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ABSTRACT: Biological and solid-state nanometer-scale pores
are the basis for numerous emerging analytical technologies for
use in precision medicine. We developed Modular Single-
Molecule Analysis Interface (MOSAIC), an open source
analysis software that improves the accuracy and throughput
of nanopore-based measurements. Two key algorithms are
implemented: ADEPT, which uses a physical model of the
nanopore system to characterize short-lived events that do not
reach their steady-state current, and CUSUM+, a version of the
cumulative sum statistical method optimized for longer events
that do. We show that ADEPT detects previously unreported
conductance states that occur as double-stranded DNA
translocates through a 2.4 nm solid-state nanopore and reveals
new interactions between short single-stranded DNA and the vestibule of a biological pore. These findings demonstrate the
utility of MOSAIC and the ADEPT algorithm, and offer a new tool that can improve the analysis of nanopore-based
measurements.

Protein and solid-state nanopores (Figure 1A) are the basis
for single-molecule measurements of a variety of analytes

including ions,1,2 single-stranded RNA and DNA,3−10 double-
stranded DNA,11,12 proteins,13−19 synthetic polymers,20−23 and
metallic nanoparticles.24,25 The method is conceptually simple.
An electric potential applied across a nanopore that spans two
electrically isolated chambers (filled with electrolyte solutions)
results in an ionic current with a mean value ⟨i0⟩ (Figure 1B).
Single molecules that reversibly partition into the pore cause a
series of pulses or current blockades (Figure 1B). The change
in pore conductance is caused by the volume exclusion of
mobile ions from the pore20,21 and interactions between the
ions and the analyte.5,21,26 The change in conduc-
tance4,20,21,26,27 and the residence time of analytes in the
pore8,20,21 are used to estimate the analyte size,20,21 effective
charge,21 and dipole moment.28

Analyte-induced events appear as single or multiple
conductance state levels, arising from changes in the analyte
conformation or interactions in the pore9,11,20,21,27,29,30 (Figure
1C). Multiple conductance level events differ from the gating of
ion channels, where the channel fluctuates between two states,
open and closed.31 These fluctuations are well characterized
using hidden Markov models32−34 and kinetic simulations.34,35

On the other hand, several analysis techniques have been

applied to analyze nanopore-based single-molecule data
including threshold detection,4,21 slope- or area-based techni-
ques,36,37 the cumulative sum (CUSUM) algorithm,38 charge
conservation,39 and probabilistic machine-learning techni-
ques.20,40 While these approaches are effective when the
residence times of analytes in the nanopore are long (compared
to the characteristic time constant of the system), they are not
useful for characterizing short-lived events. To more accurately
characterize short events, we developed a technique that
models the ionic current response with an equivalent electrical
circuit.26,41 This algorithm, when applied to the interaction of a
polydisperse mixture of a synthetic polymer with the
Staphylococcus aureus α-hemolysin (αHL) nanopore, recovered
18-fold more events per unit time at high measurement
bandwidth (B = 100 kHz), reduced the constraints on data
acquisition by permitting polymers to be separated at lower
bandwidth (B = 10 kHz), and improved the resolving power in
the low mass regime (to polymers with molecular weight ≈ 370
g/mol).
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Here, we describe Modular Single-Molecule Analysis Inter-
face (MOSAIC), an improved data analysis tool for analyzing
nanopore data. We implemented two algorithms in MOSAIC:
ADEPT, the equivalent electrical circuit model described
above,26,41 and an improved version of CUSUM that is suitable
for analyzing events with relatively long residence times in the
pore. The software is extensible, and allows many commonly
used data formats, signal conditioning, and data processing
algorithms to be seamlessly integrated. Below, we demonstrate
the features and utility of MOSAIC when applied to data
measured with both biological and solid-state nanopores.

■ MATERIALS AND METHODS
Solid-State Nanopore Measurements. Solid-state nano-

pore data were reanalyzed from Briggs et al.42 Briefly,
nanopores were fabricated in 50 μm × 50 μm, 10 nm thick
low-stress silicon nitride (SiNx) TEM windows (Norcada,
Canada) via the controlled breakdown (CBD) method47 in a 1
M NaCl buffer (pH 10, 10 mM NaHCO3). Nanopore
measurements of double-stranded DNA (dsDNA) were
performed in 3.6 M LiCl, 10 mM HEPES (pH 8) using highly
purified 50 base pair (bp) dsDNA fragments (NoLimits no.
SM1421, Life Technologies). Data were low-pass filtered at 100
kHz with a hardware 4-pole Bessel filter (Axopatch 200B) and
digitized using a National Instruments USB-6351 DAQ card
(Austin, TX) at a sampling rate, Fs = 500 kHz.
Biological Nanopore Measurements. Nanopore meas-

