
Restricting Insider Access through Efficient
 
Implementation of Multi-Policy Access Control Systems
 

Peter Mell James Shook Serban Gavrila
 

ABSTRACT 
The American National Standards Organization has stan­
dardized an access control approach, Next Generation Ac­
cess Control (NGAC), that enables simultaneous instantia­
tion of multiple access control policies. For large complex 
enterprises this is critical to limiting the legally authorized 
access of insiders. However, the specifications describe the 
required access control capabilities but not the related algo­
rithms. Existing reference implementations have inefficient 
algorithms and thus do not fully express the NGAC’s ability 
to scale. For example, the primary NGAC reference imple­
mentation took several minutes to simply display the set of 
files accessible to a user on a moderately sized system. To 
solve this problem we provide a efficient algorithm, reduc­
ing the overall complexity from cubic to linear. Our other 
major contribution is to provide a novel mechanism for ad­
ministrators and users to review allowed access rights. We 
provide an interface that appears to be a simple file directory 
hierarchy but in reality is an automatically generated struc­
ture abstracted from the underlying access control graph 
that works with any set of simultaneously instantiated ac­
cess control policies. Our work thus provides the first effi­
cient implementation of NGAC while enabling user privilege 
review through a novel visualization approach. It thereby 
enables the efficient simultaneous instantiation of multiple 
access control policies that is needed to limit insider access 
to information (and thereby limit information leakage). 

1. INTRODUCTION 
Most operating systems provide simple access control mech­

anisms that are focused on enabling users to specify which 
other users have access to their files (i.e., Discretionary Ac­
cess Control (DAC) [13]). However, many other access con­
trol approaches exist that provide enhanced features, espe­
cially for enterprise environments. This includes capabilities 
relevant to particular paradigms (e.g., for scenarios with fi­
nancial transactions, handling of classified data, and con­
flict of interest) as well as greater simplicity in administer-

ACM ISBN 978-1-4503-2138-9. 

DOI: 10.1145/1235 

ing access control at scale (e.g., Role Based Access Control 
(RBAC) [5]). However, methods to use multiple approaches 
within a single enterprise have been lacking, that can result 
in enterprises settling for using a single simple model (e.g., 
DAC). 

This can result in restrictions on insider access being de­
fined very loosely, increasing the risk of insiders having un­
necessary access to sensitive information and sharing that in­
formation outside of the organization. To ensure that users 
don’t inappropriately share data, enterprises may then re­
sort to the costly and inefficient approach of separating dif­
ferent data types (e.g., military classification levels) into to­
tally distinct and isolated networks. Alternately, they may 
accept the risk of data being leaked, which can have disas­
trous results (e.g., classified documents being made public). 

The American National Standards Institute (ANSI) has 
addressed this problem by standardizing an access control 
approach, Next Generation Access Control (NGAC) [6]. The 
NGAC stems from and is in alignment with the Policy Ma­
chine (PM) [9], a research effort by the National Institute 
of Standards and Technology (NIST) to develop a general 
purpose Attribute Based Access Control (ABAC) framework 
[12]. The NGAC is designed to enable simultaneous instan­
tiation of multiple access control policies. The specifica­
tion describes what constitutes a valid implementation using 
set theoretic notation but does not provide implementation 
guidance. This approach then leaves room for multiple com­
peting approaches and implementations. In this work we 
will explore how the inefficiencies of the existing approaches 
make it infeasible to tightly restrict user access to data in 
large enterprises and we will provide scalable replacement 
algorithms that solve this problem. 

To do this, we improve upon the algorithms in the open 
source NGAC reference implementation provided by NIST 
[3] in order to test achievable efficiency and scalability. Among 
other increases in efficiency, ours is the first to provide quadrat­
ically bounded algorithms for the retrieval of the set of user 
accessible objects where the existing reference implementa­
tions take cubic time (we are linear in making an access 
control decision for a single object). Furthermore, our algo­
rithms are bounded to operating only on the access control 
sub-graph pertinent to a particular user (not the entire en­
terprise access control graph). This work is thus the first to 
demonstrate that NGAC can be scalable through the use of 
efficient graph algorithms. This in turn makes it feasible to 
tightly restrict insider access to data through use of multiple 
types of access control policies (and thus limit the leakage 
of sensitive data). 



For our initial efforts, we took the initial NGAC proof-of­
concept implementation created by NIST [3] and evaluated 
the runtime of the algorithms. These were created by a 
highly skilled programmer who implemented the access con­
trol operations from the specification as they were stated 
in set theory notation (using a direct translation approach). 
This resulted in a functional system but one that could only 
scale to a couple of hundred users. At this scale, it took 
several minutes for a user to visualize their set of available 
objects. A complexity analysis of the code revealed cubic al­
gorithms, explaining the lack of scalability of the implemen­
tation. We also looked at the other publicly available imple­
mentation of the NGAC which is provided as open source 
by Medidata [2]. Here, we found a user privilege determina­
tion algorithm that spent unnecessary time processing parts 
of the graph not accessible to the relevant user as well as 
a slow cubic algorithm for retrieval of all objects available 
to the user. It appears that with both implementations, it 
was an attempt to directly implement the NGAC set theory 
definitions that yielded the inefficient algorithms. 

