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Rietveld refinement of X-ray and neutron diffraction patterns is routinely used

to solve crystal and magnetic structures of organic and inorganic materials over

many length scales. Despite its success over the past few decades, conventional

Rietveld analysis suffers from tedious iterative methodologies, and the

unfortunate consequence of many least-squares algorithms discovering local

minima that are not the most accurate solutions. Bayesian methods which allow

the explicit encoding of a priori knowledge pose an attractive alternative to this

approach by enhancing the ability to determine the correlations between

parameters and to provide a more robust method for model selection. Global

approaches also avoid the divergences and local minima often encountered by

practitioners of the traditional Rietveld technique. The goal of this work is to

demonstrate the effectiveness of an automated Bayesian algorithm for Rietveld

refinement of neutron diffraction patterns in the solution of crystallographic and

magnetic structures. A new software package, BLAND (Bayesian library for

analyzing neutron diffraction data), based on the Markov–Chain Monte Carlo

minimization routine, is presented. The benefits of such an approach are

demonstrated through several examples and compared with traditional

refinement techniques.

1. Introduction

For many solid-state materials, only polycrystalline samples

are initially available for analysis. Historically, the first

approach to the analysis of diffraction data taken from poly-

crystalline materials was to start with the integrated intensities

of the peaks. These intensities were then fitted using the

standard techniques of single-crystal crystallography.

However, because of peak overlap, a great deal of information

was lost. Rietveld (1967, 1969) suggested that instead one

should fit the entire pattern, point by point. While a simple

proposition in theory, in practice the intensity at each point

comes from a variety of factors, with tens or hundreds of

variables which must all be fitted or fixed using a priori

knowledge and experience to obtain quantitative information

from the diffraction patterns. Within this framework, the

scattered intensity as a function of 2� is given by

Ii ¼ Bi þ S
P

j

Lj Fj

�� ��2P 2�i � 2�j

� �
: ð1Þ

Here, Ii is the intensity at point i, Bi is the background at point

i, S is the scale factor, Lj is the Lorentz factor of the jth

reflection, Fj is the structure factor (including form factors etc.

for magnetic structures) and P is the instrument profile of the

jth reflection measured at point i. For simplicity, we have

neglected absorption, extinction and numerous other effects.
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For most diffraction patterns of interest, experiments are

performed such that individual peak intensities are hundreds

to thousands of counts, meaning that the Poisson noise can be

approximated using a Gaussian distribution. Any fit of equa-

tion (1) to the data thus results in a �2 goodness of fit as

described by equation (2):

�2 ¼
X

i

Icalc;i � Iobs;i

� �2

�2
i

; ð2Þ

where the variance at a given point, �i, is simply given by

(Iobs,i)
1/2. In the traditional Rietveld approaches, including

most of the widely available software packages (Rodrı́guez-

Carvajal, 1993; Larson & Von Dreele, 1994; Toby &

Von Dreele, 2013; Toby, 2001; Coelho, 2000), it is this goodness

of fit or a similar weighted residual function which is mini-

mized using damped nonlinear least-squares techniques such

as the Levenberg–Marquardt algorithm. While this works

quite well if the starting parameters are close to the ultimate

global minimum, the overall multidimensional �2 surface is

often far from concave and thus it is easy for the solution to

become trapped in a local minimum which fails to describe the

most accurate model. In other cases the Hessian, or matrix of

second partial derivatives, used in Levenberg–Marquardt

minimization becomes nearly singular and the refinement

diverges before an adequate solution can be found. In prac-

tice, the experimenter must have a reasonably good guess for

the phase space he or she wishes to explore, leading to

significant ‘art’ involved in adding variables to a refinement.

Maximum likelihood and maximum entropy methods

related to Bayesian statistical inference have been used in

previous studies of various aspects of crystallographic refine-

ment, but the computational cost has prevented such

approaches from gaining widespread use (Gilmore, 1996).

More recently, Bayesian analysis has resurfaced in a growing

number of approaches as a viable method of pattern refine-

ment, particularly in the case of the determination of micro-

structural/strain parameters and other systematic deviations

which are heavily influenced by a detailed accounting of

experimental and refinement error (Wiessner & Angerer,

2014; Gagin & Levin, 2015; Toby & Von Dreele, 2013; Fancher

et al., 2016).

