
Measuring and Improving the Effectiveness 

of Defense-in-Depth Postures 
Peter Mell 

National Institute of Standards and 
Technology 

100 Bureau Drive, Stop 8930 
Gaithersburg, MD 20871 

01-301-540-0061

peter.mell@nist.gov 

James Shook 
National Institute of Standards and 

Technology 
100 Bureau Drive, Stop 8930 

Gaithersburg, MD 20871 
01-301-975-5264

james.shook@nist.gov 

Richard Harang 
Army Research Laboratory 

2800 Powder Mill Road 
Adelphi, MD 20783 
01-301-394-2444

richard.e.harang.civ@mail.mil 

ABSTRACT
Defense-in-depth is an important security architecture principle 

that has significant application to industrial control systems (ICS), 

cloud services, storehouses of sensitive data, and many other areas. 

We claim that an ideal defense-in-depth posture is ‘deep’, 

containing many layers of security, and ‘narrow’, the number of 

node independent attack paths is minimized. Unfortunately, 

accurately calculating both depth and width is difficult using 

standard graph algorithms because of a lack of independence 

between multiple vulnerability instances (i.e., if an attacker can 

penetrate a particular vulnerability on one host then they can likely 

penetrate the same vulnerability on another host). To address this, 

we represent known weaknesses and vulnerabilities as a type of 

colored attack graph. We measure depth and width through solving 

the shortest color path and minimum color cut problems. We prove 

both of these to be NP-Hard and thus for our solution we provide a 

suite of greedy heuristics. We then empirically apply our approach 

to large randomly generated networks as well as to ICS networks 

generated from a published ICS attack template. Lastly, we discuss 

how to use these results to help guide improvements to defense-in-

depth postures. 

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: General – security

and protection.

General Terms
Algorithms, Measurement, Design, Experimentation, Security. 

Keywords
attack graph, defense in depth, measurement, security. 

1. INTRODUCTION
For network security, defense-in-depth (DID) is the security

architectural practice of putting multiple defensive barriers

between potential attackers and their desired targets [1]. These

barriers often take the form of security devices or application

portals/gateways; this then forms a layered security architecture. In

this work, we measure the effectiveness of DID postures through

evaluating residual weaknesses that, if exploited, can provide

avenues for an attacker to breach the layers of security. We model 

the available avenues of attack both at the level of individual 

software vulnerabilities (e.g., Common Vulnerabilities and 

Exposures (CVE) names [2]) and at higher levels of abstraction 

(e.g., general threats that apply to classes of devices). 

DID is a concept that is generally applicable in a wide variety of 

security domains. For example, DID has important application in 

industrial control systems (ICS) where computer controlled 

physical components are often separated from the Internet through 

a series of high level controllers and isolation devices [3]. It also 

has important application in cloud computing application 

architectures where, for example, a software-as-a-service (SaaS) 

application may have a series of layers that separate users from the 

raw application data [4]. It is also often important for storehouses 

of sensitive data where users must be limited in their access to the 

data (such as in federal government systems [5]). 

We claim that an ideal DID architecture has three important 

features. It must be ‘deep’, meaning that there are many 

independent layers of security (we define independence later). It 

must be ‘narrow’, meaning that the number of node independent 

attack paths is minimized. In this work we focus on the equivalent 

but less intuitive idea of minimizing the smallest set of independent 

nodes whose removal could cut all attack paths. And it must be 

‘strong’, meaning that each layer must provide the greatest possible 

deterrent to an attacker. In this work, we focus on measuring only 

depth and width because the strength of a layer is difficult to 

accurately assign. While strength is important to consider in one’s 

layered defense, we focus here only on metrics that are quantitative 

and repeatable. 

The basic definition of depth could be solved easily and quickly. 

However, the version of depth we need is computationally 

expensive to calculate.  To evaluate it, we represent the DID 

security architecture as a type of attack graph. Each path in the 

graph represents a possible avenue of attack and each node 

represents a specific vulnerability or weakness on a host. The basic 

definition of  depth asks for the shortest path from the initial node 

(point of expected hostile presence, often the Internet) to the closest 

target node. The target nodes vary by domain but represent the 

crown jewels of the network (e.g., the physical devices in an ICS 

or the main data store for a SaaS).  

Complicating the basic definition of depth is  that if an attacker can 

penetrate a particular vulnerability on one host then they can likely 

penetrate the same vulnerability on another host (given the same 

provisions for logical access). To account for this, we color each 

node corresponding to the vulnerability it represents and we then 

consider differently colored nodes to be independent. Thus, 



calculating depth is no longer a shortest path calculation on a graph 

(e.g., Dikjstra or Floyd’s [6]), but instead a calculation of the fewest 

number of colors needed to enable a path from the source to one of 

the targets. We show that this small change to calculating shortest 

color paths (SCPs) converts the problem from a well-studied 

polynomial realm to being NP-Hard. 

With respect to width, we use the same colored attack graph 

representation and calculate the smallest set of colors such that at 

least one color in the set will occur on each possible attack path. 

This is equivalent to finding the smallest set of colors where 

removal of all nodes of the chosen colors will break all attack paths. 

Without consideration for color, the attack graph could be 

transformed into a flow graph using published transformations and 

the minimum cut calculated in polynomial time [6]. However, we 

show that incorporating the colors and calculating minimum color 

cuts (MCCs) again converts the problem to being NP-Hard. 

