
A Secure Multicast Group Management and Key
Distribution in IEEE 802.21

Yoshikazu Hanatani1, Naoki Ogura1, Yoshihiro Ohba2, Lidong Chen3, and Subir Das4

1 Toshiba Corp., 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan.
{yoshikazu.hanatani, naoki.ogura}@toshiba.co.jp

2 Toshiba Electronics Asia Pte.,Ltd., 20 Pasir Panjang Road, #12-25/28 Mapletree Business
City, Singapore, 117439.

yoshihiro.ohba@toshiba.co.jp
3 National Institute of Standards and Technology, 100 Bureau Dr. Gaithersburg, MD 20899-

8930, U.S.A.
lily.chen@nist.gov

4 Applied Communication Sciences, 150 Mount Airy Road, Basking Ridge, New Jersey,
U.S.A., 07920.

sdas@appcomsci.com

 Abstract. Controlling a large number of devices such as sensors and smart

end points, is always a challenge where scalability and security are indispensable.
This is even more important when it comes to periodic configuration updates to
a large number of such devices belonging to one or more groups. One solution
could be to take a group of devices as a unit of control and then manage them
through a group communication mechanism. An obvious challenge to this ap-
proach is how to create such groups dynamically and manage them securely.
Moreover, there needs to have mechanisms in place by which members of the
group can be removed and added dynamically. In this paper, we propose a tech-
nique that has been recently standardized in IEEE 802.21 (IEEE 802.21-2015™)
with the objective in providing a standard-based solution to the above challenges.
The approach relies on Logical Key Hierarchy (LKH) based key distribution
mechanism but optimizes the number of encryption and decryption by using
“Complete Subtree”. It leverages IEEE 802.21 framework, services, and protocol
for communication and management. It provides a scalable and secure way to
manage (e.g., add and remove) devices from one or more groups. We describe
the group key distribution protocol in details and provide a security analysis of
the scheme along with some performance results from a prototype implementa-
tion.

Keywords: Group Communication, group key and management, multicast,
Group Key Block (GKB), Subtree, IEEE 802.21

mailto:yoshikazu.hanatani,%20naoki.ogura%7d@toshiba.co.jp

2

1 Introduction

In today’s networked world, it is becoming more and more expensive when it comes to
configuring and software updates to large number of remote sensors and smart devices.
To alleviate the cost and scalability issues, operators and vendors perform these opera-
tions remotely, commonly known as remote device management. While remote config-
urations updates are very common and secure networking technologies are available,
normally it happens via a remote server in which each device requires to connect the
server. This process becomes bandwidth inefficient (n unicast connections) and time
consuming when the configuration update of a group of devices involves transferring a
large amount of data. On the contrary, if these updates can be performed via a secure
group communication mechanism whereby the network entity can multicast or broadcast
the messages to a group of devices, the process becomes more efficient and saves a great
deal of time and network resources,

IEEE 802.21-2008™ [1] defines a media independent framework, services and signaling
protocol that are standardized in IEEE while the transport of the signaling protocol over
IP is standardized in IETF. The standard published in [1] addresses the handover opti-
mization use case whereby the user experience of ongoing application flows can be im-
proved significantly for mobile nodes (MNs) that are moving from one link layer access
technology to another irrespective of whether the access network is managed by the same
or different network operators. The framework provides a signaling protocol that can be
transported natively over the link layer or over Internet Protocol (IP) using underlying
unicast and multicast mechanisms. In subsequent years of Standards amendment process,
IEEE 802.21 Working Group addressed other use cases and defined signaling protocol
and services security along with a group management mechanism in [2, 3]. In particular,
Standards published in [3] targeted the use case where a large number of groups of de-
vices are required to be managed from a group manager that resides in an entity in the
network. Therefore [3] is relevant to our discussion in which a network entity can mul-
ticast a message to a group of nodes (or devices) using IEEE 802.21 media independent
protocol interface, and secure group key distribution mechanism to cryptographically
protect these multicast messages. The amendment [3] not only adds the secure group
communication mechanism but also allows network nodes to communicate handover
messages and to perform other management operations such as failover, failback, and
configuration updates to a group of devices that are part of the network. The standardized
approach relies on Logical Key Hierarchy (LKH) based key distribution mechanism [4,
5, 6] and uses “Complete Subtree” to optimize the number of encryption.

In this paper, we first introduce IEEE 802.21 [3] defined protocol and then discuss how
to use the complete subtree method to optimize the performance of group communica-
tion. Subsequently, we introduce specific methods to handle the issues in group key dis-
tribution for IEEE 802.21 applications. In addition, we also analyze security of the group
key distribution protocol as specified in IEEE 802.21 [3].

The paper is organized as follows: Section 2 discusses the related work. Section 3 pre-
sents the preliminaries of group key distribution approach while Section 4 describes the
Group Key Block. Section 5 describes the group key distribution scheme and Section
6 provides a formal model-based security analysis. Section 7 captures our initial proto-
type implementation results and Section 8 concludes the paper.

3

2 Related work and our approach

Secure multicast-based communication has been an important research topic in cryp-
tography and in communication security. Most of the research discusses theoretical
boundaries on the message length (i.e., number of encryptions), storage (i.e., number
of keys each member holds), and computations for each receiver [7]. Some of the re-
search also discusses trace-and-revoke algorithm with an upper bound of coalitions,
which is outside the scope of this paper.