To solve this problem, we took a graph theoretic view 
to design an efficient algorithm for access control determi­
nation. We started by transforming the NGAC set theory 
into a graph representation (this was straightforward as the 
specifications themselves often use graphs to illustrate ex­
amples). Unfortunately, the resultant graphs had unusual 
features and constraints (with five different types of nodes, 
each with its own semantics). Thus, the primary challenge 
was in how to apply standard graph algorithms to this rep­
resentation. Our solutions in general was to use breadth 
first search (BFS) and a depth first search (DFS) variant 
that performs a type of topological sort as primitive oper­
ations to allow us to cascade information from one type of 
node to another and percolate that information through the 
graph until the final answers are determined. The resultant 
algorithm is linear. Furthermore, it is not linear in relation 
to the entire access control graph, but only to the portion 
of the graph relevant to a particular user. This can offer 
even greater speedups, avoiding the need to even traverse 
the entire graph. 

Besides not providing algorithms for calculating access 
control decisions, the NGAC standard does not provide any 
guidance on visualizing access control results to allow re­
view of user privileges (see [11] and [15] for evidence of how 
this ‘before the fact audit’ capability is critically important). 
We presume the reason they do not provide this capability 
is because each access control policy may have its own pre­
ferred method for administrative review and user interac­
tion. However, such a policy oriented approach isn’t ideal in 
a system that simultaneously implements multiple policies 
(which is the whole point of NGAC). For example, the exist­
ing NIST PM approach requires users to choose a particular 
access control policy first and then navigate just within that 
policy structure to review user access (requiring the admin­
istrators and users to be knowledgeable about each access 
control policy and which files are covered by which poli­
cies). Because of these problems, there exists a need for a 
generic approach for user rights visualization that will work 
for any set of policies that can be instantiated within NGAC 
(without the staff having to understand said policies). Fur­
thermore, this default visualization would ideally be auto­
matically generated from the existing access control graph 
to avoid additional and excessive administrative burden. 

To meet this need we provide the user (or the person re­
viewing the user’s privileges) the visual experience of travers­
ing a typical file directory hierarchy, as used by most major 
operating systems. However, under the hood the user is ac­
tually traversing the NGAC access control graph. We lever­
age one of the graph node types (object attributes) to act as 
file ’directories’ enabling users to access their files. The user 
visually sees a tree but is actually traversing a graph with 
an exponential number of possible paths (where we generate 
local views on demand to avoid exponential calculations). 
Since the directory tree is automatically generated from the 
underlying graph, it can thus provide default user access 
to files simultaneously protected by multiple access control 
policies. An interesting side effect of our approach is that 
there can be multiple ways for a user to access the same 
file, without the need to explicitly create symbolic links. 
Thus, a document can be both stored under a person’s per­
sonal directory and under a project directory with no du­
plication, system inconsistency, or need to explicitly create 
virtual links. 

NGAC is not the only multi-policy access control sys­
tem available. The current market leader appears to be 
the XACML standard [14] from OASIS [4]. Others include 
ABACα [12], HGABAC [16], and ABAC for Web Services 
[18]. The market leader XACML has been shown empir­
ically to lack scalability in [17] where 3 different XACML 
implementations all experienced performance problems as 
the number of policies was increased past 100 (each policy 
in XACML contains the access rules for a set of target ob­
jects). This is not surprising as all of these logic-based for­
mula approaches have been shown to be NP-complete with 
respect to enabling an administrator to review who can per­
form what actions. This is because policy review for such 
systems maps to the satisfiability problem [7]. This makes 
them undesirable for large enterprise systems with respect to 
ensuring the restrictions on insider access to sensitive data 
to avoid information leakage by insiders. 

In summary, the contributions of this paper include: 

1.	 the first ever study demonstrating the scalability of the 
NGAC multi-policy access control system, 

2.	 a linear time algorithm for determining the objects and 
associated operations available to a user, 

3.	 a novel visualization approach to enable review of user 
object access on NGAC systems, 

4.	 and the ability for enterprises to efficiently implement 
multiple access control policies (which can limit insider 
access to information and thereby limit information 
leakage). 

The remainder of this paper is structured as follows. Sec­
tion 2 provides an overview of access control graphs within 
NGAC and provides a definition of when a user is allowed 
to access an object. Section 3 presents our access control al­
gorithms and section 4 presents our visualization approach. 
Section 5 discusses related work and section 6 concludes. 

2. ACCESS CONTROL GRAPH OVERVIEW 
Using the NGAC specification [6] set theoretic definitions, 

we can form access control graphs as follows. There are 
5 types of nodes to be created: user (u), object (o), user 



pc2pc1

oa4

oa1

oa5

o2o1u1 o3

ua1

ua2

oa3
oa2

r

r

Figure 1: Diagram showing allowed edge relation­
ships between the five different sets of NGAC node 
types 

attribute (ua), object attribute (oa), and policy class (pc). 
All edges are directed. u nodes are sources with edges to ua 
nodes. ua nodes may have edges to ua, oa, and pc nodes1 . 
oa nodes may have edges to oa and pc nodes. o nodes may 
have edges to oa and pc nodes. pc nodes are sinks. Cycles 
and self-loops are prohibited. ua to oa edges are labeled with 
a set of one or more allowed operations (ops) (e.g., read or 
write). All other edges are unlabeled. All nodes must have 
a path to at least one pc node (without using any ua→oa 
edges). For complexity evaluation purposes, the number of 
u, o, ua, and oa nodes are unbounded. However, the number 
of pc nodes and the number of distinct ops are assumed to 
be small constants. 