With efficient sampling and computing efficiency, however,

the types of problems which may be addressed by a Bayesian

or probabilistic approach may be greatly expanded. In the

present work, we introduce a fully probabilistic method of

refining neutron powder and single-crystal diffraction

patterns, including magnetic and structural components, using

a Bayesian approach. We implement this routine as part of the

software package BLAND built on the Bumps (Kienzle et al.,

2015) fitting package which utilizes, among other fitting

engines, the differential evolution adaptive Metropolis

(DREAM) algorithm to traverse parameter space efficiently

(Vrugt et al., 2008). In order to demonstrate the power of this

method, we present several refinements solved using the

BLAND package, including examples contained within the

FullProf suite, for comparison of this method with standard

least-squares approaches.

2. Methodology

2.1. Bayes’ theorem

We begin by briefly discussing our approach employing

Bayes’ theorem to model crystallographic parameters akin to

Rietveld refinement from diffraction patterns. We note that a

full derivation of the Bayesian approach to data analysis can

be found in a number of excellent introductory texts on

statistical analysis (Jruschke, 2011; Taylor, 1990). Formally

stated, we seek to determine the posterior distribution for a

set of parameters, ’, for a parametric model, �, given the

experimentally observed intensities, Iobs. Casting this in the

language of Bayes’ theorem this is defined as

p ’ j Iobs; �ð Þ ¼
p Iobs j ’; �ð Þ pð’ j �Þ

p Iobs j �ð Þ
; ð3Þ

where p(’ | Iobs, �) is the probability of obtaining a vector of

variables ’ given the experimental observed intensities Iobs

and model �. Here, p(’ | �) is the a priori distribution of ’,

typically assumed to be uniformly distributed over parameter

space unless there is prior information to restrict the value of a

parameter.

In the case of a diffraction measurement, ’ includes all

unrestrained quantities such as lattice parameters, atomic

positions and thermal displacement parameters, and any

variables describing the magnetic structure if required. In

contrast, model-defining quantities such as the space group,

the profile shape function for powder diffraction and any

other fixed parameters are contained in �.

While this objective sounds reasonable, in practice equation

(3) is determined by maximizing the likelihood function

p(Iobs | ’, �). Even with the assumption of normally distrib-

uted parameters, with p / exp[��2(’)/2] for �2 defined by

equation (2), this entails sampling over a substantial range of

the multidimensional space defined by the bounds of ’. If one

is given detailed information about the starting values of ’
then one may be able to confine the search to a narrow region

and perform efficient searches, but this would then defeat our

originally stated goal of minimizing the amount of a priori

knowledge. An important example of why this is necessary is

in the case of complex magnetic structures where there may be

many independent components or propagation vectors which

are not reasonably constrained by representation theory alone

(Bertaut, 1968).

Therefore, to use a Bayesian approach in a reasonable

computational time frame we must make efficient choices in

the way ’ space is sampled. Many such algorithms devoted

solely to this global optimization problem have been proposed

since the Metropolis algorithm (Metropolis et al., 1953), but a

drawback of many of these is that, even if they can be proved

to converge, they converge very slowly. Related methods such

as simulated annealing and simple Markov–Chain Monte

Carlo (MCMC) require careful tuning of the statistical

research papers

2202 Joseph E. Lesniewski et al. � Bayesian method for diffraction pattern analysis J. Appl. Cryst. (2016). 49, 2201–2209



temperature profile by the user to achieve this criterion.

Differential evolution (DE) is a rather efficient algorithm for

problems with many minima or non-differentiable �2 surfaces,

but its control parameters need to be tuned to the problem in

order to obtain good performance, and even then it can

become trapped in a local minimum. We have found that the

DREAM algorithm is highly convergent and requires no

additional tuning beyond identifying the parameter ranges

(Vrugt et al., 2008), so we use it as the primary optimization

engine within BLAND.