 In practical applications, the secure group communications have been handled
through initial pairwise group key distribution to group members [8, 9]. The schemes
in [8] allow group key distribution for rekeying. On the other hand, whenever new
members join the group or some current members leave the group, the schemes defined
in [9] have to use pairwise secure channels for key distribution.

Logical Key Hierarchy (LKH) has been introduced in [4, 5, 6] for group key update,
assuming each group member has been provisioned with one fixed individual key or
the individual keys are established using other methods. The LKH is represented as a
tree while the individual keys are represented as leafs of the tree. The nodes above the
leaf level represent the keys shared by different members represented as leafs which
have a path to the node. Every time, a member or members join or leave the group, the
tree is updated.

The group key distribution scheme introduced in this paper uses a similar tree to
represent the fixed keys that each group member hold. The group key is encrypted by
a set of keys represented in the tree such that each member in the group owns a key to
decrypt it, while the nodes not in the group do not have the proper decryption keys.
Each time when group members join or leave, a new group key is distributed using the
proper keys for the new group. Intuitively, in a given group, if more group members
shared the same key, that is, their paths meet at the same node, the less encryptions are
needed. In order to gain such efficiency, the scheme in this paper uses ‘Complete Sub-
tree’. The ‘Complete Subtree’ method is introduced in [10] to optimize the number of
encryptions and decryptions for each group key distribution. These methods have not
been adopted in the practical applications to the best of our knowledge.

In particular, the method in this paper uses a single key tree to distribute keys for
different groups. For a given group, our method generally requires less number of key
encryptions than LKH for the key distributor, which also means lower transmission
burden. Let 𝐿𝐿 (> 1) denote the number of leaf nodes of the key tree, 𝑁𝑁(< 𝐿𝐿) denote
the number of root nodes of complete subtrees covering all leaf nodes of the members
of the group, and 𝑀𝑀 denote the number of ancestor nodes of the 𝑁𝑁 root nodes. In initial
group key distribution, LKH requires at least 𝐿𝐿 encryptions to distribute the group key
(which is the key corresponding to the root node of the key tree in LKH) and other keys
to be used for key update. In group key update, LKH requires (𝑁𝑁 + 𝑀𝑀) encryptions to
update the group key for all group members excluding revoked members. In contrast,
our method requires 𝑁𝑁 encryptions of the group key for both initial group key distribu-
tion and group key update. Therefore, if we assume the same key tree size, our method

4

always requires less number of encryptions than LKH. Our method allows to take ad-
vantage of complete subtrees when possible. That is, when the group members repre-
sented by the leaf nodes can be grouped to complete subtrees, the number of key en-
cryptions can be further reduced.

For any group member 𝑚𝑚, our method requires a single decryption to obtain the
group key, while for LKH, (𝐻𝐻 −𝐻𝐻𝑚𝑚 + 1) decryptions are needed where 𝐻𝐻 represents
the height of the key tree and 𝐻𝐻𝑚𝑚 represents the height of the complete subtree that
covers the leaf node of member 𝑚𝑚. In the applications where each group member is a
constrained device such as a sensor, our method has significant advantages.

On the other hand, it has not been clear how scalable complete subtree is and no specific
algorithms have been proposed to identify the complete subtrees. The use of a media
independent framework and a signaling protocol that can be transported natively over
Ethernet or over Internet Protocol (IP) using underlying unicast and multicast mecha-
nisms is another important aspect that has not been standardized or published to the
best of our knowledge.

While different security notions for group key agreement protocols have been intro-
duced in [11, 12, 13, 14], we define a variant of another formal security model called
Bresson and Manulis (BM) model [15] to satisfy the similar security requirements. The
BM model cannot be applied directly for our security proof because the group key dis-
tribution protocol specified in [3] does not provide perfect forward secrecy.

3 Preliminaries

In this section, we introduce some basic concepts used in group management and key
distribution. The concepts of key tree and complete subtree are essential for the key
distribution protocol that we discuss in subsection 3.1. When a group key is distributed,
it is protected by a key wrapping mechanism. To authenticate the sender, the encrypted
group key is digitally signed. The security notions and definitions of key wrapping and
signatures are introduced in subsections 3.2 and 3.3, respectively.

3.1 Key tree and complete subtree method

In this paper, we assume there are a large set of devices U = {U1, U2, …, Um} in which
each device is provisioned with a set of keys, called device keys, DKi. In the group key
distribution protocol, the key is distributed by a group manager (GM) to a subset of the
devices S = {Ui1, Ui2, …, Uik}.

A key tree is a binary tree with depth n and it has t levels from the root to the leafs.
Therefore, such a key tree has 2n leaf nodes whereby each leaf node is a device and to
represent all the devices {U1, U2, …, Um}, it requires m ≤ 2n. Figure 1Figure 1 is an
example of depth-3 tree. Each node (e.g., a leaf node, an inner node, or the root node)
is coded with a binary string called index and a key. Assume the root node is on the top.
The next level nodes have indices 0 and 1 from the left to the right. The corresponding

5

keys are denoted k0 and k1. The next level nodes have indices 00, 01 as decedents of
node 0 while 10 and 11 as decedents of node 1. The corresponding keys are denoted
k00, k01, k10, k11. Nodes in every level are indexed this way until the level t. In the rest
of this paper, we will denote the node with the index and the key (Ii, ki). We simply call
each key as a node key labeled with its index. For the leaf node, we also use the integer
converted from its index as the leaf number which maps to a specific device.

