethylsiloxane (PDMS), which shows an illumination angle range of 0° to 68° of 590 nm linearly p-
polarized light The dark region (indicating minimum reflectivity) of the SPR reflectance can be seen to 
incrementally shift towards the periphery of the BFP, corresponding to a shift in the angle of maximum coupling to 
surface plasmons.  The red line corresponds to an approximate angle range of 45° to 68°.  B) Reflectivity as a 
function of angle of incidence of illumination for each material in A) shows a shift in the SPR minimum observed 
that increases with increasing refractive index of the material: water (n = 1.333), PBS buffer (n = 1.335), ethanol (n 
= 1.362), and PDMS (n = 1.416).  The green line in the plot highlights the angle of incidence for 56.5°.  C) Plotted is 
the SPR reflectivity minimum (θmin) interpreted from B) (blue squares) along with a Fresnel model of θmin shift 
(magenta line) that shows a direct linear relationship of θmin with refractive index change. D) Instead of fully 
illuminating the sample as in A), this BFP image shows the digitally patterned incident angle illumination at 56.5° 
used for subsequent SPR imaging.  E) SPR images of the above materials measured using the 56.5° incident angle 
illumination pattern shown in D) and depicted in B).  The images are displayed in ∆R intensity values normalized to 
water.  The raw reflectivity intensity of water is ≈ 0.1.  F) Average ∆R values from E) are plotted versus the 
measured refractive index values for water, PBS, ethanol, and PDMS (red circles).  Overlaid, is a 3-layer Fresnel 
model of ∆R shift (black line), generated for 56.5° with the refractive index of the media layer varied from 1.333 to 
1.420, and ∆R intensity values normalized to water. The ∆R response becomes nonlinear for large changes in 
refractive index.   
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FIG. 3. Maximum values of ∆R determined from SPRI for several polymer microspheres and conversion to index of 
refraction values.  A)  Bright field and SPR images of a gelatin-coated 4% agarose, Sephacryl, and silica 
microspheres, each in water.  Scale bars of 20 µm apply to both bright field and SPR images.  B) Line scans (not 
displayed on image) through the center of beads in each SPR image in A) where the indicated ∆Rmax is the 
maximum ∆R intensity due to plasmon resonance coupling for each type of microsphere.  C) Average ∆Rmax values 
plotted as a function of bead materials.  Standard deviations show the average value for ≥ 6 beads.  D) Plot of the 
∆Rmax values for microspheres from C) onto the plot of ∆R values versus index of refraction for the bulk materials 
and Fresnel model discussed in Fig. 2f.  From this plot, predicted values for refractive index of the microspheres can 
be determined.  Only the microsphere materials with index of refraction values lower than silica (n = 1.42) are 
accurate, and so PMMA is not displayed.  

 

 



21 
 

VII. TABLES 

 

 

Table I.  Refractive index values of bulk optical reference materials used in this study.  The water 
refractive index value is a reference valued used for system calibration.  The other material refractive 
index values are the results of the Fresnel model. Error reported as standard deviation. 

Sample Critical Angle: Index of 
Refraction 

SPR: Index of Refraction 

Water 1.3330 1.3330 

PBS buffer 1.3349 ± 0.0001 1.3351 ± 0.001 

Ethanol 1.3609 ± 0.0004 1.3617 ± 0.001 

PDMS 1.4165 ± 0.0001 1.4161 ± 0.001 

 
 

 

Table II. Comparison of literature reported values for index of refraction of select polymer microspheres 
alongside with SPRI and QPI measured values with associated standard deviations in measurement. (xx = 
no data or citation available). 

Microsphere Material n (reported) SPRI n (measured) QPI n (measured) 

PMMA  1.48432 xx 1.481 ±  0.001 

Silica 1.42132 1.420  ±  0.011 1.425 ±  0.003 

Sephacryl xx 1.358 ±  0.001 1.359 ±  0.004 

Gelatin  
(4% agarose bead) 

xx 1.345 ±  0.001 1.344 ±  0.002 
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SUPPLEMENTARY MATERIAL 