2.2. DREAM algorithm

DREAM uses an adaptive MCMC algorithm that combines

DE with the random-walk Metropolis algorithm in order to

provide global optimization of highly nonlinear complex

problems, while maintaining good efficiency (Vrugt et al.,

2008; ter Braak, 2006). Starting with a population of Markov

chains, DE guides the chains through the search space towards

the solution, while the Metropolis algorithm prevents them

from being trapped by local minima.

2.3. Bumps and BLAND

Bumps is a Python package which implements the DREAM

algorithm, among others (Kienzle et al., 2015). It provides a

generalized fitting framework for use with multi-parameter

problems where the problem is described by the negative log-

likelihood and it has been parallelized for both multi-core

systems and MPI-based clusters. This backbone has been

successfully implemented in neutron reflectometry (Kienzle et

al., 2011) and small-angle scattering (Butler et al., 2013) soft-

ware packages which also suffer from a similar problem of

non-analytic and multi-modal �2 surfaces.

BLAND utilizes the general framework of Bumps, not only

to determine the best fit of the model to the diffraction data,

but also to illustrate clearly any correlations between various

parameters over an extremely large parameter space. The

underlying crystallographic calculations of structure factors,

multiplicities etc. are provided by CrysFML, the Crystal-

lographic Fortran Modules Library (Rodriguez-Carvajal,

2001). CrysFML is a collection of modules that provide

numerous crystallographic calculations for use by other

Fortran programs, including FullProf (Rodriguez-Carvajal,

2001; Rodrı́guez-Carvajal, 1993). By utilizing this well estab-

lished collection of general routines, BLAND may be tuned to

handle any number of crystallographic refinement problems,

including magnetism, single crystals etc. (Lesniewski et al.,

2016).

3. Application of BLAND to powder neutron diffraction
patterns

3.1. Nuclear crystal structures

In order to demonstrate the advantages of the Bayesian

method implemented by BLAND, and to compare its accuracy

with that of traditional Rietveld analysis, we have performed a

series of model refinements on example data sets of simple

materials and those packaged with Fullprof as examples

(Rodrı́guez-Carvajal, 1993). This includes the neutron

diffraction pattern of the corundum phase of Al2O3 and

orthorhombic PbSO4, the latter of which was used in a round-

robin study evaluating the systematic differences of various

crystallographic analysis software packages (Hill, 1992). We

also examine the low-temperature diffraction pattern of CuF2

(Fischer et al., 1974) to show how BLAND may be used to

determine the simultaneous solution of nuclear and magnetic

structures, noting that this approach has been used success-

fully to solve or verify the magnetic structures in several other

materials thus far (Disseler et al., 2015; Maruyama et al., 2014).

For each example the parameters of interest were

constrained only in that the results be physically meaningful;

for example, atomic positions were confined only with

displacements limited to the maximum dimension of the unit

cell, and with occupancies fixed by the chemical formula units

per unit cell or Wyckoff sites. The initial distribution of

MCMC chains within the multidimensional parameter space

was selected according to the Latin hypercube sampling

(LHS) routine (McKay et al., 1979). This ensures sufficient

distribution of the initial parameters in order to remove arti-

ficial bias towards a known solution, and that all regions of

parameter space are sampled. The experimental background

was taken to be a simple linear interpolation of select points

taken from the observed data, with an additional additive

constant, or ‘base’ value, used as a fine-tuning parameter for

each refinement.

We introduce the various outputs from the BLAND

package by first demonstrating the refinement of an Al2O3

phase (corundum). A polycrystalline sample was measured on

the BT-1 powder diffractomter at the NIST Center for

Neutron Research using neutrons of wavelength � = 1.5403 Å.

The BLAND package was used to refine the nuclear structure,

assuming pseudo-Voigt peak shapes with the standard

empirical profile function H 2 = U 2 tan2 (�) + V tan(�) + W and

a Gaussian–Lorentzian interpolating parameter � (‘eta’ in the

figures) to describe the peak width and shape as a function of

diffraction angle. The lattice parameters, atomic positions and

thermal displacement parameters, the four profile parameters,

and the overall scale and background were all fitted simulta-

neously, with no constraints other than the fixed symmetries

defined by the atomic Wyckoff site for each ion in the R3c

space group. The resulting best-fit diffraction profile is shown

in Fig. 1(a), with the individual Bragg peaks and difference

shown below the best-fit line in the figure. A value of �2 = 7.39

was determined, with the error stemming mostly from a

disagreement with the peak shape function over the entire

range. In this case, �2 could be further reduced by imple-

menting a more advanced peak shape or asymmetric profile

functions.