For device Uj, the provisioned device keys consist of all the node keys from the leaf
along the path to the root. In the example depicted in Figure 1Figure 1, a device rep-
resented by leaf “000” is provisioned with device keys {k(root), k0, k00, and k000}.

In order to distribute a master group key to the devices in a specific group, the master
group key mgk is protected with a set of keys in such a way that each device in the
group must own a key in its device key set to recover the mgk, while for any device not
in the group, it cannot recover the mgk. For a given group, there must be many different
ways to protect the mgk. For example, in Figure 1Figure 1 consider a group repre-
sented by the leaf nodes 000, 001, 010, 011, 101, and 111. Notice that nodes 000 and
001 share the same key k00 and nodes 000, 001, 010, 011 all share the key k0, then
protection with the following key sets all satisfy the condition stated above.

a. k000, k001, k010, k011, k101, k111;
b. k00, k01, k101, k111;
c. k0, k101, k111.

Obviously, key set c is more appealing because it calls the least number of the protec-
tion mechanisms and thus, generated the shortest of the ciphertext for broadcast. The
concept of complete subtree is introduced to optimize the number of calls to the pro-
tection mechanisms. In this paper, the protection mechanisms can be a key wrapping
algorithm or an encryption algorithm.

A complete (depth-l) subtree in a depth-t tree is a subtree with 2l leaf nodes such that
their indices have common prefix of t-l bits. For the tree in Figure 1Figure 1 , nodes
represented with indices 000 and 001 form a depth-1 complete subtree at root 00, while
nodes represented with indices 000, 001, 010, and 011 form a depth-2 complete subtree
at root 0. For a subset of the group, if it can form a complete subtree, using the key
represented by the subtree root allows all the members to recover the protected group
key. Therefore, identifying complete subtrees in a given group can optimize the com-
putation and communication resources in group key distribution for that group.

It shall be noticed that a single leaf is a depth-0 complete subtree. In fact, the optimiza-
tion is to find out the non-overlapping maximum complete subtrees, which can cover
the whole group. The set of non-overlapping maximum complete subtrees is unique for
a given group. For example, for the group with the leaf nodes 000, 001, 010, 011, 101,
111, the set of the non-overlapping maximum complete subtrees that covers all the
members is a depth-2 complete subtree and two depth-0 complete subtrees. Standards
published in [3] specifies a complete subtree algorithm to determine such set.

6

Figure 1. A depth-3 key tree

3.2 Key-wrapping scheme

After determining which keys to use through the complete subtrees, for the group
key distribution, the key is protected by a key wrapping scheme. Key-wrapping scheme
is a symmetric key encryption scheme for sending a group key. For group key distribu-
tion, IEEE std 802.21d-2015™ [3] supports two deterministic symmetric key schemes,
AES-key-wrapping-128 and AES-ECB-128. Here 𝑥𝑥 ⟵𝑅𝑅 𝑋𝑋 means that 𝑥𝑥 is an element
chosen uniformly at random in a finite set 𝑋𝑋.

Definition 1. Key-wrapping KW is a 3-tuple of algorithms
�KeyGenKW, Wrap, Unwrap� satisfying:

─ KeyGenKW: a probabilistic algorithm takes the security parameter 𝜅𝜅, and returns
𝐾𝐾 ∈ {0,1}𝜅𝜅 ,

─ Wrap : a deterministic algorithm takes 𝐾𝐾 ∈ {0,1}𝜅𝜅and 𝐷𝐷 ∈ {0,1}𝑙𝑙, and returns 𝐶𝐶 ∈
C where 𝑙𝑙 is a bit-length of key to be wraped.

─ Unwrap : a deterministic algorithm takes 𝐾𝐾 ∈ {0,1}𝜅𝜅 and 𝐶𝐶 ∈ C, and returns 𝐷𝐷 ∈
{0,1}𝑙𝑙 ∪ {⊥},
where ∀𝐾𝐾 ← KeyGenKW(𝜅𝜅),∀𝐷𝐷 ∈ {0,1}𝑙𝑙: Unwrap(K, Wrap(K,D))=D.

A basic security requirement for symmetric encryption scheme is the indistinguishabil-
ity against chosen plaintext attack (IND-CPA), and it is well-known that no determin-
istic encryption schemes can satisfy the IND-CPA. On the other hand, for sending a
random key, the following weaker security requirement is sufficient.

Definition 2. (Indistingutishability against Random-Plaintext Attack) Let

𝑏𝑏 ←𝑅𝑅 {0,1} and 𝑊𝑊 ← KeyGenKW(𝜅𝜅) where 𝜅𝜅 is a security parameter. The RPA-

7

advantage of A can send queries to oracles Wrap𝑊𝑊 and LR𝑊𝑊.When the oracle Wrap𝑊𝑊
receives a query, Wrap𝑊𝑊 selects 𝐷𝐷 ←𝑅𝑅 {0,1}𝑙𝑙 , and returns (𝐷𝐷,Wrap(𝑊𝑊,𝐷𝐷)). When the
oracle LR𝑊𝑊 receives a query, LR𝑊𝑊 selects 𝐷𝐷0,𝐷𝐷1 ←𝑅𝑅 {0,1}𝑙𝑙 , and returns
(𝐷𝐷0,𝐷𝐷1, Wrap(𝑊𝑊,𝐷𝐷𝑏𝑏)). The RPA-advantage of A is defined as

AdvA, KW
kw.rpa (𝜅𝜅) = Pr�AWrap𝑊𝑊,LR𝑤𝑤 → 1|𝑏𝑏 = 1� − Pr�AWrap𝑊𝑊,LR𝑤𝑤 → 1|𝑏𝑏 = 0�

where A is a probabilistic polynomial-time algorithm that sends at most 𝑞𝑞 queries to
Wrap𝑊𝑊 and at most 1 query to LR𝑊𝑊.

