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Introduction 
Many software security vulnerabilities result from the exploitation of ordinary coding flaws, rather than 
design or configuration errors. One study found that 64% of vulnerabilities are the result of such common 
bugs as missing or incorrect parameter checking, leaving the application open to common vulnerabilities 
including buffer overflows or SQL injection [1].  While this statistic may be discouraging, it also means that 
better functionality testing can have the additional benefit of significantly improved security. 

Testing that can reveal complex faults that occur only under rare conditions may be especially effective.     
Empirical data show that most failures are triggered by a single parameter value, or interactions between 
a small number of parameters, generally two to six, a relationship known as the interaction rule [2]. An 
example of a single-value fault might be a buffer overflow that occurs when the length of an input string 
exceeds a particular limit.  Only a single condition must be true to trigger the fault:  input length > buffer 
size.  A 2-way fault is more complex, because two particular input values are needed to trigger the fault.  
One example is a search/replace function that only fails if both the search string and the replacement 
string are single characters.  If one of the strings is longer than one character, the code does not fail, thus 
we refer to this as a 2-way fault.  More generally, a t-way fault involves t such conditions. 

     Figure 1 shows the cumulative percentage of faults at t = 1 to 6 for various applications studied by NIST 
and others [3][4][5][6].  As shown in Figure 1, the fault detection rate increases rapidly with interaction 
strength, up to t=4, reaching 100% detection with 4 to 6-way interactions. Thus, the impossibility of 
exhaustive testing of all possible inputs is not a barrier to high assurance testing.  That is, even though we 
cannot test all possible combinations of input values, failures involving more than six variables are 
extremely unlikely because they have not been seen in practice, so testing all possible combinations 
provides very little benefit beyond testing 4 to 6-way combinations. 

 



  

 Figure 1. Cumulative fault distribution    

 The effectiveness of any software testing technique depends on whether test settings corresponding to 
the actual faults are included in the test sets.  When test sets do not include settings corresponding to 
actual faults, the faults will not be detected. Conversely, we can be confident that the software works 
correctly for t-way combinations contained in passing tests. For security evaluations, it is not enough that 
failures are unlikely to occur in ordinary usage, because attackers seek out even complex flaws. Testing 
only to verify requirements coverage is insufficient for security, or even for assurance of critical 
functionality.   

Matrices known as covering arrays can be computed to cover all t-way combinations of variable values, 
up to a specified level of t (typically t ≤ 6), making it possible to efficiently test all such t-way interactions 
[7].  But any test set, whether constructed as a covering array or not, contains a large number of 
combinations.  We can measure this combinatorial coverage, i.e., the coverage of t-way combinations in 
a test set, for a better understanding of test set quality.  These measurements contribute quantitative 
input for risk analysis activities, towards providing answers to questions such as: how many different 
scenarios have been checked? Are the untested scenarios important? How significant is the risk if we do 
not increase the test coverage? Do the market share or other external forces (e.g., conformance with 
standards) justify increasing the test coverage? 

Experience report – case studies for software security  
SBA Research (https://www.sba-research.org/) and NIST (http://www.nist.gov/) have developed a 
research program introducing combinatorial testing (CT) based approaches to software security testing. 
The program aims to bridge the gap between combinatorial testing methods and security testing and, in 
the process, establish a new research field: combinatorial security testing. We describe in the following 
our case studies and experiences so far.  

https://www.sba-research.org/
http://www.nist.gov/


Parsing untrusted content on the web 
The W3C online tidy service1 is designed to detect and correct HTML code. It accepts a URL through a web 
form, then parses its HTML source code and reports any fixes that should be made. It has been online for 
many years now, and has been exposed to multiple instances of malformed code. 

In coordination with W3C, SBA Research received permission for an external web application penetration 
test. We performed an input parameter modeling (IPM) of the Document Object Model (DOM) and 
generated an attack grammar. The resulting IPM was an enhancement of our previous CT-based 
approaches for web security testing [11], [12], [13]. The NIST ACTS tool was used then to produce test 
cases that ensured 100% coverage of the two-way and three-way parameter interactions of the DOM, as 
recent studies demonstrated its effectiveness for web security testing [14].  We tested the online service 
against the generated test suite using a prototype XSS injection tool and succeeded in discovering a 
previously-unknown Remote-Cross-Site-Scripting (RXSS) vulnerability of this popular service. 

The sophistication of the attack vector produced by the combinatorial testing technique might explain 
why the vulnerability has gone unnoticed all this time. W3C has promptly fixed the offending code and 
acknowledged SBA Research’s efforts and responsible disclosure2. We note that in this case the source 
code of the W3C online tidy service was not available (black-box testing) but only a web interface to 
interact with it. 

Web application security 
A second example use of automated web penetration testing was demonstrated with the Koha integrated 
library management system3. Koha is used by various organizations, including the UNESCO, the Spanish 
Ministry of Culture, and the Vienna Cultural Museum. In this case, the source code is available under an 
open source license. SBA Research developed an IPM towards testing the API of this web-based 
application. The IPM modelled the parameters passed back and forth encoded as URL parameters. We 
differentiated two groups of tests, one using a normal (non-privileged user) account of the system and 
one using an administrator (privileged user) account. 