In Fig. 1(b) we show the probability distribution of each of

the parameters fitted using the LHS initialization method. The

probability density of each continuous variable is given by the

histogram in each respective panel, where the height of each

bar is given by the number of cycles or steps taken in a given

parameter bin value during the course of the fit, normalized to

research papers

J. Appl. Cryst. (2016). 49, 2201–2209 Joseph E. Lesniewski et al. � Bayesian method for diffraction pattern analysis 2203



the total number of cycles. The corresponding green line

shows the largest log-likelihood value within the corre-

sponding histogram bin. If the maximum of the likelihood

(green) line is not coincident with the maximum of the

histogram distribution, this may indicate that the fit has found

a better value but stopped running before exploring the

parameter space around that value, or it may indicate odd

correlations between variables. In either case, more cycles

would be needed to obtain the proper error distribution or

values of the parameter. Other plots not shown here are

displayed within Bumps to judge the quality of the fit,

including the collective log-likelihoods at each step and

parameter values to ensure the fit is not stuck in one region of

space. The 68% confidence interval, equal to one standard
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Figure 1
BLAND refinement of Al2O3. (a) Observed data (+), calculated pattern (red), difference (blue, offset) and locations of Bragg reflections (green bars).
(b) Probability distributions for each refined parameter from the wide range LHS sampling method; the total area under each plot is normalized to unity.
The x-axis values in each panel denote the bounding values of the 95% confidence interval. (c) Correlation matrix between parameters. (d), (e)
Parameter distribution and correlation plots, respectively, both determined using the epsilon-ball approach near the optimized parameters. The inset
shows examples of uncorrelated and correlated parameter distributions.



deviation for normal distribution, is given by the lightly

shaded region centered at the maximum of the distribution,

while the values corresponding to the 95% confidence interval

are labeled on the x axis in each panel for scale. From this, we

see the values peak very strongly over a narrow window,

indicating a single well defined solution. Parameters such as

the scale factor and thermal displacement have peaks close to

their respective lower boundary, as the sampling range is not

symmetric owing to the imposed physically meaningful

boundaries.

A subsequent fit was performed beginning with these best-

fit parameters using the so-called ‘epsilon-ball’ approach, in

which the starting population is initialized near the provided

parameters and the solver explores parameter space by

expanding around this point. This tends to produce an excel-

lent description of the parameter space near a known solution,

but it does not quickly traverse a large area of parameter

space if the initial conditions are not close to a correct solu-

tion. The histograms of the individual parameters from this

second fit are shown in Fig. 1(d) and, with the exception of the

O1 thermal displacement parameter, all are normally distrib-

uted over a very narrow window, indicating the solution found

from the LHS initialization search is indeed a strong minimum

on the �2 surface.

In Figs. 1(c) and 1(e) we show the two-dimensional corre-

lation plots between pairs of parameters generated as a part of

the DREAM algorithm utilized in the BLAND package for

the LHS and subsequent epsilon-ball fits, respectively. The

peaks in the histograms for each parameter found in Fig. 1(b)

are quite sharp relative to the range, and are therefore

represented by only a small number of red pixels in Fig. 1(c).

The correlations near the minimum provide more information

in this case, as shown in Fig. 1(e). We note that the information

represented here is different from the uncertainties estimated

from the covariance matrix determined after Levenberg–

Marquardt least-squares refinement, which yields the para-

meter sensitivity rather than parameter uncertainty.

In each panel in Fig. 1(e), a tightly clustered circular pattern

in the center of a box indicates that the fit was able to deter-

mine a value for the parameter and that there is no strong

correlation between the values of the two parameters; they are

essentially independent of each other. This can be seen in

Fig. 1(e) where the a and c lattice parameters are uncorrelated.