These connectivity restrictions result in several features 
that we can leverage. The overall graph is a directed acyclic 
graph (DAG) that can be divided into two DAGs: a user 
DAG (with u and ua nodes) and an object DAG (with o 
and oa nodes). The set of u nodes act as sources for the 
user DAG and the set of o nodes act as sources for the object 
DAG. The set of ua to oa edges bridge the two DAGs and 
this bridge is the only place where edges are labeled, with 
operations (ops). We refer to the set of nodes on either side 
of these bridging edges as border nodes. The set of pc nodes 
act as sinks for both DAGs. The resulting overall graph is 
weakly connected. 

An arbitrary access control graph can now be represented 
as shown in figure 1. Arrows within a set represent that 
nodes of that type can have edges to other nodes of that 
type, with no cycles allowed. This means that there are no 
edges between nodes within the set of pc nodes (the same is 
true for the set of u nodes and the set of o nodes). The ar­
rows from the set of ua nodes to the oa nodes nodes represent 
the bridge edges (they contain the ops labels and connect the 
user and object DAGs). The bridge edges are the focal point 
in determining user privileges (see definition 1 below). 

We now discuss how to determine user privileges. The 
ANSI NGAC standard provides set theoretic notation to 
enable computation of privileges abstracted away from any 
particular implementation. In this work, we describe the 
methodology using a graph oriented approach. Our graph 
theoretic derivation of the ANSI NGAC set theoretic defini­

1In the NGAC specification, ua→pc edges are allowed but 
are not used for access control decisions. 

Figure 2: Example NGAC access control graph. 

tion of how to calculate access control is as follows2: 

Definition 1. For a user, u1, to perform an operation, 
op1, on some object, o1, there must exist a set of ua to oa 
edges with label op1 such that the tail of each edge is reachable 
from u1 and the head of each edge is reachable from o1 and 
where the set of pc nodes reachable from the set of head nodes 
is a superset of the set of pc nodes reachable from o1. 

Figure 2 shows an example NGAC access control graph 
which we will evaluate using definition 13 . Note that the 
dashed edges represent the bridge edges that connect the 
user DAG to the object DAG. The edge label ‘r’ represents 
read access. In this figure, user u1 can read o1 and o2 but 
not o3: 

•	 o1 requires pc2 because there is a path connecting the 
two. This requirement is fulfilled by the edge ua1 →oa1 

providing ‘read’ access(because ua1 is reachable from 
u1, oa1 is reachable from o1, and pc2 is reachable from 
oa1). Thus by definition 1, u1 can read o1. 

•	 o2 requires pc1 and pc2 because there is a path connect­
ing o2 with both pc nodes. This requirement is fulfilled 
by a combination of the edges ua2 → oa4 (which covers 
the pc1 requirement) and ua1 → oa1 (which covers the 
pc2 requirement). Note that these two bridge edges 
would not have fulfilled the requirements had they dif­
ferent labels. Thus by definition 1, u1 can read o2. 

•	 o3 requires pc1 and pc2 because there is a path con­
necting o3 with both pc nodes. Edge ua2 →oa4 covers 
the pc1 requirement for o3. However, there does not 
exist a ua to oa edge that will satisfy o3’s requirement 
to cover pc2. Edge ua1 → oa1 does not work because 
oa1 is not reachable from o3 (which is required in def­
inition 1). Thus by definition 1, u1 cannot read o3. 

2We don’t include the NGAC definitions here because they 
use completely different set theoretic notation that would 
require extensive explanation and that is available in the 
NGAC standard). 
3The edge ua2 → pc1 fulfills the requirement in the speci­
fication that all u and ua nodes have a path to a pc node 
(without using bridge edges). However, the edge is not used 
for determining user privileges and will not be discussed fur­
ther. 



u1 = ‘Bob’ 
ua1 = ‘Bob Privileges’ 
ua2= ‘Death Star Personnel’ 
o1 = ‘Tatooine Vacation’ 
o2 = ‘Defense Systems Finances’ 
o3 = ‘Energy Shield’ 
oa1 = ‘Bob Personal’ 
oa2 = ‘Bob Deathstar Files’ 
oa3 = ‘Technical Designs’ 
oa4 = ‘Deathstar Project’ 
oa5 = ‘Defense Systems’ 
pc1 = ‘Access Control System 1’ 
pc2 = ‘Access Control System 2’ 

Table 1: Node Labels for Access Control Graph in 
Figure 2 

Throughout this paper, we will use Figure 2 as an exam­
ple where an accountant, Bob, is working on the defense 
systems finances for a deathstar. In this context, we can 
interpret the nodes as shown in Table 1. Note how the user 
attribute nodes represent ‘teams’ to which Bob belongs (his 
own team4 and the death star personnel team) and the ob­
ject attribute nodes provide a kind of hierarchy for different 
projects. In this example Bob has access to his own data 
(oa1, oa2, and o1) as well as the overall project and finan­
cial material (oa4, oa5, and o2). However, Bob does not have 
access to any of the technical designs (oa3 and o3). 

3. ACCESS CONTROL ALGORITHMS 
We now provide a linear time complexity graph algorithm 

to answer two of the most common types of access control 
requests: 1) is user, u1, allowed to perform operation, op1, 
on object, o1 and 2) what is the set of accessible objects 
for a user, u1, and what operations can u1 perform on each 
object. Both of these determination can be made through a 
slight variation on the same algorithm, which we refer to as 
‘Fastg’. 