See supplementary material for supplementary figures S1 – S4. 
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FIG. S1. Back focal plane distance to incident angle conversion.  The angle of incident light on the sample plane (θ) 
is related to position on the back focal plane (d) according to the Abbe sine condition shown here as d = A sin (θ).  d 
is measured as distance from the center of the back focal plane as measured in pixels.  A is a constant that is 
determined from a known θ and measured d.  Here we use the critical angle of water, n = 1.333 for λ = 590 nm, of θ 
= 48.3°, for n = 1.78.  Alternatively, one can use the measured distance from the center to the periphery of the back 
focal plane calculated to be θ = 68.0° based upon the numerical aperture of the objective (NA = 1.65) with n = 1.33 
according to the relation, NA = n sin (θ).  In the graph above, one can qualitatively observe the distance versus angle 
relationship as fairly linear until the larger angles of incidence.  A straight line (red dashed) is shown for 
comparison.  However, the nonlinear curvature occurs right at the high angles of incidence where the SPR 
measurements take place, therefore it is important to implement this conversion above instead of a linear 
approximation to obtain accurate θ values.  
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FIG. S2. Accounting for the differential transmission between p- and s-polarization through a high numerical 
aperture objective.  A) Image of reflected light, at the back focal plane (BFP) of a 1.65 NA objective at 590 nm, off 
a thick gold sample, with linear polarization along the horizontal axis. A line scan from center of BFP to periphery is 
displayed in black for the p-polarized direction and in red for the s-polarized direction.  B) The intensity of the p- 
and s-polarized lines scans are plotted as a function of incident angle after conversion from distance units from 
center to periphery of the BFP.  The difference in intensity values depicts the differential transmission between p- 
and s-polarized light through a 1.65 NA objective.  C) By dividing the p- by s-polarized light intensity values the 
resulting plot shows the apodization effect as a ratio of p/s light intensity and the ratio increases near the periphery 
of the high numerical objective. D) The same image condition as A) except the sample is a thin gold (40 nm) under 
water media, allowing for generation of surface plasmon resonance (SPR) at the BFP periphery. E) Same type of 
line scan plot as in B) except in addition to displaying the differential transmission of p- and s-polarized light, one 
can also observe the surface plasmon resonance in the p-polarized light.  F) Similar plot as in C) except now one can 
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observe both the apodization of p/s light from the high NA objective as well as the surface plasmon resonance.  G) 
The p/s reflection ratio in C) can be fit to an exponential function, of the form Ae(x/c) +y1, as shown by the red line, 
where x is the angle in degrees and the other values are fitted constants (A, c, and y1).  The overall magnitude of the 
function can be adjusted by the y1 value such that dividing by this apodization function will normalize the SPR angle 
scan into appropriate reflectivity units.  H) By dividing the raw SPR angle scan in F) (blue line) by the adjusted 
apodization function obtained in G) (red line) the resulting SPR curve (black line) is now corrected for the 
differential transmission of p- and s-polarized light in the high numerical objective and is appropriately normalized, 
and can be fit and modeled by the Fresnel model as typically used for SPR in the typical Kretschmann configuration.  
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FIG. S3.  Critical angle data to validate reference materials.  Reflectivity data as a function of angle of incidence for 
λ = 590 nm near the critical angle for water (squares), PBS buffer media (circles), ethanol (up-triangle), and PDMS 
(down-triangle).  Overlaid on each data set are fits to the two-layer Fresnel model to measure the bulk material 
refractive index.  The angle of incidence value is initially calibrated to the refractive index reference value for water. 
The model determined refractive index for each material is reported in Table I. 
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FIG. S4. Quantitative phase imaging to measure refractive index of polymer microspheres.   A) The optical phase 
was imaged for two types of polymer microspheres with known refractive index values, known refractive index of 
media (mineral oil, n = 1.467), and known dimensions, using the transport of intensity equation which generates a 
spatial phase distribution by mathematical manipulation of multiple bright field images with different focal planes. 
B) The cross section of ɸ values through each microsphere is displayed. From the maximum ɸ value at the center of 
the microsphere, the refractive index can be calculated by solving this equation ɸ = 2π/λ(n1-n2)t, where  λ is 
wavelength used (0.59 µm), n1-n2 is the difference in refractive index for the media minus the microsphere, and t is 
the thickness, or diameter, of the microsphere.  The measured refractive index values for these two microspheres 
agree with the reported values within the error of 5 measurements (Table II in manuscript), and serve as validation 
of the technique methodology.  C) The optical phase was imaged two types of polymer microspheres with unknown 
refractive index, known refractive index of media (water, n =1.333), and experimentally measured dimensions.  D) 
Using the maximum absolute value of ɸ measured from the plotted cross sections through the center of the 
microspheres, the refractive index was calculated based on the formula above.  The index of refraction values for 
these microspheres are compared (in Table II of manuscript) with the index of refraction values obtained from 
surface plasmon resonance imaging to validate the values measured from close surface contact.   
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