Since SCP and MCC are NP-Hard we developed a suite of 

approximation algorithms for them both. For some, we use variants 

on the standard polynomial time shortest path and minimum cut 

algorithms to attempt to greedily use many nodes of the same color 

(thereby minimizing the overall number of colors used). We also 

use genetic algorithms and another local minimum search 

approach. Lastly, we developed algorithms that provide exact 

answers, with limited scalability. These can be used on small 

problems and to test the accuracy of the approximation heuristics 

on such problems. 

To empirically test our algorithms, we primarily use a set of 

randomly generated graphs to test effectiveness and scalability. We 

used another set of graphs to test applicability to an important DID 

domain area: ICS. For the effectiveness and scalability tests, we use 

layered colored attack graphs with 1000 nodes 10 layers. For the 

ICS domain testing, we generate ICS colored attack graphs by 

leveraging a published attack template of an ICS secured according 

to best security practices [7]. This attack template shows the 

security layers and attack paths which enable us to generate 

corresponding colored attack graphs.  

From the random graph experiments, we compare the effectiveness 

and scalability of different heuristics. For the SCP, we find that our 

greedy breadth first search (BFS) algorithm provides the closest 

overall approximation to the actual SCPs. However, for less than 

50 distinct vulnerabilities in the network, our exact algorithm can 

provide the true answer. For reduced runtime in this range, our 

genetic algorithm can be used and it empirically provides almost 

the exact answer. Our greedy BFS algorithm executes with linear 

time complexity and thus scales to massive networks. For the MCC, 

our greedy color-aware minimum node cut ensemble approach was 

the most effective overall. For greater accuracy with less than 100 

vulnerabilities in the network, our genetic algorithm provides better 

approximations. For less than 30 vulnerabilities, our exact 

algorithm can provide the true answer.  

From the ICS graphs generated from the ICS attack template, we 

performed a proof of concept of the approach on more realistic 

graphs. We determined that real ICS networks are layered (the 

attack template itself had 8 layers) and that our algorithms were 

able to determine the SCP and MCC which varied depending upon 

how sets of specific hosts were instantiated conformant with the 

attack template.  

Our main conclusion is that he SCP and MCC metrics represent a 

novel way in which to measure characteristics of a DID posture. 

They are both quantitative and repeatable. While exponential to 

calculate exactly, we provide several scalable approximation 

approaches. While not intended to be a complete measure of 

security, SCP and MCC can contribute to an overall security 

metrics suite. In particular, they provide measurement of two 

particular features of the important principle of DID.   

Our contributions in this paper include the following: 

1. a novel and general method to express the DID of a 

network using layered colored attack graphs, 

2. the novel metrics of SCP and MCC to measure DID 

effectiveness, 

3. a proof that exact SCP and MCC measurements are NP-

Hard, 

4. and computational efficient and effective approximation 

algorithms for determining SCP and MCC. 

The rest of the paper is organized as follows. Section 2 describes 

our colored attack graph representation for the DID architectures. 

Section 3 presents our security metrics of depth and width while 

section 4 describes our related algorithms. Section 5 discussed our 

test data: random layered security graphs and the ICS graphs. 

Section 6 provides the results of our empirical trials. Section 7 

discusses how to use this data to optimize network security. Section 

8 reviews related network security metrics and section 9 concludes.  

2. REPRESENTING DID 

ARCHITECTURES AS COLORED 

ATTACK GRAPHS 
To evaluate the DID posture of a network, we construct colored 

attack graphs that show available avenues of attack. These avenues 

can be general threats to specific types of devices, actual known 

vulnerabilities (e.g., CVEs), or a combination of both. In this 

section, we provide a novel attack graph construction using colored 

nodes that will enable us to evaluate DID characteristics. 

Expected sources of attack are represented by a set of nodes, S, in 

our attack graph, G. A special ‘super source’ node, s, is added to G 

that has a directed edge to each node in S. The presence of s is for 

algorithmic convenience in reaching all expected sources of attack. 

The high value targets in the network are represented by a set of 

nodes, T, in G. A special ‘super sink’ node, t, is added to G by 

adding a directed edge from each node in T to node t. As with s, t 

is added for algorithm convenience.  

We then add a node to G for each vulnerability instance (or more 

generalized threat) in the network that could enable the creation of 

an attack path. Thus, each node represents a distinct vulnerability 

at a particular location (usually on some network host). For 

example, a node a may represent the vulnerability host pairing 

[v1,h1] where v1 is a vulnerability that exists on host h1. 

Edges are now added to G using the following formula (note, no 

additional edges are added to or from s and t). For each ordered pair 

of nodes, a=[vi,hj] and b=[vk,hl], a directed edge is created from a 

to b iff vi on hj provides an attacker sufficient privileges to exploit 

vk on hl and hl is logically accessible from hj. This accessibility will 

usually be network connectivity but may generalize to other forms 

of access (e.g., insertion of physical media in a device). For local 

attacks internal to a host, hi and hj may represent the same host. 



 

Figure 1. Example Colored Attack Graph Representing a 

Layered Security Architecture 

An example attack graph is shown in Figure 1. At the top is the 

super-source and at the bottom is the super-sink, labelled with ‘s’ 

and ‘t’ respectively. On the left side one can see the groupings of 

nodes for S, T, and the individual security layers (denoted L1-L3) 

in the DID architecture. The layers are automatically generated by 

calculating the shortest path distance (e.g., Dikstra distance) minus 

1 of each node from s and using that as the layer number. Thus, 

layer i contains all the nodes that are distance i from the set of 

attacking nodes. 

