
Entropy-as-a-Service: Unlocking the Full Potential
of Cryptography

Apostol Vassilev and Robert Staples, NIST

Abstract: Securing the Internet requires strong cryptography, which depends on the availability of

good entropy for generating unpredictable keys and accurate clocks. Attacks abusing weak keys or

old inputs portend challenges for the Internet. EaaS is a novel architecture providing entropy and

timestamps from a decentralized root of trust, scaling gracefully across diverse geopolitical locales

and remaining trustworthy unless much of the collective is compromised.

Disclaimer
The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards

and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Introduction

Cryptography is fundamentally important for information security, whether information is data in transit over

the Internet or at rest on storage devices. Today, the security of data protected by cryptography depends not on

secret algorithms, but primarily on having strong keys and keeping them secret.

Generating strong cryptographic keys is no simple matter. Experts recommend using the output from

deterministic random bit generators (DRBGs), to generate keys for cryptographic applications [2]. However, the

sequence of numbers generated by a DRBG can be traced predictably to the seed (initial value) supplied to the

generator. Knowing the seed, one can reconstruct the sequence of numbers a particular DRBG produces. Thus,

DRBGs must be seeded with hard-to-guess random data from a reliable source.

In information theory, such sources are referred to as “high-entropy” sources that provide true randomness.

Usually they are based on nondeterministic physical processes such as ring oscillators or some kind of quantum

behavior. Most practical computer systems rely on events such as mouse movements, keyboard stroke timings,

network events and hard disk access times to generate hard-to-guess random data for seeding DRBG’s.

Although sometimes plausible, such sources often provide a limited amount of unpredictability, i.e. low

entropy, because, as in the case of headless or embedded devices, they lack these sources of unpredictability, cf.

[1]. This problem is exacerbated in cloud computing. Cloud computing environments often lack the sources of

non-determinism harnessed by traditional computers for harvesting entropy. Cloud service providers typically

use a single reference image of a guest virtual machine (a “golden” image) in order to create multiple instances

of it in response to user demand. Each instance often has very limited ability to harvest randomness.

Another domain where the demand for good cryptographic keys is strong is the Internet of Things, or “IoT”.

IoT devices tend to be small, resource-constrained, headless or embedded but their functional capabilities span a

wide range. Although characterizing the ability of IoT devices to generate good cryptographic keys is out of

scope for this paper, it is reasonable to think that some types of IoT devices with network connectivity and

modest computational power to perform asymmetric cryptographic operations may also benefit from the

proposed service architecture.

There is a growing need for strong entropy on the Internet and the Entropy-as-a-Service (EaaS) system is

designed to help.

Vassilev, Staples - 2

1 Recent Findings of Poor Entropy

The concerns about the potential weakness of cryptographic keys are far from just theoretical. This section

briefly reviews real-life examples of catastrophic security breaches resulting from poorly constructed or

predictable cryptographic keys.

1.1 Mining Your Ps and Qs

A recent study [1] provided one of the most comprehensive Internet-wide searches of SSH and TLS servers to

date, checking 12.8 million TLS and 23 Million SSH hosts.

In this survey, the researchers discovered alarming results: 5% of HTTPS and 10% of SSH hosts shared keys

because of insufficient entropy from the source used, allowing them to actually calculate the private keys of

0.5% of HTTPS hosts and 1% of SSH hosts.

Almost all vulnerable hosts were headless or embedded network devices like routers or firewalls. Such hosts

often run a pared-down Linux kernel and do not have the usual random events from input devices that a desktop

computer would have. As a result, there exists an “entropy hole” in which the output of /dev/urandom could

be constant across multiple boots for a period of time early in the boot process. In one case, the same key was

generated in over 25% of boots.

1.2 Entropy-starvation in Embedded Devices

We built on the approaches from the study discussed above [1] to investigate the strength of the Linux kernel

entropy sources. In particular, we simulated the behavior of an embedded or headless device, without a hard

drive or a keyboard/mouse, always starting with empty pool (i.e. no “seed”). We built a pared-down Linux

kernel with different combinations of kernel entropy input devices disabled. Depending on the combination of

entropy sources disabled, the entropy count in the pool took anywhere from 20 to 45 seconds to generate the

bare-minimum threshold of 112 bits – see Figure 1. More time was needed to reach the threshold when some

contributing sources were turned off, simulating environments with constrained resources.

This experiment illustrates the potential weakness of Linux kernel entropy sources in embedded/headless

Internet deployments, e.g., in cloud environments. We observed particularly strong demand for entropy through

the unblocking /dev/urandom interface with requests as high as 4096-bits shortly after boot when little random

data is accumulated, highlighted with the black dashed circle in Figure 1. This behavior of Linux in fact opened

the door for the exploits described in [1].