3.1 The Fastg Algorithm 
The Fastg algorithm first isolates the problem to just the 

object DAG through labeling each border oa node reachable 
from u1 with a set of operations (from the ops labels on 
the bridge edges). Then, the set of objects of ‘interest’ are 
found by performing a reverse BFS from the set of reachable 
border oa nodes (without traversing any bridge edges). If we 
are simply trying to determine if u1 can access a particular 
object, we intersect this object with the set of objects of 
interest (forming a new set of objects of interest). Finally, 
we perform a DFS from each object of interest and percolate 
up through the graph the set of reachable pc nodes and 
the set of reachable operations. Finally, for each reachable 
object, we compare the set of operations associated with 
each reachable pc node to determine if any operations are 
valid. For an operation to be valid it must be associated 
with all the pc nodes reachable from the o node. 

In more detail, the algorithm is as follows: 

4We had to create ua1 to represent Bob’s access rights be­
cause the NGAC specification does not allow creation of u 
to oa edges. 

1.	 BFS from u1 to identify the set reachable ua border 
nodes (do not traverse oa nodes). For this set of ua 
border nodes, let the set of ‘active’ edges be the ua→oa 
outedges. 

2.	 For each ‘active’ edge, label the oa head node with the 
ops edge label (eliminating duplicates). At this point, 
each reachable border oa node is labeled with a set of 
access rights. 

3.	 Create a temporary node that is a successor of each 
reachable border oa node 

4.	 Perform a backwards BFS from the temporary node 
(traversing edges in reverse) to find the set of objects 
of ‘interest’. Do not traverse any bridge edges. Once 
done, delete the temporary node. 

5.	 If the goal is to determine if u1 can access a specific 
object, then intersect this object with the set of objects 
of interest to form a new set of objects of interest (this 
set will contain either a single node or be the empty 
set). 

6.	 For each object of interest, perform a DFS to find the 
reachable pc nodes. However, when performing a DFS, 
label all nodes with the information found such that 
subsequent DFSs can take advantage of the previously 
computed information. Each object of interest then is 
labeled with its set of reachable pc nodes. These repre­
sent ‘required’ pc nodes for each object. Note that to 
record on each node which pc nodes are reachable, we 
need to modify the traditional DFS such that we only 
process a node (record the set of reachable pc nodes) 
if all of its successors have been processed. If a node 
with unprocessed children is pulled off the stack, we 
must put it back on the stack. The second time it is 
pulled off, it will be guaranteed that its children will 
all be processed. 

7.	 While performing the modified DFSs from the previous 
step, perform an additional data propagation. When a 
reachable border oa node is labeled with its reachable 
pc nodes, associate those pc nodes with the operation 
labels from step 2. Then use the normal operations of 
the DFS to propagate these pc/operation pairings up 
to the root of the tree (one of the objects of interest). 
We use the same ‘trick’ from the previous step to reuse 
information between DFSs. 

8.	 For each object of interest, compare the set of required 
pc nodes against the pc/operation pairings. If for some 
object, o1, an operation, ops1, exists that is associated 
with each required pc node, then u1 is allowed to per­
form ops1 on o1 per definition 1. 

The algorithm is apparently quadratic because we may 
perform a DFS from each object node. However, in steps 
6 and 7 we store DFS results at each processed node such 
that the information can be reused by other DFSs. As a 
result, the set of executed DFSs is guaranteed to traverse 
each edge in the object DAG at most twice. The BFS from 
step 1 traverses each edge in the user DAG once and each 
bridge edge once. Step 2 traverses each bridge edge once. 
And step 4 traverses each object DAG edge at most once. 
In summation, each edge in the graph is then guaranteed to 



Number of user nodes = .1 ∗ n 
Number of user attribute nodes = .1 ∗ n 
Number of object nodes = .5 ∗ n 
Number of object attribute nodes =.3 ∗ n 
Number of pc nodes = 3 

Table 2: Proportion of Nodes of Each Type 

be traversed at most 3 times (most much less and some not 
at all). This makes the algorithm linear with respect to the 
number of edges, O(m). 

3.2 Empirical Algorithm Results 
In this section, we evaluate the scalability of our Fastg al­

gorithm versus the two available reference implementations 
(NIST PM and Medidata). For our experimental platform 
we used an Ubuntu virtual machine with two cores and 10 
Gb of memory running on a commodity laptop. For soft­
ware to encode the algorithms, we used Python 2.7 and Net­
workX (a graph algorithms library). Faster execution times 
can be achieved through use of more efficient programming 
languages (e.g., C) but our goal is to evaluate relative per­
formance of the algorithms. These results then are an upper 
bound on what can be achieved relative to execution time. 
With respect to memory, none of the algorithms used even a 
majority of the available memory and thus we do not report 
memory usage statistics. 

For our empirical scalability study, we used the Fastg vari­
ant that computes the set of accessible objects for a partic­
ular user and the set of operations available for each object. 
For comparitive purposes, we coded up the analogous al­
gorithms from both NGAC reference implementations (the 
NIST PM [3] and Medidata [2]) using the same language 
and libraries. These implementations are discussed in 1 and 
then further in 5. The Medidata algorithm was perfectly 
analogous (identical inputs and outputs), however the NIST 
PM algorithm performed additional work not required to 
obtain our desired output. For example, the NIST PM algo­
rithm outputs the oa nodes accessible to a user, not just the 
o nodes. To avoid unfairly penalizing the NIST PM algo­
rithm, we included in our implementation only those parts 
relevant to obtaining the desired output. 