The numbers within each node represent the color of the node. Note 

that the nodes in layer S do not have colors as they are the sources 

of attack and so they are labelled with an ‘a’. The hostnames 

associated with each node are not shown. Note that multiple nodes 

may represent distinct vulnerabilities within the same host or 

between different hosts. Also note that actual layered security 

architectures can have edges traversing layers in both directions; 

we exclude such edges from our example for simplicity. However, 

edges may never traverse multiple layers as that would contradict 

our method of layer construction (such an edge would indicate a 

vulnerability that was put at the incorrect layer number based on its 

distance from s). 

Our layered and colored attack graph representation where nodes 

represent host/vulnerability pairings is thus a novel, general, and 

flexible representation that can be applied to most DID 

architectures. One limitation is that our approach does not cover 

cases where an attacker must have privileges on two different hosts 

in order to execute an attack or where a combination of two or more 

exploited vulnerabilities is necessary to compromise another 

vulnerability. These are not the normal cases for vulnerabilities in 

public repositories (e.g., the National Vulnerability Database [8]). 

While we have emphasized the novelty of our attack graph 

approach (with the colorings and layering), note that we leverage 

the node and edge semantics of the attack graph ‘vulnerability 

oriented’ model presented [9].  

3. SECURITY METRICS 
We can now use our colored attack graph representation to measure 

the DID posture of a network. We focus on measurements of depth 

and width. Depth measures the number of independent layers of 

security and width measures the smallest set of independent nodes 

whose removal could cut all attack paths. An increasing depth 

forces an attacker to penetrate more distinct vulnerabilities and a 

decreased width gives an attacker less flexibility in choosing which 

vulnerabilities to exploit. Thus, an ideal DID has both a large depth 

and small width.  

Note that in this work, we do not combine these two measurements 

into a single DID strength score because such efforts tend to be ad 

hoc, even if operationally useful.   

3.1 Depth – Evaluating Shortest Color Paths 
To calculate depth, we must find a path from s to t that uses that 

fewest number of colors. We count only distinct colors instead of 

nodes because we assume that if an attacker can exploit a 

vulnerability on a host a then the attacker can exploit the same 

vulnerability on some host b (provided logical connectivity is 

available). The requirement for logical connectivity is easy to take 

into account because it is modelled by the edges in G. We refer to 

the entire operation of measuring the depth as finding the shortest 

color path (SCP). 

Using the same example attack graph from Figure 1, Figure 2 

shows the SCP by bolding, dotting, and making red the applicable 

directed edges. 

 

Figure 2. Example Attack Graph with the Shortest Color Path  

Highlighted 

Note how the SCP is not necessarily the shortest path (as defined 

by number of nodes used). Here, the SCP is 2 (using colors 2 and 

4) even though it traverses 8 nodes total. Remember that the nodes 

in S do not have colors since they are sources of attack. For 

comparison, the shortest path from s to t as traditionally defined is 

6. 

3.2 Width – Evaluating Minimum Color Cuts 
To calculate width, we must find the smallest set of colors such that 

at least one color in the set will occur on every possible attack path. 

Another way to view this is to find a cut set of nodes with the fewest 

colors that eliminates all paths from s to t. We thus refer measuring 

the width as finding the minimum color cut (MCC). Note that the 

nodes in S are not candidates for the MCC as they represent the 



attackers (they are not vulnerability options for the attackers to 

exploit). However, the nodes in T are eligible as they represent 

exploitation opportunities for the attackers on critical targets. 

Nodes s and t are not eligible as they were added for algorithmic 

convenience. 

Using the same example attack graph from Figure 1, Figure 3 

shows the MCC by bolding, dotting, and making red the applicable 

nodes. 

 

Figure 3. Example Attack Graph with the Minimum Color 

Cut Highlighted 

Removal of the MCC nodes will disconnect s from t. Note how the 

MCC consists of all nodes of any chosen color (not just particular 

nodes that disconnect the graph). Thus, calculating the MCC is 

different from calculating the minimum cut (which counts the 

number of nodes used irrespective of color). The minimum cut for 

this graph is 2 while the MCC is 1 (even though it uses 3 nodes). 

4. ALGORITHMS FOR DEPTH AND 

WIDTH 
In this section, we present a variety of heuristics to calculate DID 

depth and width as well as high complexity exact approaches. Our 

best heuristic for SCP is a greedy shortest color paths algorithm. 

Our best heuristic for MCC is a color aware node cut algorithm. We 

also test a local minimization approach and a genetic algorithm for 

both SCP and MCC. The heuristics and genetic algorithms enable 

our measurements to scale to large networks while the exact 

approaches can be used for small networks. 

4.1 Greedy Approaches 
We used two greedy heuristics for our DID measurements. For 

depth, we use a greedy color-aware modified breath first search 

approach. For width, we make color aware use of standard 

minimum node cut algorithms. 

4.1.1 Shortest Path Based Depth 
To calculate depth we execute a breadth first search (BFS) 

algorithm [6] starting at s and terminating upon arrival at t. As 

typical with BFS algorithms, whenever a node is reached, it is 

labelled with its predecessor so that the shortest path can be 

enumerated upon reaching t by following the path in reverse. 

However, our BFS is modified to take into account color. Not only 

is each node labelled with its predecessor, but it is labelled with all 

colors used to get to that node. 

Whenever a node is visited, the algorithm starts a secondary BFS 

from that node that is limited to visiting nodes colored with the 

previously used colors (those colors listed at the start node of the 

secondary BFS). This secondary BFS performs a greedy expansion 

but is not allowed to visit any nodes previously visited by any BFS 

instance (primary or secondary).  

The secondary BFS capability enables a particular path being 

explored by the primary BFS to greedily include as many nodes as 

possible that use colors already used by the node currently being 

processed by the primary BFS.  