2 Entropy-as-a-Service

The security issues resulting from the effects of poor entropy discussed so far illustrate the fundamental

importance of good randomness for security – see also “The Importance of Entropy to Information Security”, A.

Vassilev and T. Hall, IEEE Computer, 47(2), pp.79-81, 2/2014.

The existing technological headwinds that hinder the implementation of robust random bit generation

capabilities in conventional computing devices make apparent the need for alternative means of providing high-

quality entropy to devices that cannot produce their own in sufficient quantity or quality.

Vassilev, Staples - 3

The widely available and highly redundant nature of the Internet creates an effective medium by which to

provide good random data to needy clients, in this case using a REST (cf., http://www.restapitutorial.com/)

interface, i.e. an Entropy-as-a-Service (EaaS) solution. Instead of relying solely on weak pseudo-random data

in classical computers, EaaS provides a novel and secure way of delivering high-entropy data to requesting

devices. EaaS leverages existing protocols and technologies, which makes adoption easy.

EaaS uses HTTP to transfer entropy payloads from the service to clients. To secure this transmission, the server

encrypts the data using the client’s provided public key and digitally signs the payload with the server’s own

private key.

2.1 A sketch of a protocol

The client makes a HTTP GET request to the EaaS server, with the number of bytes of random data to return,

and its own public key, which is used to encrypt the returned payload.

The structure of the server XML response is shown below.

Successful Response

<response>

 <entropy>

 encrypted base64-encoded

 random data

 </entropy>

 <timestamp></timestamp>

 <dsig></dsig>

</response>

Figure 1 Linux kernel entropy accumulation

http://www.restapitutorial.com/

Vassilev, Staples - 4

Here, the tags are: Entropy – the payload, encoded in base64 format; Timestamp; Signature (dsig).

2.2 Resolving the chicken-and-egg conundrum

Clients need a public key to access EaaS and request high-entropy data to strengthen their key generation

capabilities. How then, can a client have a strong public key to come to the EaaS system in the first place?

The critical observation here is that it is much easier and cheaper to generate strong keys out-of-band than to

implement robust random bit generation capabilities in conventional devices. Manufacturers of devices can,

and often do, generate strong keys in the factory and provision them on devices. This model of key provisioning

is well known and widely used in many industries, including smart card and TPM manufacturing. When a

customer receives a shipment of devices to deploy, they also receive through independent means the secrets

required to change the factory keys on each device and assume ownership of the devices.

In order for an adversary to break this model of provisioning and take control of a deployed device, they must

penetrate the manufacturer factory security and record every device key issued. In addition, the adversary must

monitor every single interaction between a device and EaaS. Missing just one such interaction would render the

attacker defeated. This sets a very high security bar for attackers.

Another mitigation against such potential attacks is to always mix the externally-obtained random data with

locally-generated pseudo-random data using suitable cryptographic mechanisms, e.g., hashing, and renew the

 Figure 2 Client key management

Vassilev, Staples - 5

EaaS access key on each round, as illustrated in Figure 2. Note that the mechanism for updating the client key

for accessing EaaS can be shown to provide perfect forward secrecy.

3 The EaaS architecture

The architecture of the Entropy-as-a-Service

system consists of two main parts: the client-side

and the server-side. The critical components of

the system are the entropy source, the EaaS server

and a secure device in the client systems capable

of providing strong isolation and protection of

cryptographic keys stored inside the device and

offering a set of basic cryptographic services.

3.1 The Server Side

The EaaS server is continuously fed random data

from the attached quantum source. The data

enters a FIFO-like buffer in the server’s RAM, and when a client request comes, the server reads the top value

off of the buffer, signs and encrypts it, and then sends it to the requester. The FIFO buffer shifts after every

request and when new data comes from the random source. The EaaS server ensures that the FIFO buffer is

erased prior to server shutdown and never paged to disk. Open implementations can help provide trust that this

does, in fact, occur.

3.2 The Client Side

The client side of the system consists of a classic computing device enabled with a dedicated hardware

component capable of storing secret cryptographic keys and seeds. The client system has a dedicated software

application bridging the communication between the EaaS and the hardware component. Examples of secure

hardware components are the “Trusted Platform Module”, or “TPM”, TrustZone in ARM processors, and the

IPT technology in Intel processors.

Additionally, if a client system or device does not have a secure hardware component, it can still use the EaaS

system. The presence of a hardware component simply provides further guarantees to the system or device

user, when present.

4 Attacks and their Built-In Mitigations

One important feature of EaaS is that it transfers entropy to clients in a secure fashion.

As can be seen in Figure 4, the protocol sketch, the signature and timestamp of the response allow the client to

verify the authenticity of both. Timestamping, in particular, prevents “response replay” attacks.

The digital signature protects against both man-in-the-middle attacks, when a malicious actor intercepts

messages and serves as a relay, and DNS poisoning attacks, in which a malicious actor either intercepts DNS

requests, or sets up a spoof server near the victim, provided the EaaS public key is provisioned on the client in

advance.