urements were performed using quartz capillaries with a (≈ 1
μm diameter) aperture on one end,26,43,44 within a custom
polycarbonate test cell with ≈ 200 μL volume (Electronic
Biosciences, San Diego, CA). Analytes were dissolved in the
working buffer and added directly into the capillary or to the
external test cell.
For single-stranded DNA measurements, the quartz capillary

was filled with a 10−20 μM solution of different length
homopolymeric adenosine dA20, dA40, or dA100 (Integrated
DNA Technologies, Coralville, IA) dissolved in 1 M NaCl, 1×
TE buffer (10 mM Tris, 1 mM EDTA in DNase-free water,
titrated to pH 7.2 with 3 M HCl).
For poly(ethylene glycol) measurements (PEG), data from

two previous studies that span a wide range of polymer sizes
were combined.22,26 In both cases, the capillary was filled with a
solution containing a combination of polydisperse PEG (Fluka,
Switzerland) and a highly purified calibration standard
(Polypure, Oslo, Norway), dissolved in 4 M KCl (Sigma-
Aldrich, St. Louis, MO), buffered with 10 mM Tris (Schwarz/

Mann Biotech, Cleveland, OH) and titrated to pH 7.2 with 3 M
citric acid. The two different solutions were as follows: (a) 20
μM PEG-600 (MWavg = 600 g/mol), 40 μM PEG-400 (MWavg
= 400 g/mol) and 2 μM purified PEG-502 (Mw = 502 g/mol)
or (b) 30 μM PEG-1000 (MWavg= 1000 g/mol), 30 μM PEG-
1500 (MWavg = 1500 g/mol), and 1 μM purified PEG-1251
(Mw = 1251 g/mol).
Planar lipid bilayers were formed across the quartz capillary

aperture using a 10 mg/mL solution of 1,2 diphytanolyl-sn-
glycero-3-phosphatidylcholine (DPhyPC; Avanti Polar Lipids,
Alabaster, AL) in n-decane (Sigma-Aldrich).26 Subsequently,
wild-type S. aureus α-Hemolysin (αHL) was introduced to the
test cell by adding a solution containing either ≈250 ng of
monomeric αHL (List Biological Laboratories, Campbell, CA)
or ≈2.5 ng of purified preformed heptamers. To facilitate
channel incorporation, the bilayer was thinned and enlarged by
applying a transmembrane potential of ≈300 mV and a static
back pressure within the capillary. Following the insertion of a
single channel, the static pressure was reduced and the voltage
decreased to the value used for the measurement to prevent
further channel incorporation.
The potential was applied across the membrane by a pair of

Ag/AgCl electrodes. Immediately prior to use, the electrode
placed within in the capillary was prepared by abrading an Ag
wire (Alfa Aesar) with 600 grit sandpaper and soaking it in
bleach for ≈10 min. The external electrode in the test cell bath
was a 2 mm Ag/AgCl disk electrode (E202, In Vivo Metric).
Data were acquired with a custom high-impedance amplifier
system (Electronic BioSciences, San Diego, CA) and
conditioned with a low-pass antialiasing filter. The analog
signal was digitized by a National Instruments PCI-6120 DAQ
card with a sampling rate (Fs) of 1 MHz, further conditioned
using a software-based 8-pole low pass Bessel filter with a cutoff
frequency of 100 kHz and resampled at 500 kHz.

Data Processing and Analysis. Nanopore data were
processed using a Python based program (MOSAIC)
developed in-house. The software implements the ADEPT
and CUSUM+ algorithms, which are described below. The
compiled program and source code are freely available at
https://pages.nist.gov/mosaic/. MOSAIC consists of a modu-
lar data processing pipeline which allows users to analyze ionic
current data from single-molecule nanopore experiments. The
software is designed using object-oriented principles, which
ensures that modules remain interoperable. This also makes it
straightforward to implement new features into the software,
such as alternative analysis algorithms or custom data formats.