Standard BFS is a linear time algorithm as is our variant (since each 

node will be processed by one and only one BFS instance) and so 

the computational complexity is O(n+m) where n is the number of 

vertices and m is the number of edges. 

4.1.2 Minimum Node Cut Based Width 
To calculate width, we iteratively calculate the minimum node cut 

that separates the nodes in set S from t in the colored attack graph 

being evaluated. After each iteration, we remove all nodes of some 

chosen color. We repeat this until there does not exist a path from 

nodes in S to t.  

There are several ways in which we choose the color to remove 

after each iteration: 

1. Choose the color that is most frequent within the 

discovered node cut. 

2. Restricted to the colors found in the standard node cut, 

choose the color that occurs most frequently in the entire 

attack graph.  

3. Use method 1 above unless there is no color with an 

occurrence within the cut of greater than 1. In that case, 

use method 2. 

Finding a minimum node cut (using the Edmonds Karp method) is 

O(nm2). We iteratively run this algorithm with the loop limited by 

the number of colors, c. Thus, our algorithms runs in O(cnm2). 

We can assist the minimum node cut algorithm in identifying cuts 

with important colors by pre-processing the graph. Our pre-

processor looks for nodes of the same color (e.g., a and b) that have 

edges to a common node (e.g., c) and adds a new node (e.g., d) with 

the color of a and b that is put in front of c. More specifically, the 

preprocessor creates a new node d, then adds edges a->d, b->d, and 

d->c, and then deletes edges a->c and b->c. This adds a single node 

that the node cut algorithm can find that allows both a and b to be 

cut from c. It makes the node cut algorithm somewhat color aware 

without modifying the algorithms itself. This preprocessor take 

O(m+n) time. 

4.1.3 Minimization Based Depth and Width 
We also greedily calculate both depth and width through 

calculating which colors are necessary, taking us to a minimal 

solution. To do this, we rank the colors by their popularity (number 

of nodes with that color) and place them in a list. Then we 

iteratively remove the most popular color. We also create an, 

initially empty, set of ‘necessary’ colors which will be the output 

of the algorithm.  

For each removed color, we construct a candidate color set of the 

remaining unprocessed colors combined  with the necessary set. If 

the candidate set does not enable an (s,t) path (for SCP) or does 

enable an (s,t) paths (for MCC) then we know that the removed 

color is necessary and we add it to the necessary set. Processed 



colors not added to the necessary set are dropped because they are 

not required for a color path (for SCP) or for a color cut (for MCC). 

We can also execute this same algorithm for both SCP and MCC 

by providing an initial set of colors (colors not in the initial set are 

not used). This enables one to refine an existing SCP or MCC 

answer to find a minimal solution. Since the minimization routine 

executes quickly, we apply this optimization to the output of all our 

other approximation algorithms. 

4.2 Genetic Algorithm Approaches 
Our genetic algorithm (GA) approach represents all available 

colors as a bit string. It uses a fitness function that is the inverse of 

the sum of the number of bits set to 1 (i.e., number of colors used) 

multiplied by a binary value indicating whether or not there exists 

an s to t path using the allowed colors. We use a population size of 

1000 and the initial population contains bit strings allowing all 

colors, all but one color, and bit strings where each color is turned 

on with a probability of .8. We thus bias our initial population 

towards using an excessive number of colors and allow the 

algorithms to trim out the unnecessary colors. To generate new 

populations, we leverage only bit strings from the previous 

generation that had a non-zero fitness function. We keep unchanged 

the top 10% scorers of the previous generation. The next 20% of 

the top scorers from the previous generation are kept with one of 

their colors randomly removed. Most of the remaining population 

for the new generation is created by using a random mask to 

crossover a random choice of the top 30% scoring bit strings with 

a random choice from all bit strings from the previous generation 

with a non-zero fitness. This process may generate candidate sets 

with duplicates (which we remove). We then ensure a new 

population size of 1000 by creating random bit strings (we always 

generate at least 10 random bit strings for each new population). To 

generate a set of random bit strings, we pick a threshold value for 

the probability of a bit being 1 (chosen uniformly from 0 to 1) and 

then use that value to generate all bit strings for that population. 

Note that this algorithm takes a very pessimistic view of the 

usefulness of the graph since it only uses the graph to verify the 

correctness of proposed solutions. To verify a SCP solution, our 

linear time greedy approach is used. Because of this we can use the 

same algorithm to calculate both SCP and MCC with only a slight 

modification to the fitness function. For SCP, we force to 0 the 

fitness if an s to t path exists and for MCC we force it to 0 if an s to 

t path does not exist. 

4.3 Exact Approaches 
Since both SCP and MCC are minimization problems we can use a 

simple exhaustive search of the subsets of colors to find an exact 

solution. We use our previous approximation algorithms to 

determine an upper bound on the number of colors needed for SCP 

and MCC and then we iteratively try different sized sets of colors. 

At each chosen size, we exhaustively try all color combinations. 

We stop processing a particular sized color set if we find a set of 

colors that enable an (s,t) path (for SCP) or we find a set of colors 

that enable an (s,t) cut (for MCC). 

We implemented three approaches. The first is to start with the 

upper bound and decrement the color set size to be searched by one 

in each iteration. The second is to use the upper bound to perform 

a binary search on the remaining possible color set sizes (reducing 

the possible set of sizes in half for each iteration). The third is to 

start at color set sizes of 1 and work upwards until we find the first 

working solution. The first approach empirically worked the fastest 

and so we use it exclusively in reporting results. 