We successfully modelled 43 URLs accepting between 5 and 15 parameters each of various values. We 
used the NIST ACTS tool to produce test suites that fully covered all possible 2-, 3-, 4- and 5-way parameter 
combinations. We carried out the testing experiments through the XSS injection tool we used to also test 
the W3C online tidy service. 

                                                           
1 http://services.w3.org/tidy/tidy 
2 https://www.w3.org/blog/2014/12/rxss-security-audit-results/ 
3 https://koha-community.org/ 

http://services.w3.org/tidy/tidy
https://www.w3.org/blog/2014/12/rxss-security-audit-results/
https://koha-community.org/


We discovered more than 50 cases of XSS vulnerabilities4 and we reported these to the developers5 6. 
Two related CVEs (CVE-2015-4630, CVE-2015-4631) are now assigned and await final approval by the 
MITRE team. 

System call testing 
The kernel of an operating system is its central authority to enforce security features. There exists an 
extremely large user base (e.g., in 2013 more than 1.5 million Android devices were activated per day7). 
In the case of Linux kernel, some manual testing approaches exist, e.g., the Trinity fuzzer8 and the Linux 
test project9. Related work in this domain also includes fuzzing techniques for system call testing [15] . 

We generated IPMs for the Linux system call API by introducing novel combinatorial modelling 
methodologies [16]. Furthermore, we developed a highly-configurable combinatorial kernel testing 
framework, namely ERIS, which encompasses automated test execution and logging capabilities. The 
testing framework allows any test generator to be plugged in for generating automated tests for the Linux 
system calls. In this regard, we have used the NIST ACTS tool to produce test suites covering a variety of 
t-way combinations depending on the number of system call arguments. Our testing experiments 
revealed various erroneous cases that were flagged for further analysis. 

Hardware Trojan detection 
Contemporary hardware design shares many similarities with software development practice.  The 
insertion of malicious functionality in hardware (also known as “hardware Trojan horse”) is a realistic 
threat. The assumptions are that the Trojan activation is controlled using a (short) input pattern out of 
billions possibilities and the effect of the Trojan’s payload can be observed in the output of the circuit. 
The attack can be as subtle as introducing a faulty operation on a cryptographic core and deriving the 
cryptographic key afterwards [8]. 

Established functional testing techniques from the hardware domain do not cope well with Trojans due 
to the enormous space of possible input signals used as activation patterns. Modelling the attack as a 
functional black-box testing problem, a combinatorial testing approach reduced the size of the test suites 
(and, as a consequence, the testing time) by three orders of magnitude compared to alternative ones and, 
by construction, guaranteed multiple activations of the Trojan (if existent in first place). This line of 
research resulted also in new, optimized CAs with interaction strengths beyond six (6) and introduced 
combinatorial testing as an efficient means not only for software but for hardware security testing as well 
[9], [10]. 

                                                           
4 https://www.exploit-db.com/exploits/37389/  
5 https://koha-community.org/security-release-koha-3-20-1/  
6 https://koha-community.org/security-release-koha-3-16-12/  
7 http://www.androidcentral.com/android-reaches-900-million-activations 
8 http://codemonkey.org.uk/projects/trinity/  
9 https://github.com/linux-test-project/ltp  

https://www.exploit-db.com/exploits/37389/
https://koha-community.org/security-release-koha-3-20-1/
https://koha-community.org/security-release-koha-3-16-12/
http://www.androidcentral.com/android-reaches-900-million-activations
http://codemonkey.org.uk/projects/trinity/
https://github.com/linux-test-project/ltp


Protocol interaction testing 
Software implementations of the Transport Layer Security (TLS) protocol specification are a critical 
component for the security of Internet communications and beyond. Software bugs and attacks still 
surface in implementations of the TLS protocol. This can be attributed to the complexity of the protocol 
and its large number of interactions. System designers and integrators are faced with a challenging task: 
they must ensure that the TLS implementation used in their system can handle correctly all cipher suites 
(the named combination of various cryptographic algorithms negotiated between a client and a server in 
TLS), and, at the same time, also conform to a desired level of a security.  

We presented a coverage measurement for available TLS cipher suites recommendations [17]. The cipher 
suites were measured and analyzed using a combinatorial approach and the NIST CCM tool, after deriving 
the appropriate IPMs. None of the proposed recommendations covered all 2-way combinations of 
algorithms appearing in a cipher suite; this may be due to incompatibilities or security considerations. 
Implications for aspects of test quality were also suggested. For example, increasing the number of 
potential interactions between configuration settings may also increase the risk of bugs or vulnerabilities 
arising from feature interactions among two or more components. Thus, measuring the level of 2-way, 3-
way, and higher strength interactions may be informative for testing.  

Conclusions 
We have introduced CT-based approaches for security testing and presented our case studies and 
experiences so far. The success of the presented research program motivates further intensive research 
on the field of combinatorial security testing. In particular, security testing for the Internet of Things (IoT) 
is an area where these approaches may prove particularly useful. IoT systems send and receive data from 
a large (often continually changing) set of interacting devices and the number of potential communicating 
pairs increases with the square of the number of devices. Combinatorial methods are ideally suited for 
the IoT environment, where testing can involve a very large number of nodes and combinations. 
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