Figure 1. (A) Schematic illustration of DNA translocation through a solid-state nanopore. An electric potential applied across the pore produces an
ionic current. (B) The partitioning of DNA into the pore causes well-defined current reductions with different mean current blockade amplitudes
(e.g., ⟨ia⟩ and ⟨ib⟩). (C) A single level event is characterized by the ratio of the mean currents for the occupied and fully open pore (⟨ia⟩/⟨i0⟩ and the
level residence time (Δt). (D) A histogram illustrating the relative current blockade depth for two species obtained by analyzing the events. (E)
Residence time distributions for the two blockade depth populations. The mean residence times are estimated from fits to the distributions.
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In many cases, users can interact with MOSAIC using a front
end graphical user interface.
Algorithms. MOSAIC consists of a pipeline with five

modules: (i) load data, (ii) optional signal conditioning and
filtering, (iii) event detection, (iv) event analysis, and (v)
results storage. A detailed description of the software
architecture is presented in the Supporting Information.
In this section, we discuss two algorithms implemented in

MOSAIC: (i) CUSUM+, an improved version of the CUSUM
algorithm38 that provides robust statistical analysis of events
which converge to a steady-state, and (ii) ADEPT, an
implementation of a previously developed theory26,41 that
uses a physical model of the nanopore system to accurately
characterize very short events that do not approach a steady-
state ionic current.
Cumulative Sum Analysis (CUSUM+). Cumulative Sum

(CUSUM) is a commonly used method to detect step-like
changes in time-series data45 but was only recently
implemented in nanopore analysis.38 It assumes that the
interaction of an analyte with the pore causes a series of
instantaneous changes in the ionic current from its baseline
value (defined as states and well-approximated by step
functions45), and the ionic current noise follows a known
distribution (e.g., Gaussian). A statistical test identifies when
the current level changes. The instantaneous log-likelihood
ratios of sequential data points for both positive and negative
step changes are calculated. The positive values of these ratios
are independently summed and a negative log-likelihood resets
the sum to zero. These form a two-sided decision function,
which detects level changes that correspond to either an
increase or decrease in the current level. A new state is
identified when one of the decision functions exceeds a
threshold determined automatically by the software. The
locations of state changes are determined from the minima of
related functions,45 and the mean ionic current between
sequential states is calculated and used to determine the local
blockade depth, defined as ratio of the ionic current when the
pore is occupied to that of the open pore (⟨i⟩/⟨i0⟩, Figure 1C).
We implemented an improved version of the CUSUM

algorithm in MOSAIC (CUSUM+), which is less sensitive to
artifacts that can be falsely identified as a state change. This is
achieved by specifying a minimum time between successive
triggers (to exclude transients from the state change detection
and blockade depth calculations) and by requiring that
identified state levels differ by a minimum value (corresponding
to a physically significant change). The efficiency is improved
by eliminating or reducing redundant computations (e.g.,
maintaining running calculations of the mean and variance).
Adaptive Time-Series Analysis (ADEPT). For very long

events (>5τ, Figure 2 left), the blockade depth is easily
estimated (e.g., with CUSUM+). However, that process fails for
short-lived events (<5τ, Figure 2 right) that do not reach a
steady-state mean value. In this case, the blockade depths are
estimated by fitting the data to an electrical circuit model of the
nanopore (implemented as ADEPT26,41 in MOSAIC). The
algorithm assumes a molecule partitioning into the nanopore
instantaneously increases the nanopore resistance (Rp) by ΔR.
However, the system capacitance causes the ionic current
change to occur over a finite time. For a constant applied
voltage, Va, the predicted ionic current is i(t) = i0 − β(1−e−t/τ),
w h e r e = +i V

R R0
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(τ) leading up to and following an event are much shorter than
typical sampling rates (see the Supporting Information for the
calculation). We therefore use a single fit parameter for τ, which
reduces the degrees of freedom. There is an option to override
this constraint.

■ RESULTS AND DISCUSSION
Analysis of Short dsDNA Fragments Measured with

SiNx Nanopores. We compared the results of CUSUM+ and
ADEPT on measurements of 50 base pair (bp) double-stranded
DNA (dsDNA) translocating through a ≈2.4 nm diameter SiNx
nanopore (≈2800 events).42 At an applied potential of 400 mV,
the mean residence time of dsDNA in the pore is ≈440 μs,
more than an order of magnitude longer than the characteristic
time constant of the system (τ = 10 μs; B = 100 kHz). Both
algorithms produce two distinct peaks in the blockade depth
histogram (⟨i⟩/⟨i0⟩ = 0.070 ± 0.001 and 0.488 ± 0.004). Peak
positions were obtained using an error-weighted Gaussian fit
and are reported with an expanded uncertainty, k = 2 (see
Supporting Information for a full listing of the analysis and fit
parameters). The leftmost peak corresponds to DNA trans-
location, whereas the rightmost peak is likely due to the helical
structure of dsDNA unwinding to transition from the B-form to
the S-form dsDNA,46,47 where the chain elongates by 1.7 fold
because of the strong electric field gradient across the pore.42