Note that these algorithms depend on the number of colors. If there 

are k colors, then the algorithms have to check up to 2k subsets and 

then traverse up to n vertices for each subset. Thus, they are fixed 

parameter tractable problems. If the algorithms can be fed a good 

upper bound solution (e.g., from our approximation algorithms) 

then the exact algorithm can be sped up considerably which 

explains why our first approach outperformed the binary search 

approach in all of our experiments. 

4.4 Complexity Evaluation 
In this section we provide a proof sketch showing that both the SCP 

and MCC problems are NP-Hard (by using set cover reductions). 

Given that no polynomial algorithms exist to provide exact 

solutions for the set of NP-Hard problems, this explains our 

motivation to search for effective approximation algorithms.  

We show that any instance of set cover problem can be reduced to 

an instance of an MCC problem in polynomial time. We let U = 

{u1,…,um} and  S = {S1,…,Sn} be an arbitrary instance of a set 

cover problem where U is the set to be ‘covered’ and S is the set 

of sets that can be chosen to cover U. Assume that each Si has cost 

1. For an example problem for which we will show reductions, let 

U={a, b, c} and S={ac, ab, b}.  

Given any set cover instance, we can create an auxiliary digraph. 

Let s and t be vertices. For each ui, create a vertex disjoint (s,t)-path 

that has a vertex colored Sk for each Sk that contains ui. Note that 

vertices s and t are not colored. This provides an auxiliary graph 

with m vertex disjoint (s,t)-paths. A minimum MCC calculation on 

the auxiliary graph will then yield a set of colors that correspond to 

the minimum set within S that covers U. Figure 4 shows the MCC 

auxiliary digraph for our example problem. 

 

Figure 4. Auxiliary Digraph for Minimum Color Cut 

The reduction of set cover to an SCP problem is as follows. Create 

nodes s and t. For each ui, create a graph layer that contains a Sk 

colored node for each Sk that contains ui. Including a layer for both 

s and t, this gives us m+2 layers (note that m=|U|) with each layer 

being an independent set. Create a complete set of edges from node 

s to the nodes in layer 1. For each layer i< m, create a complete set 

of edges from the nodes in layer i to layer i+1. Lastly, create a 

complete set of edges from the nodes in layer m to node t. The result 

is an auxiliary graph that is a layered graph as described in section 

2. A minimum SCP calculation on the auxiliary graph will then 

yield a set of colors that correspond to the minimum set within S 

that covers U. Figure 5 shows the SCP auxiliary digraph for our 

example problem. 

 

Figure 5. Auxiliary Digraph for Shortest Color Path 

Thus, any arbitrary set cover problem can be reduced into both an 

SCP problem and an MCC problem such that a solution to either 



problem yields a solution to the set cover problem. These are 

sufficient transformations to prove that the SCP and MCC 

problems are NP-Hard (the proofs themselves are not included due 

to space constraints).  

5. DATA SETS 
For our empirical analysis, we use two different data sets. The first 

is a random layered attack graph used to assess the effectiveness 

and scalability of our algorithms. The second is a layered attack 

graph based on an attack template for secured industrial control 

systems. 

5.1 Random Layered Graphs 
Given some enterprise network and starting from a set of possible 

attack sources (e.g., the Internet, employee desktops, or hosts that 

provide a SaaS interface), one can perform a breadth first search 

(BFS) of all possible attack paths from the attack sources to all 

other nodes in a network. In each iteration of the BFS, we consider 

the nodes reached to be at a new layer (representing increasing 

distance from the attack sources). 

For our experiments we use this concept of layering to generate 

random attack graphs. We construct a graph by choosing the 

number of layers, the number of nodes per layer, the number of 

attack sources, and the number of high value targets. We add in the 

supersource ‘s’ and supersink ‘t’ as described in section 3. For 

edges, we decide on the probabilities for edges existing between 

layers of varying distances (including edges within a layer). The 

number of layers chosen will effect (but not decide) the depth of 

the graph and the number of nodes per layer will effect (but not 

decide) the width of the graph. By varying the number of layers and 

nodes per layer, we can scale the generated graphs.  

5.2 Industrial Control System Data Set 
An attack template for a hypothetical ICS that is secured with ‘best 

practice’ methods was provided by [7]. The template provides 

nodes for different actor types within the ICS (e.g., controller types, 

server types, and human entities). The edges representing possible 

attacks that can be launched from the vantage point of one actor in 

order to compromise another actor. 

We use this attack template to generate randomized ICS attack 

graphs (colored and layered as described in section 3). The 

randomization comes in as we instantiate a particular actor type into 

actual instances of the actor. To perform this ‘node explosion’, we 

copy a single actor type node many times (retaining the same 

neighbors for each copy) in order to represent an instantiation of 

the actor type into actual actors. Each node copy is assigned a 

random color (unique from any color assigned to other actor types). 

We then take all node copies and connect them with edges to form 

a clique. Lastly we randomly remove edges incident with the copied 

nodes (both those edges used for the copied node clique and those 

edges with the rest of the attack graph).  

This approach allows us to generate colored layered attack graphs 

conformant with the attack template but that randomly instantiate 

actor types into actors instances and randomly enable available 

attack edges from the template. 

6. EMPIRICAL RESULTS 
In this section we empirically evaluate the effectiveness of our 

proposed SCP and MCC algorithms as we scale the network in 

various dimensions. We use random layered attack graphs for the 

majority of the evaluation but then also apply our results to our 

instantiation of the ICS template.  

We run our experiments in a virtualized Ubuntu operating system 

provisioned with a two Intel i7 cores and 10 GB of RAM. Our 

experimental system thus represents lower end commodity 

hardware.  