To test the scalability of the algorithms, we generated 
access control graphs that varied in size from 1000 to 700,000 
nodes. We used the number of nodes,n, as the independent 
variable and then scaled all other graph features relative to 
n. The proportion of nodes of each type (u, ua o, ou, and 
pc) are shown in table 2. For edges, we calculated an Erdos-
Renyi edge probability, p, used to create random graphs [8] 
such that the mean number of edges per node would be no 
more than 5. Then, for each candidate edge allowed by the 
NGAC specification, we used p to determine whether or not 
to place the candidate edge in the graph. The only exception 
is that we limited the length of the u to pc paths in the user 
DAG and o to pc paths in the object DAG to be at most 5. 
We did this for the user DAG by dividing the ua nodes into 
4 groups labeled with consecutive integers. Edges leaving a 
node were only allowed to go to nodes in groups with higher 
labels (edges within a group were not allowed). A similar 
operation was performed for the object DAG. 

There do not exist any references that one can leverage 
for creating random NGAC graphs. Thus, we assigned the 

Figure 3: Execution time on graphs up to 10,000 
nodes 

above parameters according to qualitative expert domain 
knowledge to create as realistic NGAC graphs as possible. 
To make sure that any particular parameter choice did not 
unfairly hamper one of the algorithms, we ran numerous ex­
periments (not shown) where for a graph size of 2000 nodes, 
we varied the following parameters: proportion of nodes of 
a particular type (u, ua, o, oa, and pc), number of layers 
for the user and object DAG (to include turning off this fea­
ture), and the mean number of edges per node. We chose 
graphs of 2000 nodes for this experiment because that was 
the maximum size at which all three algorithms had a less 
than 20 second execution time. Some of these parameter 
changes produced no significant effect on execution time 
(e.g., number of pc nodes) while others produced signifi­
cant changes (e.g., those related to the number of edges in 
the graph). The number of edges in the graph was affected 
by two factors: the number of candidate edges and the p 
variable. The number of candidate edges was changed by 
varying the proportion of ua and oa nodes and the number 
of layers. The p variable used to calculate whether or not 
to instantiate a candidate edge was changed by varying the 
parameter for the mean number of edges per node. While 
we were able to change the execution times through param­
eter manipulation, the relative execution times between the 
three algorithms remained the same. 

In the figures, we refer to our algorithm as ‘Fastg’ and 
the other two as ‘Medidata’ and ‘NIST PM’. For each data 
point, we took the mean of 300 trials. We limited each 
algorithm to taking no more than 60 seconds, at which point 
we terminated further use of that algorithm. In an actual 
NGAC deployment, the required response time to show a 
user their accessible objects is more likely to be less than 2 
seconds. 

Figure 3 shows the timing for all three algorithms for 
graphs up to 10,000 nodes. At 10,000, the Fastg algorithm 
took a mean of .077 seconds to retrieve the set of objects 
available to a particular user. The NIST PM algorithm 
was 285 times slower, taking 22 seconds. The Medidata 
algorithm exceeded the 60 second limit at just 4000 nodes. 
Given that the required response time in an actual deploy­
ment is likely just a couple of seconds, the Medidata and 
NIST PM algorithms are limited to being used on graphs 



Figure 4: Execution time on graphs up to 700,000 
nodes 

with less than a couple of thousand nodes (that conform to 
our parameters). 

Figure 4 shows the performance of the Fastg algorithm on 
graphs up to 700,000 nodes. The Fastg algorithm takes less 
than .4 seconds at 700,000 nodes. Given our assumed oper­
ation requirements of less than 2 seconds, this makes Fastg 
scalable up to the largest graphs that we produced (that con­
form to our parameters). We did not generate larger graphs 
due to execution time and memory limitations on our code 
used to produce the NGAC graphs. 

Note, great care must be taken in interpreting these re­
sults. Our intention was to create as realistic graphs as 
possible and then show that the relative performance of the 
Fastg greatly outperformed that of the Medidata and NIST 
PM solutions. In this work, we have done that both theo­
retically and, in this section, empirically. However, NGAC 
graphs from operational deployments may have different pa­
rameter values or properties not modeled by our graph sim­
ulator. Such differences can greatly effect the absolute tim­
ing values (as we saw in our experiments on graph of 2000 
nodes in changing the parameter values). Thus, we caution 
the reader to avoid using this work to calculate a precise 
upper bound on the size of graph that can be processed by 
any of the three algorithms. That said, the linear nature of 
Fastg should make it suitable for use on most any realistic 
NGAC graph. 

4. ACCESS CONTROL VISUALIZATION 
These graph algorithms enable access control decisions to 

be made while simultaneously instantiating multiple access 
control policies. However, a major question remaining is how 
to effectively communicate this set of privileges to the users. 
To this end we have designed an access control visualization 
approach that meets the following goals: 

1.	 Leverage the access control graph to create a default 
visualization method for review of user file access 

2.	 Abstract away the access control policy details such 
that the users (or administrators) do not need to un­
derstand the policies nor need to know which of the 
files are covered by which policies 

Meeting these goals will enable efficient review of user privi­
leges to best limit insider access to information (and thereby 
limit information leakage). 

The NIST PM implementation, version 1.5, meets the first 
goal by leveraging the access control graph. This approach 
uses the PM itself as a root node in a file hierarchy and then 
the instantiated access control policies as the second level 
folders. Clicking on the access control policies enables the 
user to traverse the object DAG backwards (displaying only 
oa nodes pertaining to the chosen policy) until reaching the 
desired files. Unfortunately, this approach does not meet our 
second goal because their system requires users to navigate 
to their files by knowing which files are covered by which 
policies. 

Our solution is to use the user’s name as the root in a 
hierarchical file structure. The second level ‘folders’ are the 
labels for the border oa nodes reachable from the user’s 
u node. Given the importance of the border edges in the 
NGAC access control definition 1, it is natural to use the 
border oa nodes as the first layer of file organization for the 
user. When a user clicks on an oa node name, the next 
level folders that appear are the oa node predecessors in the 
object DAG for which the user has some privilege. This 
graph traversal stops whenever the user reaches the object 
leaf nodes. 