At 800 mV, the blockade depth histogram produced by
ADEPT has two overlapping peaks (Figure 3B) consisting of a
narrow peak (⟨i⟩/⟨i0⟩ = 0.080 ± 0.002), the expected location
for B-form dsDNA,46 and a broader peak (⟨i⟩/⟨i0⟩= 0.138 ±
0.002). The latter is comprised of short, single-level events,
which likely result from transient interactions between the
dsDNA and the access region outside the pore.48 This was not
accurately identified in our previous analysis42 (see below). A
third, low amplitude, broad peak is visible at ⟨i⟩/⟨i0⟩ = 0.226 ±

Figure 2. ADEPT and CUSUM+ analysis applied to a simulated
nanopore measurement (gray). Two events with the same current
blockade (red) but different residence times (tres), with respect to the
system characteristic relaxation time (τ) are shown. (Left) For a long
event (tres ≥ 5τ), the ionic current converges close to its steady-state
value, and the current levels estimated by ADEPT and CUSUM+ are
equivalent. (Right) For short events (e.g., tres ≈ 2τ), the current does
not reach the steady-state value of the idealized pulse (red). In this
case, CUSUM+ and other algorithms used in nanopore analysis
systematically underestimate the steady-state current (blue) by an
amount Δi (gray; dashed). In contrast, the physical model underlying
ADEPT allows the algorithm to accurately estimate an event’s steady-
state current.
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0.018. It is probable that this peak is associated with these
access-region interactions. Alternatively, it is possible that these
events could represent partial unwinding of the dsDNA
secondary structure at forces below the B−S stretching
transition threshold.47 As seen in Figure 3B, CUSUM+ also
detects the first peak, ⟨i⟩/⟨i0⟩ = 0.090 ± 0.002 (albeit slightly
shifted compared to the ADEPT value). However, it only
characterizes ≈20% of the events in the second peak (⟨i⟩/⟨i0⟩ =
0.134 ± 0.010) where the mean residence time of the events
(⟨tres⟩ = 47 ± 4 μs) is less than 5τ. In addition, CUSUM+
misses most of the events from the third peak detected with
ADEPT. While CUSUM+ could be allowed to characterize
events with lifetimes less than 5τ, it will underestimate the
blockade depth ratios (see the Supporting Information, Figure
S3). Both algorithms identify the fourth peak (⟨i⟩/⟨i0⟩ ≈ 0.56),
which arises from the stretching transition of dsDNA noted
above (S-form of dsDNA46,47). CUSUM+ recovers more
events here than ADEPT, which utilizes a fitting routine that
may not converge for some very long events (tres > 25 ms;
50 000 points; Fs = 500 kHz). Clearly, the results would be
improved if ADEPT is used for relatively short-lived events and
CUSUM+ is used on events with residence times >5τ

(Supporting Information, Figure S4). This functionality will
be implemented in a future version of MOSAIC.
While both CUSUM+ and ADEPT produce comparable

results for events with residence times >5τ, CUSUM+’s
statistical approach is on average ≈10× faster than the
Levenberg−Marquardt least-squares fitting used in ADEPT.48

Therefore, CUSUM+ is preferred for events with mean
residence times considerably longer than the recovery time of
the system (≫5τ). Furthermore, the processing time per event
for each algorithm scales linearly with the residence time, and
therefore the number of data points in an event (see
Supporting Information, Figure S5).

Analysis of Single-Stranded DNA Oligonucleotides
with ADEPT. We use ADEPT to determine the blockade
depth ratio histograms for three different length single-stranded
DNA (ssDNA) homopolymers (dA100, dA40, and dA20)
entering an αHL nanopore from the cis side.49 We consider
events with up to 6 discrete states, with each state containing at
least 5 data points (tres > 10 μs, Fs = 500 kHz). Events are
partitioned from the time series data with a thresholding
algorithm that identifies when the current deviates by more

Figure 3. Blockade depth histograms for a 50 base pair double-
stranded DNA measured with a 2.4 nm diameter SiNx nanopore.