KW is IND-RPA secure if for all A, AdvA, KW
kw.rpa (𝜅𝜅) is negligible.

Random-Plaintext attack is originally defined in [16]. In the original definition in
[16], the adversary is not allowed to query the Wrap𝑊𝑊. According to a similar discus-
sion in [16], we can show that an ECB (electronic code book) mode based on a random
permutation with block length n is IND-RPA secure per Definition 2.

3.3 Signature scheme

In order to authenticate a sender, IEEE std 802.21d-2015™ [3] supports one digital
signature scheme, ECDSA (Elliptic Curve Digital Signature Algorithm). Here 𝑥𝑥 ⟵𝑅𝑅 𝑋𝑋
means that 𝑥𝑥 is an element chosen uniformly at random in a finite set 𝑋𝑋.

Definition 3. Signature 𝛴𝛴 is a 3-tuple of algorithms �KeyGenKW, Sign, Verif� satis-
fying:

─ KeyGen𝛴𝛴 : a probabilistic algorithm that takes the security parameter 𝜅𝜅, and returns
a pair of public key and secret key (𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠),

─ Sign : a probabilistic algorithm takes sk and a message 𝑚𝑚 ∈ {0,1}∗, and returns 𝜎𝜎,
─ Verif : a deterministic algorithm takes pk, m, and σ, and returns 0 or 1,

where ∀(𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠) ← KeyGen𝛴𝛴(𝜅𝜅), ∀𝑚𝑚 ∈ {0,1}∗ : Verif(𝑝𝑝𝑝𝑝,𝑚𝑚, Sign(𝑠𝑠𝑠𝑠,𝑚𝑚)) = 1.

Definition 4. (Existential Unforgeability against Chosen Message Attacks) Let 𝛴𝛴 =

(KeyGen𝛴𝛴, Sign, Verif) be a digital signature scheme, and (𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠) ← KeyGenΣ(𝜅𝜅).
When a signing oracle Sign𝑠𝑠𝑠𝑠 receives a query 𝑚𝑚 ∈ {0,1}∗ , it returns 𝜎𝜎 =
 Sign(𝑠𝑠𝑠𝑠,𝑚𝑚). The advantage of A is defined as

AdvA,Σ
euf−cma(𝜅𝜅) = Pr [ASign𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝) → (𝑚𝑚∗,𝜎𝜎∗):Verif(𝑝𝑝𝑝𝑝,𝑚𝑚∗,𝜎𝜎∗) = 1⋀ 𝑚𝑚∗∉M]

where M is the set of message queried to Sign𝑠𝑠𝑠𝑠 and A is a probabilistic polyno-
mial-time algorithm who sends at most 𝑞𝑞𝑆𝑆 queries to Sign𝑠𝑠𝑠𝑠 .
𝛴𝛴 is EUF-CMA secure if for all A , AdvA, Σ

euf−cma(𝜅𝜅) is negligible.

8

4 Group Key Block

Group Key Block (GKB) is a data format defined in IEEE std 802.21d-2015™ [3] for
encoding a group key and other data associated with the group key. The following at-
tributes are contained in a GKB:

• GroupKeyData: a list of octet strings, each of them contains the group key encrypted
by using a distinct node key specified in ‘CompleteSubtree’. Either
AES_Key_Wrapping-128 or AES_ECB-128 is used for encrypting the group key.

• GroupIdentifier: an identifier of a group.
• CompleteSubtree: a list of node indices corresponding to root nodes of specific sub-

trees of the key management tree. See Section 4.1 for more details.
• SubgroupRange: a range of valid leaf identifiers in the ‘CompleteSubtree’. A ‘Sub-

groupRange’ is used when a GKB is fragmented into multiple smaller pieces (see
Section4.2).

• VerifyGroupCode: a pre-known octet string encrypted by the group key. A ‘Veri-
fyGroupCode’ is used for checking whether the decrypted group key is the same as
the one generated by the GM. ‘VerifyGroupCode’ may be used when AES_ECB-
128 is used for group key encryption (Note that AES_Key_Wrapping has a built-in
key verification mechanism).

Digital signature is added to each message carrying a GKB using the signature scheme
described in Section 3.3.

4.1 Encoding complete subtrees

IEEE std 802.21d-2015™ [3] defines three methods for encoding ‘CompleteSub-
tree’. In this section, the default encoding method is explained. In the default encoding
method, a list of the node indices is contained in the ‘CompleteSubtree’ where each
node index in the key management tree represents the root node of a distinct subtree
covering only leaf nodes corresponding to members of the group. A node index consists
of a depth in the key management tree and a subindex that is unique within the depth.
In ‘GroupKeyData’, i -th string contains the group key encrypted by the node key cor-
responding to the i -th node index in the ‘CompleteSubtree’.