6.1 Random Layered Graphs 
We used random layered graphs to test the effectiveness and 

execution time as we scaled the number of colors, number of layers, 

and number of nodes per layer for both measuring SCP and MCC. 

6.1.1 Shortest Color Path Measurements 
We constructed random layered graphs with 10 layers, 100 layers 

per node, 100 attack sources (at layer 1), and 100 attack targets (at 

layer 10). The edge probability within a layer and between adjacent 

layers for each pair of nodes was 0.1. The attack sources in layer 1 

represent a network where compromises are likely (e.g., where 

hosts communicate regularly with the Internet). The attack targets 

represent a layer of high value targets (e.g., hardware controllers in 

an ICS).  

Using this model, we varied the size of the set of colors available. 

Each node was randomly assigned a color from the color set using 

a uniform distribution. This enables us to compare the relative 

effectiveness of our heuristics as the number of colors in a large 

graph increase. 

We also ran experiments where we used the same setup but varied 

the number of layers and separately then number of nodes per layer 

(holding the number of colors constant at 50). There were no 

change in the relative effectiveness of the algorithms when varying 

the input along these dimensions. 

Figure 6 shows the results for the Dijkstra ‘naïve’ approach, our 

SCP GA, and our SCP greedy BFS algorithm (our SCP algorithms 

with polynomial running times). Each data point represents the 

mean of 50 trials using different randomly generated graphs.  

 

Figure 6. Relative Comparison of SCP Cardinality 

The GA approach performs the best for up to 55 colors, after which 

the SCP greedy BFS provides the best solution. This is not 

unexpected because the GA is performing a multi-dimensional 

search on the bit string of color values. As more colors are added, 

the dimensionality of the problem increases making it more 

difficult for the GA to find effective local minimums. The naïve 

Dijkstra approach never provides the best solution although it 

converges toward the optimal as the number of colors increase. This 

is because once the number of colors equals the number of node in 

the network the problem converts into a standard shortest path 

problem. Likewise, the greedy BFS behaves more and more like 

the Dijkstra approach as the number of colors increases and thus 

also similarly converges to the optimal. 



We now move from comparing relative performance to a 

comparison against the exact SCP using the same experiment. Our 

algorithm to calculate the exact SCP has a combinatorial term 

which results in an exponential increase in execution time. Thus, 

Figure 7 shows the results only for small numbers of colors. 

 

Figure 7. Exact Comparison SCP Cardinality 

We see that the GA and greedy BFS approaches both provide close 

approximations to the exact SCP cardinality for the number of 

colors evaluated. The GA provided slightly better approximations 

in this color range. The naïve Dijkstra approach performed 

noticeably worse. 

We next evaluate how the execution time for the algorithms 

changes as the number of colors increase, shown in Figure 8. 

 

Figure 8. Growth of SCP Execution Time as the Total Number 

of Colors Increase 

Here we see that the Dijkstra’s algorithm and the greedy BFS 

operate essentially instantaneously. Both of them hug the x-axis 

and never take more than 0.01 seconds (even for 300 colors, not 

shown). The GA takes 41 seconds at 300 colors. The exact 

approach can clearly be seen to take exponential time making it 

tractable only for graphs with less than around 50 colors on our 

experimental setup.   

6.1.2 Minimum Color Cut Measurements 
We used the same experimental sets as with the SCP measurements 

and we apply it to compare the relative effectiveness of the MCC 

algorithms with an increasing number of colors. 

As with the SCP measurements, we also ran experiments where we 

used the same setup but varied the number of layers and separately 

then number of nodes per layer (holding the number of colors 

constant at 50). There were no changes in the relative effectiveness 

of the algorithms when varying the input along these dimensions. 

 

 

Figure 9. Relative Comparison of MCC Cardinality 

As with the SCP GA, the MCC GA performs the best for a small 

number of colors but then loses performance as the dimensionality 

of the problem increases. For MCC measurements, this crossover 

happens at 130 colors. Our ensemble approach of color aware 

minimum node cuts performs the best after 130 colors but is 

reasonably close to the GA up to that point. The naïve minimum 

node cut approach always does much worse than our ensemble 

approach.  

Next we compare the algorithms against exact answers, limited to 

a small number of colors since our algorithms to find the exact 

answers are exponential. Figure 10 provides the comparison up to 

20 colors. 

 

Figure 10. Exact Comparison of MCC Cardinality 

We see that the naïve minimum node cut approach provides the 

worst performance. The GA so closely matches the exact answer 

that the lines are almost not distinguishable on the graph. The GA 

is at most 0.08 from the exact answer while. Our ensemble 

approach is never more than 1.25 away. 

We next evaluate how the execution time for the algorithms 

changes as the number of colors increase, shown in Figure 11. 

  



 

Figure 11. Growth of MCC Execution Time as the Number of 

Colors Increase 

The exact solution clearly grows exponentially. The naïve 

minimum node cut approach takes at most 0.11 seconds and our 

color aware ensemble variant takes at most 6.8 seconds at 300 

colors. The GA takes 80 seconds at 300 colors. 

6.2 Industrial Control System Data Set 
The ICS graphs were primarily used as a proof-of-concept test for 

both our SCP and MCC metrics as well as the algorithms used to 

implement them. These graphs were instantiated from an attack 

template representing an ICS secured to industry standards. Thus, 

each link in our instantiated attack graphs represented actual attack 

types that occur between the modeled services/entities. 

From this exercise, we obtained evidence that real ICS networks 

are layered (the attack template itself had 8 layers) confirming our 

overall approach of processing attack graphs using a layered 

analysis. 

