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Abstract: Securing the Internet requires strong cryptography, which depends on the availability of 

good entropy for generating unpredictable keys and accurate clocks.  Attacks abusing weak keys or 

old inputs portend challenges for the Internet.  EaaS is a novel architecture providing entropy and 

timestamps from a decentralized root of trust, scaling gracefully across diverse geopolitical locales 

and remaining trustworthy unless much of the collective is compromised.  

Disclaimer 
The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards 

and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. 

 

Introduction 

Cryptography is fundamentally important for information security, whether information is data in transit over 

the Internet or at rest on storage devices. Today, the security of data protected by cryptography depends not on 

secret algorithms, but primarily on having strong keys and keeping them secret.   

Generating strong cryptographic keys is no simple matter. Experts recommend using the output from 

deterministic random bit generators (DRBGs), to generate keys for cryptographic applications [2]. However, the 

sequence of numbers generated by a DRBG can be traced predictably to the seed (initial value) supplied to the 

generator. Knowing the seed, one can reconstruct the sequence of numbers a particular DRBG produces. Thus, 

DRBGs must be seeded with hard-to-guess random data from a reliable source.  

In information theory, such sources are referred to as “high-entropy” sources that provide true randomness. 

Usually they are based on nondeterministic physical processes such as ring oscillators or some kind of quantum 

behavior. Most practical computer systems rely on events such as mouse movements, keyboard stroke timings, 

network events and hard disk access times to generate hard-to-guess random data for seeding DRBG’s. 

Although sometimes plausible, such sources often provide a limited amount of unpredictability, i.e. low 

entropy, because, as in the case of headless or embedded devices, they lack these sources of unpredictability, cf. 

[1].  This problem is exacerbated in cloud computing.  Cloud computing environments often lack the sources of 

non-determinism harnessed by traditional computers for harvesting entropy.  Cloud service providers typically 

use a single reference image of a guest virtual machine (a “golden” image) in order to create multiple instances 

of it in response to user demand.  Each instance often has very limited ability to harvest randomness.  

Another domain where the demand for good cryptographic keys is strong is the Internet of Things, or “IoT”.  

IoT devices tend to be small, resource-constrained, headless or embedded but their functional capabilities span a 

wide range. Although characterizing the ability of IoT devices to generate good cryptographic keys is out of 

scope for this paper, it is reasonable to think that some types of IoT devices with network connectivity and 

modest computational power to perform asymmetric cryptographic operations may also benefit from the 

proposed service architecture.  

There is a growing need for strong entropy on the Internet and the Entropy-as-a-Service (EaaS) system is 

designed to help. 
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1 Recent Findings of Poor Entropy 

The concerns about the potential weakness of cryptographic keys are far from just theoretical. This section 

briefly reviews real-life examples of catastrophic security breaches resulting from poorly constructed or 

predictable cryptographic keys. 

1.1 Mining Your Ps and Qs 

A recent study [1] provided one of the most comprehensive Internet-wide searches of SSH and TLS servers to 

date, checking 12.8 million TLS and 23 Million SSH hosts.  

In this survey, the researchers discovered alarming results: 5% of HTTPS and 10% of SSH hosts shared keys 

because of insufficient entropy from the source used, allowing them to actually calculate the private keys of 

0.5% of HTTPS hosts and 1% of SSH hosts. 

Almost all vulnerable hosts were headless or embedded network devices like routers or firewalls.  Such hosts 

often run a pared-down Linux kernel and do not have the usual random events from input devices that a desktop 

computer would have. As a result, there exists an “entropy hole” in which the output of /dev/urandom could 

be constant across multiple boots for a period of time early in the boot process.  In one case, the same key was 

generated in over 25% of boots. 

1.2 Entropy-starvation in Embedded Devices 

We built on the approaches from the study discussed above [1] to investigate the strength of the Linux kernel 

entropy sources. In particular, we simulated the behavior of an embedded or headless device, without a hard 

drive or a keyboard/mouse, always starting with empty pool (i.e. no “seed”). We built a pared-down Linux 

kernel with different combinations of kernel entropy input devices disabled. Depending on the combination of 

entropy sources disabled, the entropy count in the pool took anywhere from 20 to 45 seconds to generate the 

bare-minimum threshold of 112 bits – see Figure 1. More time was needed to reach the threshold when some 

contributing sources were turned off, simulating environments with constrained resources.  