4.2 GKB fragmentation

As described in Section 4.1, the size of CompleteSubtree in Method 1 is proportional
to the number of subtrees encoded. Also, when a GKB is multicast and the number of
recipient is large (e.g., thousands or more), it is difficult to reliably deliver the GKB to
all recipients.

IEEE std 802.21d-2015™ [3] addresses this issue by defining a special fragmentation
mechanism for fragmenting GKB. Unlike other general-purpose fragmentation mecha-
nisms (e.g., IP fragmentation), a recipient of GKB does not have to receive all the frag-

9

ments of a single complete GKB and reassemble into the original GKB data. The re-
cipient can instead determine whether it is a member of the group and can obtain the
group key by receiving one GKB fragment that contains in ‘SubgroupRange’ attribute..
Suppose a single complete GKB is fragmented into five GKB fragments with ‘Sub-
groupRange’ of each fragment set to (0,99), (100,199), (200,299), (300,399), and
(400,499). A recipient whose leaf identifier is 250, when receiving the GKB fragment
with ‘SubgroupRange (200,299)’, can determine whether it is a member of the group.
Thus it can obtain the group key if it is a group member and can simply ignore other
four GKB fragments.

5 Group key distribution protocol

IEEE std 802.21d-2015™ [3] defines an architecture and a group key distribution pro-
tocol that a group manager (GM) can use to communicate to group members via a mul-
ticast transport. The group key distribution protocol uses the ‘Complete Subtree’
method with a deterministic symmetric key encryption scheme and a digital signature
scheme. In this section, we introduce a simplified version of the group key distribution
protocol using an option that is described in [3]. In this section we refer a group member
to a user.

Provisioning
IEEE std 802.21d-2015™ [3] assumes that a group manager and each user has

device keys, which are also called long-term keys. The secure provisioning method
is not defined in the standard.

1. Let 2𝑛𝑛 be the number of (potential) users managed by the group manager GM, and
let U be a set of all users. GM generates a key tree T with depth n, and assigns
(𝐼𝐼𝑖𝑖 , 𝑘𝑘𝑖𝑖) to each node in 𝑇𝑇 where 𝐼𝐼𝑖𝑖 is a node index represented as a binary string of
length between 1 to 𝑛𝑛 and 𝑘𝑘𝑖𝑖 ← KeyGenKW(𝜅𝜅) is a node key where 𝑖𝑖 correspond-
ing to the node index 𝐼𝐼𝑖𝑖 . For digital signature, GM generates (𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠) ←
KeyGen𝛴𝛴(𝜅𝜅).

2. For all user 𝑈𝑈𝑖𝑖 in U, GM assigns each user 𝑈𝑈𝑖𝑖 to a leaf node in 𝑇𝑇. Let 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑈𝑈𝑖𝑖 be a
set of node indices of nodes from the leaf node which is assigned to 𝑈𝑈𝑖𝑖 along the
path to the root node. GM assigns 𝐷𝐷𝐷𝐷𝑖𝑖 = ��𝐼𝐼𝑗𝑗 , 𝑘𝑘𝑗𝑗��𝐼𝐼𝑗𝑗∈𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑈𝑈𝑖𝑖

, to 𝑈𝑈𝑖𝑖 as the long-term

keys.
3. GM securely sends pk and 𝐷𝐷𝐷𝐷𝑖𝑖 to each of 𝑈𝑈𝑖𝑖.

Procedure of GM

1. Decide a set of group members S which is a target for group key distribution and a
group identifier 𝐺𝐺𝐺𝐺 which identifies a group using the distributed group key.

2. Pick a current sequence number SN for 𝐺𝐺𝐺𝐺.

10

3. Decide a destination group 𝐷𝐷𝐷𝐷 for the group key distribution message. GM is re-
quired to send the group key distribution message to all of its members S. For sim-
plicity, we assume that 𝐷𝐷𝐷𝐷 includes S. A broadcast group BG including all users
may be used as 𝐷𝐷𝐷𝐷.

4. Select a master group key mgk ∈ {0,1}𝑙𝑙 uniformly at random and select a security
association identifier SAID which is an identifier of a group session key gsk =
KDF(mgk) where KDF is a key derivation function which is publicly shared.

5. Compute a list of indices 𝐶𝐶𝐶𝐶 from U∖S and 𝑇𝑇 by ‘Complete Subtree’ method.
6. For all 𝐼𝐼𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶, compute 𝑐𝑐𝑖𝑖 = Wrap(𝑘𝑘𝑖𝑖 , mgk) where (𝐼𝐼𝑖𝑖 , 𝑘𝑘𝑖𝑖) is a node of 𝑇𝑇, and adds
𝑐𝑐𝑖𝑖 to a group key data 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝐺𝐺||𝑐𝑐𝑖𝑖.

7. Read a sequence number sq for the destination group 𝐷𝐷𝐷𝐷.
8. Compute 𝜎𝜎 = Sign(𝑠𝑠𝑠𝑠,𝐺𝐺𝐺𝐺||𝑆𝑆𝑆𝑆||𝐶𝐶𝐶𝐶||𝐺𝐺𝐺𝐺𝐺𝐺||SAID||𝑠𝑠𝑠𝑠).
9. Send (𝐺𝐺𝐺𝐺||SN ||CS ||GKD ||SAID||sq||σ) to 𝐷𝐷𝐷𝐷.