Note that the number of layers in the attack template did not reveal 

the SCP of the instantiated graphs. Depending upon which of the 

instantiated entities has the vulnerabilities and which actually 

communicated, the SCP varied significantly. With fewer 

vulnerable nodes and less communication, the SCP tended to be 

longer while with a high presence of vulnerable nodes the SCP 

often was smaller than the number of layers in the attack template. 

This occurred because some of the attack segments crossed 

multiple layers.  

The MCC of the instantiated graphs might at first appear to be equal 

to the MCC of the attack template. While a correlation exists, they 

are not necessarily equal. The MCCs of the instantiated graphs vary 

based on which of the attack paths from the template are actually 

available in the instantiated ICS graphs. Note the nodes must be 

both vulnerable and have the ability to communicate in order for 

them to be used in an attack path. 

7. DISCUSSION 
We envision our SCP and MCC metrics being used to provide an 

understanding of a network’s DID posture with respect to expected 

sources of attack (be it external or internal). This will be most useful 

for networks with entry points that are threatened and that have 

‘crown jewel’ servers to be protected.  

A single network can be measured over time to determine the 

relative trending of the DID posture. The ‘colors’ returned from our 

algorithms can be used to highlight vulnerability types that, if fixed, 

could significantly improve the DID posture. 

The SCP and MCC metrics can also be used to compare the DID 

posture between multiple networks of the same enterprise. This 

could be used for accountability purposes. It might be more 

impactful to use the comparison metrics to determine which 

networks need investment in patch/remediation technologies or in 

DID architectures.  

8. RELATED NETWORK SECURITY 

MEASUREMENTS 
A significant amount of work has been done examining the role of 

diversity in security. A large subfield of this research focuses on 

inducing diversity on the level of a single system [10] [11] [12]; 

this is beyond the scope of what we consider, however it could be 

considered as a method by which to generate additional ‘colors’ to 

introduce to our model. 

On the network level, which is more directly applicable to our 

current problem, the work of [13] considers a simple Boolean 

measure of “survivability” that simply indicates whether an 

attacker possesses sufficient attacks to compromise all components 

of a particular network or not, without considering the possibility 

of multiple paths to a particular goal. A more sophisticated 

reduction of network security properties derived from diversity to 

coloring algorithms is explored by O’Donnell and Sethu [14]. They 

focus on the case of a fixed network topology, and consider the 

allocation of different version of software to different nodes within 

that network to impede the ability of an attacker to find a reliable 

attack path, in effect finding either a perfect coloring of the graph 

or a minimally defective coloring. They examine standard 

heuristics to obtain these goals, as well as the impact of adversarial 

activity during the coloring process on finding such colorings.   

Within the context of ICSs, DID is typically presented as layering 

of independent security mechanisms, including ‘soft’ ones such as 

corporate policy and proper training. Depth of network topology, 

while occasionally mentioned [15], is rarely discussed in detail 

beyond simple approaches such as use of a “demilitarized zone” 

and firewalls between different segments of a network that includes 

ICS services [15] [16]. Our examination of heterogeneous devices 

as imposing additional burdens on an attacker has not yet been 

considered in this context, to the best of our knowledge. 

Our work bears some relationship to traditional attack graph work, 

as does much other work in risk estimation and mitigation in ICS 

and SCADA systems [17]. Indeed, much work has been done on 

various minimization problems associated with attack graphs. In 

their study of properties of attack graphs, Jha et al. [18] consider a 

question related to our MCC property in examining the smallest 

subset of some set of defensive measures whose implementation 

makes the network under consideration secure; by reduction to 

minimum hitting set, they show that this property too is NP-hard to 

satisfy. Wang et al. [19], focus on the preconditions required to 

trigger the various exploits or vulnerabilities within a network, and 

examine ways to minimize the cost of removing these pre-

requisites and thus denying access to attackers.  While many results 

are analogous, their attack graphs differ significantly from our 

approach in two significant ways. First, they typically consider only 

known attacks, and do not attempt to model risk inherent in novel 

attacks, as we do by considering device heterogeneity (although see 

the work of Ingols et al. [20] which briefly considers services and 

programs that could be targeted by a “zero day” attack). Second, 

they generally do not directly examine questions of depth in any 

manner analogous to our SCP approach, in which the adversary 

must transit through multiple heterogeneous devices to reach their 

goal (although see [21], which does consider the impact of traffic 

filtering through multiple layers of a network as a component of 

defense in depth). 



9. CONCLUSIONS 
DID is an important security paradigm for many types of networks 

and is one component among many that is important for measuring 

overall security. We have identified depth, width, and strength as 

three important characteristics of DID security.  

In this work, we provided a novel and general method to express 

the DID of a network in terms of security depth and width. We 

modeled a network’s DID characteristics using a novel colored 

attack graph approach that exposed the residual risks in a layered 

security architecture. The colors represented vulnerability types 

and enabled us to model the ability of an attacker to exploit a 

particular vulnerability if they have already successfully exploited 

that same vulnerability elsewhere in the network. 

To measure depth and width, we provided the novel metrics of SCP 

and MCC along with a proof sketch showing that exact SCP and 

MCC measurements are NP-Hard. We leave evaluations of strength 

(the third characteristic) for future work given the difficulty of 

measuring it rigorously and defensibly. Finally, we provided 

computationally efficient and effective approximation algorithms 

for determining SCP and MCC. 

We empirically tested our approaches on large randomly generated 

layered security architectures to show scalability and functionality 

for large networks. We also tested against ICS networks using a 

published ICS attack template to randomly generate conformant 

layered security architectures. This demonstrated functionality and 

applicability to one important DID domain. 