42 (A)
At 400 mV, both CUSUM+ (gray), and ADEPT (red) are in excellent
agreement. (B) At 800 mV, the mean residence time decreases to ≈36
μs (estimated from ADEPT analysis). The analyses by ADEPT and
CUSUM+ are markedly different.

Figure 4. Normalized blockade depth histograms for (A) dA100, (B)
dA40, and (C) dA20 single-stranded DNA interacting with the αHL
nanopore estimated using the ADEPT algorithm. The applied
potential is V = 140 mV and the polynucleotides are added to the
cis side of the pore.49
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than 5 standard deviations from the mean open channel
current. A complete listing of the analysis parameters is shown
in Supporting Information, Table S3.
The current blockades observed with poly(dA) appear as

either one level (a shallow or deep blockade) or two levels (a
shallow blockade followed by a deeper one8,50,51). Approx-
imately 60% of the events have two levels. As shown in the
blockade depth ratio histograms for dA100, dA40, and dA20
(Figure 4), these two observed levels are comprised of several
different states. Figure 4A shows that the blockade depth
histogram for dA100 has three peaks, ⟨i⟩/⟨i0⟩ = (0.11 ± 0.03),
(0.15 ± 0.05), and (0.50 ± 0.05). The first two peaks (denoted
⟨i⟩/⟨i0⟩3′ and ⟨i⟩/⟨i0⟩5′) are consistent with the dependence of
the blockade depth on the orientation of the leading end of the
DNA (3′ vs 5′) entering the pore.4,52,53 The location of these
two peaks agrees with previous measurements of dA100 where
two highly overlapping peaks were observed at these locations.6

In contrast to earlier measurements we resolve the 3′ and 5′
events with a separation better than 3σ.
The differences between the 3′ and 5′ blockade depth peaks

(Figure 4A, two leftmost peaks) are progressively more difficult
to discern for the shorter polynucleotides (Figure 4B,C). The

amplitude of the 5′ peak decreases substantially for dA40
(Figure 4B) and is not resolved for dA20 (Figure 4C). These
results are likely due to the lower probability of the 5′-end
entering the pore and the decreasing residence time of shorter
ssDNA molecules.4,53

Interestingly, the shallow blockade level (⟨i⟩/⟨i0⟩ ≈ 0.5) is
characterized by a single peak for dA100 and dA40 and two peaks
for dA20. Previous studies have either not reported this peak

6 or
only noted it for molecules as short as dA50.

50 Furthermore, the
sharp decrease in residence time associated with shorter
polymers complicates their analysis and has thus far limited
the analysis of polynucleotides as short as dA20.
The algorithms within MOSAIC improve the character-

ization of short polynucleotides. Figure 5 shows the voltage-
dependent behavior of the dA20 shallow blockade peaks and
their residence time distributions. The shallow blockade depth
distributions are qualitatively different than those measured for
longer polymers (Figure 4), as noted previously. Furthermore,
we observe a change in the morphology of the peaks with
increasing voltage as seen in Figure 5A. In particular, increasing
the magnitude of the applied potential: (i) shifts the peaks to
smaller ⟨i⟩/⟨i0⟩ values, i.e., the polynucleotide blocks more

Figure 5. Voltage dependence of dA20 shallow blockade depth and residence time. (a) The normalized blockade depth histogram as a function of
voltage yields peaks with changing morphology. (B) Joint residence time-blockade depth distribution (log−linear) as a function of voltage. Z-scale
(color) was normalized and smoothed using a Gaussian interpolation.
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current (Figure 5A), (ii) increases the residence times (Figure
5B) (in contrast to the mean residence time of the deep
blockades in Figure 4 that are associated with translocation),4,5

and (iii) increases the number of events observed per unit time
(capture rate) (see the Supporting Information, Figure S7).
Moreover, with increasing voltage, the shallow blockades were
more likely to exhibit two states with the shallow blockade
preceding a deep blockade.
The above results strongly suggest that the shallow blockade

peaks correspond to dA20 interacting with the vestibule but not
translocating through the pore. Furthermore, the observed
increase in the residence time of the shallow blockade (Figure
5B) with voltage suggests that the change in the leftmost peak
amplitude in Figure 5A is likely due to interactions between the
analyte and different regions of the vestibule, rather than a loss
of signal. Interestingly, of the three measured analytes (dA100,

dA40, dA20), this voltage-dependent change in peak structure
was only observed with dA20, indicating that the phenomenon
may be length-dependent.49,54