This experiment illustrates the potential weakness of Linux kernel entropy sources in embedded/headless 

Internet deployments, e.g., in cloud environments. We observed particularly strong demand for entropy through 

the unblocking /dev/urandom interface with requests as high as 4096-bits shortly after boot when little random 

data is accumulated, highlighted with the black dashed circle in Figure 1. This behavior of Linux in fact opened 

the door for the exploits described in [1].   

2 Entropy-as-a-Service 

The security issues resulting from the effects of poor entropy discussed so far illustrate the fundamental 

importance of good randomness for security – see also “The Importance of Entropy to Information Security”, A. 

Vassilev and T. Hall, IEEE Computer, 47(2), pp.79-81, 2/2014.  

The existing technological headwinds that hinder the implementation of robust random bit generation 

capabilities in conventional computing devices make apparent the need for alternative means of providing high-

quality entropy to devices that cannot produce their own in sufficient quantity or quality. 
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The widely available and highly redundant nature of the Internet creates an effective medium by which to 

provide good random data to needy clients, in this case using a REST (cf., http://www.restapitutorial.com/) 

interface, i.e. an Entropy-as-a-Service (EaaS) solution.  Instead of relying solely on weak pseudo-random data 

in classical computers, EaaS provides a novel and secure way of delivering high-entropy data to requesting 

devices.  EaaS leverages existing protocols and technologies, which makes adoption easy. 

EaaS uses HTTP to transfer entropy payloads from the service to clients.  To secure this transmission, the server 

encrypts the data using the client’s provided public key and digitally signs the payload with the server’s own 

private key. 

2.1 A sketch of a protocol 

The client makes a HTTP GET request to the EaaS server, with the number of bytes of random data to return, 

and its own public key, which is used to encrypt the returned payload.   

The structure of the server XML response is shown below.  

Successful Response 

<response> 

  <entropy> 

     encrypted base64-encoded   

     random data 

  </entropy> 

  <timestamp></timestamp> 

  <dsig></dsig> 

</response> 
 

 

 

 

Figure 1 Linux kernel entropy accumulation 

http://www.restapitutorial.com/
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Here, the tags are: Entropy – the payload, encoded in base64 format; Timestamp; Signature (dsig). 

2.2 Resolving the chicken-and-egg conundrum  

Clients need a public key to access EaaS and request high-entropy data to strengthen their key generation 

capabilities. How then, can a client have a strong public key to come to the EaaS system in the first place?  

The critical observation here is that it is much easier and cheaper to generate strong keys out-of-band than to 

implement robust random bit generation capabilities in conventional devices.   Manufacturers of devices can, 

and often do, generate strong keys in the factory and provision them on devices. This model of key provisioning 

is well known and widely used in many industries, including smart card and TPM manufacturing.  When a 

customer receives a shipment of devices to deploy, they also receive through independent means the secrets 

required to change the factory keys on each device and assume ownership of the devices.  

In order for an adversary to break this model of provisioning and take control of a deployed device, they must 

penetrate the manufacturer factory security and record every device key issued. In addition, the adversary must 

monitor every single interaction between a device and EaaS. Missing just one such interaction would render the 

attacker defeated. This sets a very high security bar for attackers.  

Another mitigation against such potential attacks is to always mix the externally-obtained random data with 

locally-generated pseudo-random data using suitable cryptographic mechanisms, e.g., hashing, and renew the 

                                                           Figure 2 Client key management 
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EaaS access key on each round, as illustrated in Figure 2. Note that the mechanism for updating the client key 

for accessing EaaS can be shown to provide perfect forward secrecy.   

3 The EaaS architecture 

The architecture of the Entropy-as-a-Service 

system consists of two main parts: the client-side 

and the server-side.  The critical components of 

the system are the entropy source, the EaaS server 

and a secure device in the client systems capable 

of providing strong isolation and protection of 

cryptographic keys stored inside the device and 

offering a set of basic cryptographic services.  

3.1 The Server Side 

The EaaS server is continuously fed random data 

from the attached quantum source.  The data 

enters a FIFO-like buffer in the server’s RAM, and when a client request comes, the server reads the top value 

off of the buffer, signs and encrypts it, and then sends it to the requester.  The FIFO buffer shifts after every 

request and when new data comes from the random source. The EaaS server ensures that the FIFO buffer is 

erased prior to server shutdown and never paged to disk.  Open implementations can help provide trust that this 

does, in fact, occur. 

3.2 The Client Side 

The client side of the system consists of a classic computing device enabled with a dedicated hardware 

component capable of storing secret cryptographic keys and seeds. The client system has a dedicated software 

application bridging the communication between the EaaS and the hardware component. Examples of secure 

hardware components are the “Trusted Platform Module”, or “TPM”, TrustZone in ARM processors, and the 

IPT technology in Intel processors. 