On the other hand, patterns indicating a strongly correlated

relationship between two parameters are seen as elongated

ellipsoids with a slope which depends on the sign of the

correlation. An example of this type of pattern can be seen in

the peak shape parameters, u, v and w, and to a lesser extent

the scale and oxygen position. If the refinement depends

strongly on one parameter but not the other, the distribution

will appear as a horizontal or vertical band with no slope.

Other possible correlation patterns not observed here

include a box filled completely with a random distribution of

points, indicating that the fit was unable to confidently

determine a value for either of the parameters, and therefore

the observed diffraction intensity is not sensitive to either

parameter. When sampling over a large parameter space one

may also find a multimodal distribution in the correlation

plots. This is indicative of an additional symmetry which was

not explicitly limited by the original model; obvious examples

include inversion-symmetry-breaking distortions corre-

sponding to distinct ferroelectric domains, and the sign of a

ferromagnetic moment due to the breaking of time-reversal

symmetry. In both cases we have observed symmetric maxima

in the probability distributions spaced evenly around the

paraelectric or paramagnetic value of the respective para-

meter, indicating that Bumps is indeed returning appropriate

probabilities. Multiple maxima can also occur if symmetry-

related atomic positions for a given atom lie within the

constrained region of parameter space, as will be described in

detail in the following example.

Most materials of interest are much more complex than

Al2O3, however, leading to a large increase in the number of

variables and the dimensionality of the problem. In general,

this also decreases the likelihood that a least-squares algo-

rithm will find the correct minimum �2 solution without

extensive guidance. To demonstrate how BLAND handles

such problems, we have refined the room-temperature

neutron diffraction pattern for PbSO4, originally measured on

the D1A diffractometer at the Institut Laue–Langevin

(Grenoble, France) and used in a previous round-robin study

of different refinement software packages (Hill, 1992). This

compound is orthorhombic in the Pnma space group and has

atomic positions at relatively low symmetry positions, such

that there are a significant number of parameters which must

be refined. Here, we have refined lattice constants, atomic

positions and thermal displacement parameters for each

species in the unit cell listed in Table 1, for a total of 17 free

parameters.

The data have been fitted using the epsilon-ball approach

beginning with crystallographic parameters determined

previously (Hill, 1992), and well as with the full LHS initi-

alization, again over a wide parameter range. For both initi-

alizations, the lattice parameters were limited to a range of

�0.5 Å about the known values. The atomic displacements
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Table 1
List of refined parameters for PbSO4 determined using BLAND and
FullProf.

For BLAND, Rf = 5.06, �2 = 2.07; for FullProf, Rf = 2.71, �2 = 4.2.

Parameter BLAND (epsilon-ball) BLAND (LHS) FullProf

a (Å) 8.47818 (10) 8.478 8.47883 (15)
b (Å) 5.397039 (67) 5.397 5.3967195 (99)
c (Å) 6.958488 (89) 6.9585 6.9583 (34)
xPb 0.18739 (11) 0.188 0.18749 (9)
zPb 0.16704 (17) 0.167 0.16719 (15)
bPb 0.890 (21) 0.969 1.42 (2)
xS 0.06424 (35) 0.064 0.0654 (3)
zS 0.67844 (49) 0.068 0.6833 (4)
xO1 0.90720 (20) 0.908 0.9076 (2)
zO1 0.59579 (23) 0.595 0.5953 (2)
xO2 0.19324 (20) 0.193 0.1937 (2)
zO2 0.54217 (25) 0.542 0.5432 (3)
xO3 0.08093 (13) 0.081 0.0810 (1)
zO3 0.80940 (16) 0.809 0.80905 (15)



were allowed to vary by up to 60% along each unit-cell

dimension, centered about the known positions.

BLAND produces an excellent fit of the reported data, with

similar �2 values for both initialization approaches (�2
’ 2.0).

The refinement from the epsilon-ball initialization is shown in

Fig. 1(a). Here again, the primary source of error between the

reported and fitted profiles stems from the lack of higher-

order corrections, such as asymmetric instrumental broad-

ening and other angle-dependent corrections to the peak

shapes or widths, which are not currently applied within the

BLAND routines.