Overall, the most effectiveness algorithms were the greedy shortest 

path algorithm for SCP and our ensemble of color aware node cut 

algorithms for MCC. 

Performing these measurements can enable one to compare the 

relative DID security of a network over time or compare two 

different networks. This analysis can also guide enhancements to 

further strengthen a DID posture and thus increase overall attack 

resistance in critical and important infrastructure. 

10. ACKNOWLEDGMENTS 
This research was sponsored by the U.S. Army Research Labs and 

the National Institute of Standards and Technology (NIST). It was 

partially accomplished under Army Contract Number W911QX-

07-F-0023. The views and conclusions contained in this document 

are those of the authors, and should not be interpreted as 

representing the official policies, either expressed or implied, of the 

Army Research Laboratory, NIST, or the U.S. Government. The 

U.S. Government is authorized to reproduce and distribute reprints 

for Government purposes, notwithstanding any copyright notation 

hereon. 

11. REFERENCES 
 

[1]  U.S. National Security Agency, "Defense in Depth," 

[Online]. Available: 

https://www.nsa.gov/ia/_files/support/defenseindepth.pdf. 

[Accessed 25 06 2015]. 

[2]  MITRE, "Common Vulnerabilities and Exposures," 

[Online]. Available: https://cve.mitre.org/. 

[3]  U.S. Department of Homeland Security, "Recommended 

Practice: Improving Industrial Control Systems 

Cybersecurity with Defense-In-Depth Strategies," 10 2009. 

[Online]. Available: https://ics-cert.us-

cert.gov/sites/default/files/recommended_practices/Defense

_in_Depth_Oct09.pdf. 

[4]  B. Lyons, "Applying a Holistic Defense-in-Depth Approach 

to the Cloud," 25 07 2011. [Online]. Available: 

https://www.niksun.com/presentations/day1/NIKSUN_WW

SMC_July25_BarryLyons.pdf. 

[5]  S. Jordan, "Defense in depth: Employing a layered approach 

for protecting federal government information systems," 16 

11 2012. [Online]. Available: http://www.sans.org/reading-

room/whitepapers/bestprac/defense-depth-employing-

layered-approach-protecting-federal-government-

information-system-34047. 

[6]  S. Even and G. Even, Graph Algorithms, Cambridge, 2011.  

[7]  E. Byres, A. Ginter and J. Langill, "How Stuxnet Spreads - A 

Study of Infection Paths in Best Practice Systems," 2011. 

[Online]. Available: 

http://www.controlglobal.com/assets/11WPpdf/110228_Tof

ino_Stuxnet.pdf. 

[8]  "National Vulnerability Database," National Institute of 

Standards and Technology, [Online]. Available: 

http://nvd.nist.gov. 

[9]  P. Mell, R. Harang, "Minimizing Attack Graph Data 

Structures," in Tenth International Conference on Software 

Engineering Advances, Barcelona, 2015.  

[10]  G. S. Kc, A. D. Keromytis and V. Prevelakis, "Countering 

code-injection attacks with instruction-set randomization," in 

Proceedings of the 10th ACM conference on Computer and 
communications security, 2003.  

[11]  R. C. Linger, "Systematic generation of stochastic diversity 

as an intrusion barrier in survivable systems software," in 

Proceedings of the 32nd Annual Hawaii International 

Conference on Systems Sciences, 1999.  

[12]  B. Cox and D. Evans, "N-variant systems: a secretless 

framework for security through diversity," Usenix Security, 

2006.  

[13]  Y. Zhang, H. Vin, L. Alvisi, W. Lee and S. K. Dao, 

"Heterogeneous networking: a new survivability paradigm," 

in Proceedings of the 2001 workshop on New security 

paradigms, 2001.  

[14]  A. J. O'Donnell and H. Sethu, "On achieving software 

diversity for improved network security using distributed 

coloring algorithms," in Proceedings of the 11th ACM 

conference on Computer and communications security, 2004.  

[15]  K. Stouffer, J. Falco and K. Scarfone, "Guide to industrial 

control systems (ICS) security," NIST, 2011. 

[16]  D. Kuipers and M. Fabro, "Control systems cyber security: 

Defense in depth strategies," United States Department of 

Energy, 2006. 

[17]  P. A. Ralston, J. H. Graham and J. L. Hieb, "Cyber security 

risk assessment for SCADA and DCS networks," ISA 

transactions, vol. 46, no. 4, pp. 583-594, 2007.  



[18]  S. Jha, O. Sheyner and J. Wing., "Two formal analyses of 

attack graphs," in IEEE Computer Security Foundations 

Workshop, 2002.  

[19]  L. Wang, S. Noel and S. Jajodia, "Minimum-cost network 

hardening using attack graphs," Computer Communications , 

pp. 3812-3824, 2006.  

[20]  K. Ingols, M. Chu, R. Lippmann, S. Webster and S. Boyer, 

"Modeling modern network attacks and countermeasures 

using attack graphs," in Annual Computer Security 

Applications Conference, 2009.  

[21]  S. Jajodia, S. Noel, P. Kalapa, M. Albanese and J. Williams, 

"Cauldron mission-centric cyber situational awareness with 

defense in depth," in Military Communications Conference, 

2011.  

[22]  P. Mell, K. Scarfone and S. Romanosky, "NIST IR 7435: The 

Common Vulnerability Scoring System (CVSS) and Its 

Applicability to Federal Agency Systems," National Institute 

of Standards and Technology, 2007. 

 

 