Procedure of receiver 𝑈𝑈𝑖𝑖

1. Receive (𝐺𝐺𝐺𝐺||SN ||CS ||GKD ||SAID||sq ||σ) .
2. Check sq whether the received message is not a replay attack. If the message with

sq was already accepted, 𝑈𝑈𝑖𝑖 stops the subsequent procedure.
3. If Verif(𝑝𝑝𝑝𝑝,𝐺𝐺𝐺𝐺||SN ||CS ||GKD ||SAID||sq, σ) ≠ 1, 𝑈𝑈𝑖𝑖 stops the subsequent proce-

dure.
4. If 𝑈𝑈𝑖𝑖 has (𝐼𝐼𝑗𝑗 , 𝑘𝑘𝑗𝑗) ∈ 𝐷𝐷𝐷𝐷𝑖𝑖 such that 𝐼𝐼𝑗𝑗 ∈ 𝐶𝐶𝐶𝐶,

(a) compute mgk = Unwrap(𝑘𝑘, 𝑐𝑐𝑘𝑘) where 𝑐𝑐𝑘𝑘 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺 is the ciphertext corre-
sponding with 𝐼𝐼𝑗𝑗,

(b) compute the group session key gsk = KDF(mgk) , and record
(𝐺𝐺𝐺𝐺, 𝑆𝑆𝑆𝑆, SAID, gsk).

6 Security Analysis

6.1 Security requirements

We define a formal security model based on BM model [15]. Our security model mod-
ifies the definition of freshness in BM model to remove perfect forward secrecy. This
is due to the reason that for IEEE 802.21 applications, reducing the number of multicast
communication traffic is an important requirement.

Attack model. Let an adversary A and the users (including the group manager GM)
be probabilistic polynomial-time algorithms. In order to capture multiple sessions, each
user 𝑈𝑈 is modeled by an oracle Π𝑈𝑈𝑠𝑠 for 𝑠𝑠 ∈ N. Every session is identified by a unique,
publicly-known sid𝑈𝑈𝑠𝑠 . Let pid𝑈𝑈𝑠𝑠 be a partner id that contains the identities of participat-
ing users (including 𝑈𝑈), and G(Π𝑈𝑈𝑗𝑗

𝑠𝑠) = {Π𝑈𝑈𝑗𝑗
𝑡𝑡 where 𝑈𝑈𝑗𝑗 ∈ pid𝑈𝑈𝑖𝑖

𝑠𝑠 and sid𝑈𝑈𝑖𝑖
𝑠𝑠 = sid𝑈𝑈𝑗𝑗

𝑡𝑡 }. Π𝑈𝑈𝑖𝑖
𝑠𝑠

and Π𝑈𝑈𝑗𝑗
𝑡𝑡 are called partner if Π𝑈𝑈𝑗𝑗

𝑡𝑡 ∈ G(Π𝑈𝑈𝑖𝑖
𝑠𝑠) and Π𝑈𝑈𝑖𝑖

𝑠𝑠 ∈ G(Π𝑈𝑈𝑗𝑗
𝑡𝑡). A learns each message

11

to be sent, and it can prevent sending or modifying the message. We assume that re-
ceivers always receive the original message sent by the sender, even if A blocks or
modifies it.

A issues following queries.

─ Initialize(S): For each user in the set S, a new oracle Π𝑈𝑈𝑠𝑠 is initialized and the re-
sulting session id sid is given to A.

─ Invoke(sid, S′): It assumes that sid is a valid session id and S′ is a set of initialized
oracles (S′ ⊂ S where S led to the construction of sid). In response, for each U ∈S′,
the oracle Π𝑈𝑈𝑠𝑠 turns into the processing stage. If Π𝑈𝑈𝑠𝑠 is an initiator of the protocol, Π𝑈𝑈𝑠𝑠
outputs the first protocol message.

─ Send(Π𝑈𝑈𝑠𝑠 ,𝑚𝑚): The message m is sent to Π𝑈𝑈𝑠𝑠 . In response, A receives a processing
result of m based on the protocol. The response may be empty, if 𝑚𝑚 is incorrect.

─ Corrupt(𝑈𝑈): In response, A obtains the long-term key of 𝑈𝑈, 𝐿𝐿𝐿𝐿𝑈𝑈.
─ AddUser(𝑈𝑈,𝛬𝛬): In response, a new user 𝑈𝑈 with a long-term key is added to U where

Λ contains the registration information and the long-term key. If the protocol pro-
hibits 𝑈𝑈 from selecting the long-term key, the long-term key in Λ is empty, and in
response A additionally receives 𝑈𝑈’s long-term key.

─ RevealState(Π𝑈𝑈𝑠𝑠): In response, A obtains ephemeral secrets stored in state𝑈𝑈𝑠𝑠 .
─ RevealKey(Π𝑈𝑈𝑠𝑠): In response, A obtains the group session key 𝑘𝑘𝑈𝑈𝑠𝑠 (only if Π𝑈𝑈𝑠𝑠 has

already accepted).

We say 𝑈𝑈 is corrupted if 𝐿𝐿𝐿𝐿𝑈𝑈 is known to A , either via Corrupt(𝑈𝑈) or
AddUser(𝑈𝑈,𝛬𝛬); if no such queries have been asked then 𝑈𝑈 is honest.