Additionally, if a client system or device does not have a secure hardware component, it can still use the EaaS 

system.  The presence of a hardware component simply provides further guarantees to the system or device 

user, when present. 

4 Attacks and their Built-In Mitigations 

One important feature of EaaS is that it transfers entropy to clients in a secure fashion.  

As can be seen in Figure 4, the protocol sketch, the signature and timestamp of the response allow the client to 

verify the authenticity of both. Timestamping, in particular, prevents “response replay” attacks.  

The digital signature protects against both man-in-the-middle attacks, when a malicious actor intercepts 

messages and serves as a relay, and DNS poisoning attacks, in which a malicious actor either intercepts DNS 

requests, or sets up a spoof server near the victim, provided the EaaS public key is provisioned on the client in 

advance. 

Attacks involving dishonest or curious EaaS server instances are mitigated by mixing data from several sources 

together before use.  Thus, even if multiple EaaS instances were somehow colluding against a specific client, if 

the client can access just one source of non-colluding entropy, including its own weak entropy pool, the efforts 

Figure 3 EaaS Ecosystem (Image Courtesy: Cornell Univ. Networks Course 
Blog, https://blogs.cornell.edu/info2040/2012/09/26/7720/) 
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of the malicious instances are mitigated, since they have no way of knowing the input from the other, good 

sources. 

5 Real-World Uses 

5.1 Real world application: Attestation of cryptographic key strength 

One example of the usefulness of this type of system is in assessing the security strength of an enterprise 

system. Cryptography is fundamentally important for this task and the strength of cryptographic keys being 

generated at the endpoints of the system is of great importance.  

Endpoints using EaaS can attest the strength of keys generated from data coming from a known-good source.  

Additionally, enterprises could stand up their own internal EaaS, and have complete trust over the entropy in 

their endpoints. 

5.2 Real world application: VM orchestration in cloud computing environments  

Today, virtualization and cloud computing have become prevalent in the technology sphere.   

Two virtual machine instances instantiated from a common (“golden”) image may demonstrate similar or even 

identical internal state of the local entropy pool so gaining insight in one would allow insight into the other.  
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However, this is easily remedied by using EaaS to feed unique random data into the image after cloning, or by 

requesting some EaaS data on boot.  

5.3 Helping the security on the Internet 

Another important use case is that of headless or other embedded Internet devices that may be entropy-starved, 

as can be seen in [1].   

One way to fix this is to use EaaS to obtain entropy on devices upon boot up.  The devices could also store 

some entropy across boot cycles.  Thus, a device is only vulnerable for a few seconds after the initial boot, until 

the EaaS call is made but simple design decisions may prevent key generation in this small window of time. The 

greatly improved behavior of Linux seeded with EaaS is shown in Figure 5.  

One interesting effect illustrating the benefits of seeding early after boot with EaaS is visible in the change of 

behavior of the Linux Kernel Process Scheduler (LKPS) – a critical component of the operating system. LKPS 

needs random data to implement fair and efficient process scheduling. LKPS acquires random data through a 

blocking interface and can only do that when there is sufficient amount of entropy accumulated in the kernel. 

Notice that when Linux is seeded with EaaS, LKPS acquires its first random seed after about half the time 

needed in the case of non-seeded Linux, shown in the lower part of Figure 5. The black oval indicates the missed 

LKPS seeding due to a lack of sufficient entropy in the kernel. In other words, LKPS reaches its normal 

operational regime much faster when Linux is seeded from the start, thereby improving the overall stability and 

performance of the operating system without any additional design or configuration changes.      

 

 

Figure 5 Linux seeded with EaaS 

6 Conclusions and future plans 

The proverbial “Achilles’ Heel” of the assurances from cryptographic security protection is the strength of the 

keys used to protect critical data.   
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EaaS stands to create the basis of a future ecosystem of servers which can provide verifiably high-quality 

entropy to needy clients on request, thereby unlocking the full potential of cryptography. To facilitate the 

creation of the ecosystem, we plan to share our server implementation, allowing other organizations or entities 

to review, adopt, and host their own EaaS instances.  

We also envision the need to develop criteria for establishing trustworthiness of servers participating in the 

ecosystem. This, in turn, would allow users of EaaS to select and rely on a subset of servers from the ecosystem 

that satisfies a desired level of trust/risk.   

 

The authors welcome input and comments regarding EaaS. 
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