While the final results and best-fit solutions are quite similar

for both initialization conditions, the probability distributions

of each parameter are quite different. In the case of the
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Figure 2
BLAND refinement of PbSO4. (a) Best fit including observed data (+), calculated pattern (red), difference (blue, offset) and locations of Bragg
reflections (green bars). (b), (d) Probability distributions for each parameter after runs with initial starting populations that were (b) tightly spaced near
the expected values or (d) randomly distributed over space. It should be noted that the horizontal scale in each panel of part (d) is much larger than that
presented in part (b) and thus the panels should not be compared directly. (c), (e) Correlation matrices between parameters for each of the two starting
populations, respectively.



epsilon ball, the parameters shown in Fig. 2(b) are all normally

distributed and centered near the initial conditions, with the

best-fit values also in good agreement with this center posi-

tion. On the other hand, when the initial parameters are

widely distributed according to the LHS routine, as would be

the case if the atomic positions were completely unknown, we

find multiple peaks in the distribution of the atomic positions.

Upon closer examination, each of these maxima corresponds

to one of two features: (i) symmetrically equivalent positions

generated by the symmetry operators of the space group, or

(ii) switching of identical atom types sharing the same Wyckoff

symmetry, such as O1 and O2 atomic x positions, both of which

result in identical crystallographic structures.

The multimodal distribution of the atomic positions is also

observed in the correlation plots shown in Fig. 2(e). The

enlarged panel highlights the correlations between the O2 z

and Pb B parameters. Here, the horizontal bands correspond

to distinct high-likelihood values of the O2 z parameter, which

are each largely independent of the value of Pb B. Each

maximum in the distribution appears as a distinct set of bands

and may be independently correlated from other parameters.

In the case of the oxygen positions, the intersections of these

bands results in ‘patches’ of parameter space corresponding to

the various symmetry-generated or switched oxygen positions.

Near the ideal position, we find that the parameters are mostly

independent of one another from the correlation plot in

Fig. 2(c). In fact, only the peak-shape refinement parameters

exhibit any substantial dependence, as expected for a

phenomenological function. It is this lack of correlation

between parameters that allows different Rietveld refinement

approaches based on least-squares routines to result in precise

and accurate refinements, even with the exceedingly large

number of parameters here (Hill, 1992).

The resulting atomic displacements are shown in Table 1,

where we compare them with those obtained for the full

refinement obtained by the FullProf program beginning with

these same values. The error shown in parentheses is given as

one standard deviation, or a 68% confidence interval for

BLAND. One can see that the values obtained by BLAND for

the epsilon ball are within the error of those obtained using

FullProf and exhibit similar measures of error, demonstrating

that BLAND has been implemented correctly and depend-

ably. Unlike the epsilon-ball approach, the uncertainty

calculated from the distributions in Fig. 2(d) encompasses

several minima and thus the error bars are not representative

of true parameter error. With the locations of the minima

known, however, detailed errors and model comparisons

could then be easily obtained by performing the fit over a

more limited range or with the epsilon-ball approach.

We note that, while this method provides a powerful

approach to solving unknown crystallographic structures,

searching over such a wide range of parameter space leads to a

dramatic loss in the speed of convergence. For example, to

obtain the fits shown for Al2O3 and the epsilon-ball approach

to PbSO4 required fewer than a thousand steps, and even

fewer to obtain the statistics necessary if one simply wanted an

estimation. By comparison, the random initialization

approach used for PbSO4 required over an order of magnitude

more steps to obtain sufficient statistics and to discern each of

the independent minima shown Fig. 2(d). In practice, one

would ideally utilize such a broad search if little a priori

information was known, then greatly reduce the parameter

range to isolate a single maximum for rapid fitting. The tools

within Bumps provide valuable feedback for estimating

performance and convergence criteria, particularly when

parallelization is used in multi-core or cluster systems (Kienzle

et al., 2015).