Definition 5. (Oracle Freshness) In a session sid of P, an oracle 𝛱𝛱𝑈𝑈𝑠𝑠 has accepted is
fresh if all of the following holds:

1. no 𝑈𝑈′ ∈ pid𝑈𝑈
𝑠𝑠 has been added by A via corresponding AddUser query,

2. no 𝑈𝑈′ ∈ pid𝑈𝑈
𝑠𝑠 has been corrupted via corresponding Corrupt query,

3. neither 𝛱𝛱𝑈𝑈𝑠𝑠 nor any of its partners is asked for a query RevealState until
𝛱𝛱𝑈𝑈𝑠𝑠 and its partners accept,

4. neither 𝛱𝛱𝑈𝑈𝑠𝑠 nor any of its partners is asked for a query RevealKey after having
accepted.

In the original definition in [2], the condition 2. is “no 𝑈𝑈′ ∈ pid𝑈𝑈
𝑠𝑠 is asked for a query

Corrupt prior to a query of the form Send(𝛱𝛱𝑈𝑈𝑗𝑗
𝑡𝑡 , m) with 𝑈𝑈𝑗𝑗 ∈ pid𝑈𝑈

𝑠𝑠 until 𝛱𝛱𝑈𝑈𝑠𝑠 and its
partners accept”. It means that Π𝑈𝑈𝑠𝑠 is fresh even if 𝑈𝑈′ ∈ pid𝑈𝑈

𝑠𝑠 who is a participant of a
future session is corrupted, i.e., it represents perfect forward secrecy.

In order to provide a formal security proof of our protocol without perfect forward
secrecy, we modify condition 2 for the weaken A as descried in Def. 5.

Definition 6. (Authenticated Key Exchange (AKE) security) Let P be a group key
distribution protocol. Let 𝑏𝑏 ←𝑅𝑅 {0,1} and A be an adversary against AKE security of
P. The attack game GameA,P

ake−𝑏𝑏is defined as follows.
1. A interacts with each oracle using the queries defined in section 6.1.

12

2. A sends Test query to Π𝑈𝑈𝑠𝑠 in arbitrary timing. Π𝑈𝑈𝑠𝑠 returns 𝑘𝑘𝑈𝑈𝑠𝑠 if 𝑏𝑏 = 0, else 𝑈𝑈
returns a key 𝑘𝑘𝑟𝑟 chosen from the key space uniformly at random.

3. A continues to interact with each oracles using the queries defined in section
6.1.

4. A outputs 𝑏𝑏′ ∈ {0,1} and stops.
Let Fr be an event that Π𝑈𝑈𝑠𝑠 who receives Test query is still Fresh when A has been

stopped. The advantage of A is defined as follows:

AdvA,P
ake−𝑏𝑏(κ) = | Pr�GameA,P

ake−𝑏𝑏(𝜅𝜅) = b ∧ Fr� − 1
2

|.

We say that a protocol P is AKE secure if for all probabilistic polynomial-time ad-
versary A, AdvA, P

ake−𝑏𝑏(κ) is negligible.

6.2 Security proof

Theorem 1. If Σ satisfies EUF-CMA security and KW satisfies IND-RPA security, the
protocol P described in section 6 satisfies AKE-security in Def. 6, and

AdvA𝐴𝐴𝐴𝐴𝐴𝐴,P
gk−𝑏𝑏 (𝜅𝜅) ≤

(2𝑁𝑁 − 1) ⋅ 𝑛𝑛𝑠𝑠 ⋅ 𝑛𝑛𝑔𝑔∗

2
⋅AdvA, KW

kw.rpa (κ) + AdvA,Σ
euf−𝑐𝑐𝑐𝑐𝑐𝑐(𝜅𝜅)

where N is the maximum number of users, 𝑛𝑛𝑔𝑔∗ is the number of ciphertexts containing
within 𝐺𝐺𝐺𝐺𝐺𝐺 in Π𝑈𝑈∗

𝑠𝑠 who is the receiver of Test query, and 𝑛𝑛𝑠𝑠 is the maximum number
of sessions.

Proof of Theorem 1. The security proof is given by the game hopping technique [18].
Let S𝑖𝑖 be an event that 𝑏𝑏 = 𝑏𝑏′ and Π𝑈𝑈s who receives Test query is fresh at the end of
Game i.

Game 0: The original attack game of AKE security. Due to Def. 6,

AdvA𝐴𝐴𝐴𝐴𝐴𝐴,P
gk−𝑏𝑏 (𝜅𝜅) = |Pr[𝑆𝑆0] − 1/2|. (1)

Game 1: Let LM be a list of messages issued by GM. In Game 1, each ΠU𝑠𝑠 ignores
Send(Π𝑈𝑈s ,𝑚𝑚) if 𝑚𝑚 ∉ LM, and other operations are the same as Game 0.

In the protocol P, the protocol message without the valid signature of GM is dropped
by the receivers. The behavior of Π𝑈𝑈s may be different between Game 0 and Game 1, if
and only if AAKE succeeds the existential forgery of Σ. We assume Σ is EUF-CMA se-
cure, then

|Pr[𝑆𝑆0] − Pr[𝑆𝑆1]| ≤ AdvA,Σ
euf−𝑐𝑐𝑐𝑐𝑐𝑐(𝜅𝜅). (2)

Game 2: Let L𝑈𝑈 be a list of messages received by the user 𝑈𝑈. In Game 2, Π𝑈𝑈s ignores
Send(Π𝑈𝑈s ,𝑚𝑚) if 𝑚𝑚 ∈ L𝑈𝑈, and other operations are the same as Game 1.