In our approach, we abstract away the complexity of the 
access control graph to make it appear to the user as if they 
are traversing the usual hierarchical directory structure used 
by default in all major operating system. In reality, the 
user is traversing possibly overlapping paths of the graph. 
The number of such paths is exponential and so we perform 
calculations only on the path actually being traversed by the 
user. Furthermore, there may be multiple ways for a user to 
access a particular file. This enables built in flexibility that 
previously had to be provided explicitly with artifacts such 
as symbolic links. 

Figure 5 provides an example view of a user’s accessible 
objects taken from one of our testing datasets covering a 
medical scenario. While it appears to be a typical file hier­
archy, note how there are multiple paths by which to tra­
verse to particular files (demonstrating that we are actually 
traversing a graph). For example, file ‘mrec1’ is available 
via three different paths in the graph: root → TS, root → 
MedRecords, root → alicehome → AliceMedRecords. In 
fact, all files shown in this visualization depict this multi-
path behavior except for the files ‘DAC uattrs rep’ and ‘alice 
home rep’. 

4.1 Predecessor Node Visualization Algorithm 
We now provide an efficient algorithm to determine what 

files and folders to show when a user clicks on some ‘folder’. 
Initially, this will be one of the labels for the border oa 
nodes reachable from the user node, u1. The algorithm is as 
follows: 

1.	 Let the ‘folder’ on which the user clicks correspond to 
an oa node, x (note that this algorithm assumes that 
x is a folder that u1 has the ability to view). Find 
the ‘covered’ pc nodes for x by performing a BFS and 
including all reachable pc nodes. 

2.	 Find the set of predecessors of x and for each predeces­
sor node, y, find the required pc nodes by performing 
a BFS and including all reachable pc nodes. 



Figure 5: Example hierarchical visualization of a 
user access rights directed acyclic graph 

3.	 For each predecessor node, y, if the set of required pc 
nodes is equal to the covered pc nodes for x then add it 
to a list of nodes available for display. If a node doesn’t 
make it on this list in this step it doesn’t meant that u1 

can’t access it (simply we currently don’t have enough 
evidence). 

4.	 If there are predecessor nodes not on the list of nodes 
available for display, execute the ‘Border oa Labeling’ 
algorithm described below for u1. 

5.	 For each predecessor node, y, not on the available node 
list, perform a BFS from y to find all labeled border 
oa nodes (from the previous step). Let the ‘available 
rights’ for y be the union of the access right/pc node 
pairings from these reachable labeled border oa nodes. 
From this set of pairings, create a hash table where the 
keys are the access rights and the values the set of pc 
nodes. If there exists any key for which the values are 
a superset of the required pc nodes for y, then add y 
to the list of nodes available for display. 

The ‘Border oa Labeling’ algorithm used above in step 4 
is as follows: 

1.	 BFS from u1 to identify the set reachable ua border 
nodes. For this set of ua border nodes, let the set of 
‘active’ edges be the ua→oa outedges. 

2.	 For each ‘active’ edge, label the oa head node with the 
ops edge label (eliminating duplicates). At this point, 
each reachable border oa node is labeled with a set of 
access rights. 

Figure 6: Example File Hierarchy for Access Control 
Graph in Figure 2 

3.	 From each pc node, perform a backwards BFS (travers­
ing edges backwards) to find labeled oa border nodes. 
For each such node, label it with the set of reachable 
pc nodes. 

4.	 Each processed oa border node is then labeled with 
the cross product of the union of the access right labels 
with the set of reachable pc nodes (forming the access 
right/pc node pairings). 

The combination of these two algorithms is linear, O(n + 
m) (assuming as usual that the number of distinct access 
right types and policy classes are a small constant). 

4.2 Visualization Examples 
We now return to our example of the accountant Bob 

who is working on the defense systems finances for a death-
star. We will use our visualization approach to show the 
files available to Bob in Figure 2 using the node labels from 
Table 1. 

The fully available hierarchical tree for user Bob is shown 
in Figure 6. This assumes that Bob has clicked on the ‘Bob 
Personal’ folder followed by a click on the ‘Bob Deathstar 
Files’ subfolder. It also assumes that Bob has clicked on the 
‘Deathstar Project’ folder followed by a click on the ‘Defense 
Systems’ folder. These four clicks expand out visually all of 
Bob’s available folders and files as shown in Figure 6. Note 
that the ‘Technical Designs’ folder and the ‘Energy Shield’ 
file are not visible because they are not accessible to user 
Bob. 

A feature of this approach is that user Bob has access to 
the ‘Deathstar Finances’ file through both his own docu­
ments folder as well as the ‘Deathstar Project’ folder (log­
ically this is because Bob is the owner/maintainer of that 
file). This again demonstrates the power of the approach 
where the user visually sees a hierarchy but can access the 
same files through multiple paths (without the need to ex­
plicitly create such linkages). 