3.2. Magnetic structures

In addition to refining the nuclear or crystalline structures

as examined in previous implementations of Bayes’ theorem

(Wiessner & Angerer, 2014; Gagin & Levin, 2015), we have

extended BLAND to make use of the magnetic structure

calculations within the CrysFML library (Rodriguez-Carvajal,

2001). As a means of demonstrating the effectiveness of this

approach, we use example data also found in the FullProf

example libraries for CuF2. This monoclinic compound (space

group P21/n) orders antiferromagnetically, with a magnetic

supercell described by a unit-cell doubling along the a and c

directions, or equivalently by a propagation vector k = ð12 ; 0; 1
2Þ

(Fischer et al., 1974). From a symmetry analysis following the

theory of irreducible representations (Bertaut, 1968), one

finds that the magnetic moment of the Cu atom is, in principle,

described by three basis vectors corresponding to each of the

crystallographic directions. However, from the extinction of

specific peaks, only moments along the b axis are allowed.

In Fig. 3 we demonstrate a fit of the low-temperature data

using BLAND. In addition to parameters such as the lattice

constants and peak shapes, we consider an additional para-

meter corresponding to the coefficient of the irreducible

representation basis vector defining the magnitude of the

magnetic moments. A wide search is first performed using the

LHS initialization, the results of which are shown in Figs. 3(b)

and 3(c). The magnetic parameter C0 clearly shows two

maxima at symmetric points about zero, corresponding to a

symmetry in the sign of the magnetic moment to point along

either the positive or the negative b direction. One would

therefore naturally expect domains of both types to be present

in the material in bulk.

A finer fit is performed using the epsilon-ball initialization

about these best-fit parameters, with the additional constraint

that the magnetic moment be positive. The parameter distri-

butions and correlation plots for this fit are shown in Figs. 3(d)

and 3(e), respectively. The magnetic moment from this

refinement is 0.793 � 0.012 �B Cu. This is slightly larger than

one standard deviation from that determined using Fullprof

directly (0.757 � 0.015 �B), quite close considering the small

number and intensity of the magnetic peaks compared with

the much brighter nuclear reflections. This fit resulted in �2 =

4.22, where again the largest source of disagreement stems

from subtleties in the peak shape not captured by the simple

pseudo-Voigt peak shape used here. From the correlation

plots in Figs. 3(c) and 3(e), most parameters are largely
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independent of one another, with the exception of the peak-

width profile function parameters.

4. Conclusions

Bayesian statistical inference methods are a powerful alter-

native to the standard Reitveld technique for the analysis of

crystallographic and magnetic structures. As implemented in

the BLAND algorithm, one gains substantial statistical infor-

mation on the correlation, errors and distributions of para-

meters compared with that possible from simple least-squares

routines. By employing Markov–Chain and differential

evolution-based parameter sampling routines, BLAND can

more accurately fit high-dimensional parameter spaces with

mulitmodal �2 surfaces. In this work we have demonstrated

that this method accurately reproduces crystallographic and

magnetic structures obtained by standard Rietveld refinement

without a priori knowledge of the precise atomic positions,
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Figure 3
(a) BLAND model refinement for magnetically ordered CuF2, showing observed data (+), calculated pattern (red), difference (blue, offset) and locations
of Bragg reflections (green bars). The top are nuclear Bragg peaks and the bottom are the locations of magnetic Bragg peaks. (b) Probability
distributions determined for each refined parameter as noted, determined from LHS initialization. (c) Correlation matrix between parameters for LHS.
(d) and (e) are similar to parts (b) and (c), but using the epsilon-ball initialization about the LHS best-fit parameters.



magnetic moments or other instrumentation parameters. In

doing so, we have shown that this package is amenable even

when only very wide limits can be placed on various parameter

ranges.

Importantly, we have demonstrated that this method can

find adequate solutions when only the space group, composi-

tion and site symmetries are known, using a true random

initialization of the starting values over a wide range of

parameter space. We have also demonstrated that this method

yields far greater statistical information about parameter

distributions and correlations in the multidimensional space

than current least-squares-based approaches. The Bayesian

approach implemented in BLAND to determine the log-

likelihood distribution also allows for detailed comparisons of

different models which are not subsets of one another. This

lends itself naturally to an extension based on information

theory approaches such as Bayesian information criteria or

Akaike information criteria (Jruschke, 2011) in exploring

whole families of models. An obvious example of this would

be in exploring various subsets of crystallographic structures

about a lattice distortion, or when other experimental

evidence suggests a number of different possible space groups.
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