Example of Using MOSAIC: Single Molecule Mass
Spectrometry with a Biological Nanopore. We show a
typical analysis using MOSAIC’s graphical user interface.
Specifically, we use both CUSUM+ and ADEPT to separate
monomers in polydisperse PEG samples with an αHL
nanopore.20−22,26,55,56 Previous studies showed that the block-
ade depth ratio (⟨i⟩/⟨i0⟩) and mean residence time of these
events scale monotonically with polymer size.
Analysis of the PEG data is set up using the GUI shown in

Figure 6 and is configured using drop down menus. After
selecting a data source (MOSAIC accepts most common
electrophysiology data formats: Axon ABF, QUB QDF, as well
as raw binary and comma separated value, CSV, data), a
segment of the time series is displayed, which assists in
determining the mean open channel current (<i0>), noise (σi0)
and threshold values for preliminary event identification.
A key feature of MOSAIC is the ability to integrate custom

algorithms into the processing pipeline. Within the GUI, the
user can select the analysis algorithm. The PEG data were
analyzed independently using both the ADEPT and CUSUM+
algorithms. The blockade depth histogram of the events and
the processing statistics are presented in real time. Fits of the
physical model (ADEPT) or detected states (CUSUM+) of
individual analyzed events are also displayed to monitor the
progress and quality of the analysis. The results are stored in a
SQLite database (or can be exported as a CSV file from within
the GUI) for further analysis.
This example further illustrates the differences between the

CUSUM+ and ADEPT algorithms. Only events that deviate
from the open channel current baseline by at least 2.7σ were
analyzed. Events shorter than 5τ were excluded from the
CUSUM+ analysis (the default value when running CUSUM+

Figure 6. Graphical user interface (GUI) used to setup and run an analysis in MOSAIC. A main settings window is used to configure the analysis.
The results of an analysis are displayed in real-time in the adjacent panels. Completed analysis can also be reexamined within the GUI by opening the
saved database files.

Figure 7. Comparison of ADEPT (gray) and CUSUM+ (blue)
analyses of a polydisperse polyethylene glycol (PEG) solution
measured with an αHL nanopore. Blockade depth histogram of
events recovered by each algorithm show that the number of events
recovered by CUSUM+ decreases sharply for small polymers (n < 20)
that exhibit fast residence times (<5τ) in the pore.
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from the GUI). On the other hand, when using ADEPT, we
excluded events shorter than 2.5τ (25 μs) to minimize fitting
errors (set with the Advanced Settings dialogue in the GUI).
Both algorithms produce well-resolved peaks for PEGs larger

than 17-mers (Figure 7 and Supporting Information, Figure
S8). For smaller PEGs that have shorter mean residence times,
CUSUM+ shows a single broad peak whereas ADEPT easily
identifies additional individual species. Here, CUSUM+
recovers significantly fewer events than ADEPT because only
a fraction of the total events (those with tres > 5τ) are
considered. This effect is particularly significant because it
amounts to examining the tail of the exponentially distributed
lifetimes.20,21

The histograms in Figure 7 are fit to a sum of Lorentzian
functions using Igor Pro 6.3 (Wavemetrics Inc., Portland, OR).
To directly compare the blockade depth histograms, we use the
peak positions from the ADEPT data set as initial guesses for a
fit of the CUSUM+-derived blockade depth distribution
(Figure 7, gray). As expected, for both algorithms, where the
peaks are resolved, the peak positions are in good agreement.
For PEGs (n < 17), the signal-to-noise ratio of the CUSUM+
peaks is lower than those recovered by ADEPT (Supporting
Information, Figure S8), consistent with the lower number of
events recovered by CUSUM+ in this region.

■ CONCLUSIONS
We developed a new open source platform for the analysis of
single-molecule data (MOSAIC) and implemented two robust
optimized algorithms (ADEPT and CUSUM+) for biological
or solid-state nanopore measurements. When applied to
dsDNA measurements with a 2.4 nm SiNx nanopore, MOSAIC
found previously undetected states most likely arising from the
transient interactions between dsDNA and the access region of
the solid-state pore. Additionally, when measuring short
oligonucleotides poly(dA)n, MOSAIC accurately analyzed
events with residence times <5τ, thereby characterizing
previously unreported interactions of dA20 with the αHL
nanopore. Such analysis can be used to provide greater insight
into the underlying physics of analyte-nanopore interactions.
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