Note that while Bob has access to the ‘Deathstar Project’ 
folder, he is unable to see anything regarding the ‘Technical 
Designs’ folder including the ‘Energy Shield’ file. For Bob to 



o1ua1

pc2pc1

oa2

oa1

oa4

u1

oa3
r

r

Figure 7: Minimal Access Control Graph Contain­
ing an Orphaned File 

be able to access the ‘Technical Designs’ folder and ‘Energy 
Shield’ file, there would have to exist an edge oa5 → oa2, 
oa3 → oa2, oa5 → oa1, or oa3 → oa1 (see Figure 2). Alter­
nately, the existence of an edge o3 → oa1 or o3 → oa2 would 
be sufficient to allow Bob access to the ‘Energy Shield’ file 
per Definition 1. However, for this our visualization ap­
proach would not allow Bob to use the ‘Technical Designs’ 
folder because it would still not be accessible to Bob. In this 
case, Bob could access the ‘Energy Shield’ file through the 
folder ‘Bob Personal’. Thus, when a user can’t get to one of 
their files through some particular oa node, there generally 
exists another oa node that will permit access through the 
visualization approach. 

4.3 Orphan Files 
However, there does exist the possibility that a user may 

not be able to traverse the visualization to reach a file that by 
Definition 1 is accessible. We call such files ‘orphan’ objects. 
None of the examples in the NGAC or the PM specification 
will generate orphans. Likewise, in our own test datasets 
we have never experienced an orphan file. Nevertheless, the 
possibility exists and so we discuss approaches to allowing 
for this eventuality. 

For an orphan file to exist for a particular user, there must 
be an object node that is accessible but each path from the 
object to the set of reachable border oa nodes has a node 
that is not accessible. This happens when for each path, 
there exists an intermediate node that ‘requires’ a policy 
class not provided by the path’s border oa node. An inter­
mediate oa node requires a policy class when it has a path 
to that pc node (see Definition 1). Note that while the in­
termediate nodes on each path are not accessible, each path 
provides user privileges to the object such that the union of 
the received privileges enables the object to be accessible. 

Figure 7 shows the simplest possible access control graph 
with an orphan file. o1 is accessible because it receives pc1 

read privileges from oa2 and pc2 read privileges from oa1. 
However, oa3 is not accessible because it requires pc1 priv­
ileges but only receives pc2 privileges from oa1. Likewise, 
oa4 is not accessible because it requires pc2 privileges but 
only receives pc1 privileges from oa2. 

We have identified three different approaches to handling 
the possibility of orphan files such that the user can still find 
and access them (in order of increasing cost of computation 
time): 

1.	 Enable the user to perform a search through all acces­
sible files as a method to have access to any orphaned 
files. Our algorithm to find accessible objects (section 

3.1) provides a list of all accessible files, both orphaned 
and available through the visualization approach. The 
user can simply perform a regular expression search on 
that list. 

2.	 In the user’s visualization of their file hierarchy, pro­
vide a folder at the second tier (alongside the reachable 
border oa node labels) that is labeled ‘Orphan Files’. 
The orphan files can be detected when first launching 
the visualization and then listed in that directory. Our 
quadratic algorithm for finding orphan files is provided 
below. 

3.	 Show the user orphaned files while they are travers­
ing their hierarchical file structure. Whenever a non-
accessible folder is encountered, perform a search for 
orphaned nodes only above the non-accessible folder. 
If orphans are encountered then show them in the cur­
rent directory with a special designation to indicate 
that they are orphans. To the best of our knowledge, 
this approach requires executing our full quadratic ‘find 
orphans’ algorithm (below) followed by a reverse BFS 
to determine which orphans should map to the non-
accessible folder. 

4.4 Orphan Node Detection Algorithm 
This algorithms enables one to detect orphan nodes for a 

user node u1. The algorithm is as follows: 

1.	 Execute the ‘Border oa Labeling’ algorithm to label 
the border oa nodes, reachable from u1, with access 
right/pc node pairings (see section ??). 

2.	 Create a hash table where the keys will be node names 
and each value will be a set of access right/pc node 
pairings. 

3.	 From each visible border oa node, x, BFS up (travers­
ing the edges backwards) over the object DAG (i.e., 
don’t traverse any ua→oa edges). For each visited 
node, y, add it to the hash table (if it isn’t already 
there). Add x’s access right/pc node pairings to the 
value set for y. 

4.	 For each key in the hash table, x, perform a BFS 
down (traversing edges forwards) to find the required 
pc nodes. If the value set for x does not contain some 
privilege for which all required pc nodes are covered, 
then delete this key from the hash table. In more 
detail, the value set must have access right/pc node 
pairings with some privilege, p, where the associated 
pc nodes in the pairings with p must be a superset of 
the required pc nodes. The resulting hash table will 
contain only nodes that are accessible to u. 

5.	 For each key, x, in the reduced hash table that refer­
ences an o node (not an oa node), BFS down (travers­
ing edges forwards) attempting to reach a visible bor­
der oa node (as identified previously). However, mod­
ify the BFS to only traverse nodes that are referenced 
as keys in the reduced hash table. Nodes not in the 
hash table are either not accessible to u or will not pro­
vide a path to one of the visible border oa nodes. If the 
BFS terminates without reaching any visible border oa 
node, add x to a list of orphaned objects. 



Steps 3 and 5 cause the algorithm to be quadratic. Steps 
4 is described as being quadratic (for clarity) but can be 
made linear if one initiates the required BFSs from the pc 
nodes. The overall algorithm is quadratic. 

5. RELATED WORK 
In this section, we discuss the NGAC reference imple­

mentations and algorithms that preceded this work. There 
are two public NGAC/PM reference implementations; both 
available on GitHub [10]. NIST provides a reference imple­
mentation in Java that was the primary reference used in 
the development of the NGAC [3]. The company Medidata 
provides an implementation in Ruby that they use for their 
software products in the medical field [2]. A third GitHub 
policy machine implementation is available from Colorado 
State, but we will not reference it further as it focuses on 
using the NIST PM implementation to manage application-
level operating system resources in Linux environments [1]. 