Attacks involving dishonest or curious EaaS server instances are mitigated by mixing data from several sources

together before use. Thus, even if multiple EaaS instances were somehow colluding against a specific client, if

the client can access just one source of non-colluding entropy, including its own weak entropy pool, the efforts

Figure 3 EaaS Ecosystem (Image Courtesy: Cornell Univ. Networks Course
Blog, https://blogs.cornell.edu/info2040/2012/09/26/7720/)

Vassilev, Staples - 6

of the malicious instances are mitigated, since they have no way of knowing the input from the other, good

sources.

5 Real-World Uses

5.1 Real world application: Attestation of cryptographic key strength

One example of the usefulness of this type of system is in assessing the security strength of an enterprise

system. Cryptography is fundamentally important for this task and the strength of cryptographic keys being

generated at the endpoints of the system is of great importance.

Endpoints using EaaS can attest the strength of keys generated from data coming from a known-good source.

Additionally, enterprises could stand up their own internal EaaS, and have complete trust over the entropy in

their endpoints.

5.2 Real world application: VM orchestration in cloud computing environments

Today, virtualization and cloud computing have become prevalent in the technology sphere.

Two virtual machine instances instantiated from a common (“golden”) image may demonstrate similar or even

identical internal state of the local entropy pool so gaining insight in one would allow insight into the other.

text

0

R(si)

R(si+1)

R(si+2)

R(si+3)

R(si+4)

Requester’s
public key

RAM

Entropy as a
Service
(EaaS)
proxy

EaaS server

ERROR: Halt

Continuous
TrueRBG

health
monitor

(SP 800-90B
tests)

Quantum
device

NIST
Internet
Time Server

NIST
Internet
Time Service
(ITS)

REST
Web service

HSM device

IoT client w/
network

capability,
i.e. device on the

IoT

H/W Root of Trust
chip;

BEST, if available, to
hold a provisioned
key pair.

Otherwise, a
protected memory/
file location may be
used

R(si) =
Hash[HSMj,
Quantumk]

seed =
Hash[EaaS1, …,
EaaSn, local];

Key =
DRBG(seed)

NOTE: EaaS1, …, EaaSn above indicate data from n
different EaaS server instances;
local indicates locally available random data, if any

Figure 4 - The Eaas Architecture

Vassilev, Staples - 7

However, this is easily remedied by using EaaS to feed unique random data into the image after cloning, or by

requesting some EaaS data on boot.

5.3 Helping the security on the Internet

Another important use case is that of headless or other embedded Internet devices that may be entropy-starved,

as can be seen in [1].

One way to fix this is to use EaaS to obtain entropy on devices upon boot up. The devices could also store

some entropy across boot cycles. Thus, a device is only vulnerable for a few seconds after the initial boot, until

the EaaS call is made but simple design decisions may prevent key generation in this small window of time. The

greatly improved behavior of Linux seeded with EaaS is shown in Figure 5.

One interesting effect illustrating the benefits of seeding early after boot with EaaS is visible in the change of

behavior of the Linux Kernel Process Scheduler (LKPS) – a critical component of the operating system. LKPS

needs random data to implement fair and efficient process scheduling. LKPS acquires random data through a

blocking interface and can only do that when there is sufficient amount of entropy accumulated in the kernel.

Notice that when Linux is seeded with EaaS, LKPS acquires its first random seed after about half the time

needed in the case of non-seeded Linux, shown in the lower part of Figure 5. The black oval indicates the missed

LKPS seeding due to a lack of sufficient entropy in the kernel. In other words, LKPS reaches its normal

operational regime much faster when Linux is seeded from the start, thereby improving the overall stability and

performance of the operating system without any additional design or configuration changes.

Figure 5 Linux seeded with EaaS

6 Conclusions and future plans

The proverbial “Achilles’ Heel” of the assurances from cryptographic security protection is the strength of the

keys used to protect critical data.

Vassilev, Staples - 8

EaaS stands to create the basis of a future ecosystem of servers which can provide verifiably high-quality

entropy to needy clients on request, thereby unlocking the full potential of cryptography. To facilitate the

creation of the ecosystem, we plan to share our server implementation, allowing other organizations or entities

to review, adopt, and host their own EaaS instances.

We also envision the need to develop criteria for establishing trustworthiness of servers participating in the

ecosystem. This, in turn, would allow users of EaaS to select and rely on a subset of servers from the ecosystem

that satisfies a desired level of trust/risk.

The authors welcome input and comments regarding EaaS.

7 References

[1] “Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices,” Proc. 21st Usenix

Security Symp. [Security 12], 2012; www.usenix.org/system/files/conference/usenixsecurity12/sec12-

final228.pdf

[2] NIST SP 800-90A, http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

http://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf
http://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