For the NIST implementation, we evaluated version 1.5. 
Their code related to determining which resources are avail­
able to a particular user is cubic, which explains the slow 
execution time even on small test sets. We provided our al­
gorithms to NIST PM development team and they plan to 
use a variant on our access control algorithm as well as our 
visualization approach in an upcoming software release. 

For the Medidata code base, we evaluated their default im­
plementation in the file ‘\lib\policy machine.rm’ of version 
1.1.0. Note that they have alternate implementations that 
we did not analyze that use a graph database and relational 
database (they do not recommend use of the graph database 
as they claim the ‘interface is slow’ and we didn’t have ac­
cess to their relational database to test it). For their default 
‘in memory’ implementation, they have an O(nm 2) cubic 
execution time method ‘accessible objects’ that determines 
which files a user can access. Their method ‘is privilege’, to 
determine if a user has a specific privilege on a particular 
object, is also quadratic while ours is linear. We provided 
them our algorithms and they plan to use them to improve 
their default implementation. 

It appears that both implementations are inefficient due 
to a direct translation of the set theoretic NGAC notation 
into computer code. 

6. CONCLUSION 
The lack of an efficient system to simultaneously instan­

tiate security policies has resulted in the use of blunt mech­
anisms to restrict user access to data (e.g., reliance on just 
DAC and isolated networks for differing levels of data sensi­
tivity). This has resulted in insiders having access to more 
data than is necessary to perform their job function, exacer­
bating the impact of insiders leaking sensitive information. 
The NGAC provides a solution to this important problem 
by enabling the instantiation of multiple security policies 
within a single access control system. It quite appropri­
ately provides requirements without specifying implementa­
tion details, allowing for competing approaches. However, 
the existing reference implementations use cubic algorithms, 
which raised into question whether or not NGAC can be im­
plemented efficiently. Furthermore, NGAC did not provide 
guidance on how to visualize the results of the systems, mak­
ing it unclear how perform reviews and audits of user access. 

This work addressed both of these issues. We provide 

the first implementation of NGAC using an efficient linear 
time algorithm (bounded to the parts of the graph relevant 
to the user). Furthermore, we provide a novel visualization 
approach that works by default with multiple access control 
policies and that enables efficient review of user access rights. 

7. REFERENCES 
[1] Colorado state ‘tinypm’ implementation on github. 
[2] Medidata policy machine code on github, version 1.1.0. 
[3] Nist policy machine code on github, version 1.5. 
[4] Organization for the advancement of structured
 

information standards (OASIS).
 
[5] ANSI. American national standard for information 

technology, role-based access control (RBAC). 
Technical Report ANSI INCITS 359-2004, American 
National Standards Institute, 2004. 

[6] ANSI. Information technology - next generation access 
control - functional architecture (NGAC-FA). 
Technical Report ANSI-INCITS 499-2013, American 
National Standard Institute, 2013. 

[7] P. Biswas, R. Sandhu, and R. Krishnan. Label-Based 
Access Control: An ABAC Model with Enumerated 
Authorization Policy. In Proceedings of the 2016 ACM 
International Workshop on Attribute Based Access 
Control, ABAC ’16, pages 1–12, New York, NY, USA, 
2016. ACM. 

[8] B. Bollobas. Random graphs. Cambridge studies in
 
advanced mathematics. Cambridge university press,
 
Cambridge, New York (N. Y.), Melbourne, 2001.
 

[9] D. Ferraiolo, S. Gavrila, and W. Jansen. Policy
 
machine: Features, architecture, and specification.
 
Technical Report NISTIR 7987 Revision 1, National
 
Institute of Standards and Technology, Oct. 2015.
 

[10] GitHub. Github code repository. 
[11] V. Hu, D. Ferraiolo, and D. Kuhn. Assessment of 

Access Control Systems. Interagency report, National 
Institute of Standards and Technology (NIST), 2006. 

[12] X. Jin, R. Krishnan, and R. Sandhu. A Unified 
Attribute-Based Access Control Model Covering DAC, 
MAC and RBAC, pages 41–55. Springer Berlin 
Heidelberg, Berlin, Heidelberg, 2012. 

[13] NCSC. A Guide to Understanding Discretionary 
Access Control in Trusted Systems. Number 
NCSC-TG-003. National Computer Security Center, 
Fort George G. Meade, Maryland, USA, 1 edition, 
Sept. 1987. 

[14] OASIS. eXtensible access control markup language 
(XACML) Version 3.0., OASIS Standard, Jan. 2013. 

[15] A. C. O’Connor and R. J. Loomis. 2010 Economic 
Analysis of Role-Based Access Control. Technical 
Report RTI Project Number 0211876, RTI 
International, 3040 Cornwallis Road Research Triangle 
Park, NC 27709, Dec. 2010. 

[16] D. Servos and S. L. Osborn. HGABAC: Towards a 
Formal Model of Hierarchical Attribute-Based Access 
Control, pages 187–204. Springer International 
Publishing, Cham, 2015. 

[17] F. Turkmen and B. Crispo. Performance evaluation of 
XACML PDP implementations. In Proceedings of the 
2008 ACM Workshop on Secure Web Services, SWS 
’08, pages 37–44, New York, NY, USA, 2008. ACM. 

http:machine.rm


[18] E. Yuan and J. Tong. Attributed based access control 
(ABAC) for web services. In IEEE International 
Conference on Web Services (ICWS’05), page 569, 
July 2005. 