The message of P contains the sequence number sq, and each receiver does not accept
the same sequence number. The number of Sent queries is at most polynomial times in

13

𝜅𝜅 since A is a polynomial-time algorithm. If the space of sq is exponentially large in
𝜅𝜅, the behaviors of Π𝑈𝑈s in Game 1 and Game 2 are the same, then

Pr[S2] = Pr[𝑆𝑆1]. (3)

Game 3: GM try to guess a session 𝑠𝑠∗ that A AKE sends Test query and (𝐼𝐼∗, 𝑘𝑘∗) used in
𝑠𝑠∗. If it finds that the guess is failed, Game 3 is aborted, and GM decides 𝑏𝑏′ which is
the output of Game 3 instead of A AKE. Game 3 is the same as Game 2 excluding fol-
lowing operations;

─ After the Setup phase, GM randomly selects a session 𝑠𝑠∗ ∈ {1, … ,𝑛𝑛𝑠𝑠} and a node in
the key management tree T which has 𝑁𝑁 leaf nodes1, for guessing the session 𝑠𝑠∗ and
the node key 𝑘𝑘∗ used in 𝑠𝑠∗. Let Hit be an event that GM succeeds the guess2.

─ When it finds Hit does not occur, Game 3 is aborted and GM decides 𝑏𝑏′ ←R {0,1} in-
stead of A AKE.

When Hit occurs, Game 3 and Game 2 are the same. When Hit does not occur, S3 oc-
curs at random since GM selects 𝑏𝑏′ ←R {0,1}.

Pr[S3] = Pr[𝑆𝑆3 ∧ 𝐻𝐻𝐻𝐻𝐻𝐻] + Pr[𝑆𝑆3 ∧ ¬𝐻𝐻𝐻𝐻𝐻𝐻]
 = Pr[𝐻𝐻𝐻𝐻𝐻𝐻] Pr[𝑆𝑆3|𝐻𝐻𝐻𝐻𝐻𝐻] + Pr[¬𝐻𝐻𝐻𝐻𝐻𝐻] Pr [S3|¬𝐻𝐻𝐻𝐻𝐻𝐻]

 ≥
1

(2𝑁𝑁 − 1)𝑛𝑛𝑠𝑠
Pr[𝑆𝑆2] +

1
2
−

1
2(2𝑁𝑁 − 1)𝑛𝑛𝑠𝑠

 (4)

where 𝑁𝑁 is the maximum number of users, 𝑛𝑛𝑠𝑠 is the maximum number of the ses-
sions.

Game 4: In order to estimate | Pr[𝑆𝑆3] − 1/2|, we consider the following hybrid game.
In order to replace the reply of Test query with 𝐶𝐶 where (𝐷𝐷0,𝐷𝐷1,𝐶𝐶) ← LR𝑊𝑊, a node key
𝑘𝑘∗ is replaced by W using an Wrap𝑊𝑊 oracle. Game 4 is the same as Game 3 excluding
the following operations;

─ For a session 𝑠𝑠 excluding 𝑠𝑠∗, when the group manager Π𝐺𝐺𝐺𝐺s needs a ciphertext with
𝑘𝑘∗ for generating the encrypted group keys 𝐺𝐺𝐺𝐺𝐺𝐺, Π𝐺𝐺𝐺𝐺s accesses Wrap𝑊𝑊 oracle and
it receives (𝐷𝐷,𝐶𝐶). 𝐷𝐷 is regarded as a master group key mgk distributed in 𝑠𝑠, 𝐺𝐺𝐺𝐺𝐺𝐺 is
generated by C and D with other node keys excluding 𝑘𝑘∗ in T, e.g.,
Wrap�𝑘𝑘𝑖𝑖1,𝐷𝐷�, … , Wrap�𝑘𝑘𝑖𝑖𝑘𝑘−1,𝐷𝐷�,𝐶𝐶, Wrap�𝑘𝑘𝑖𝑖𝑘𝑘+1,𝐷𝐷�, … , Wrap �𝑘𝑘𝑘𝑘𝑛𝑛𝑘𝑘,𝐷𝐷� where
𝑛𝑛𝑘𝑘 is the number of ciphertext contained in 𝐺𝐺𝐺𝐺𝐺𝐺.

─ For the session 𝑠𝑠∗ , the group manager Π𝐺𝐺𝐺𝐺s
∗ sends a query to LR𝑊𝑊 and receives

(𝐷𝐷0,𝐷𝐷1,𝐶𝐶∗). 𝐷𝐷0 is regarded as a master group key mgk distributed in 𝑠𝑠∗, and 𝐷𝐷1 is
regarded as a random key. 𝐺𝐺𝐺𝐺𝐷𝐷∗ is generated by 𝐶𝐶∗, 𝐷𝐷0, and 𝐷𝐷1 with other node
keys excluding 𝑘𝑘∗in T, e.g.,

1 The complete binary tree T with N leaf nodes has (2N-1) nodes.
2 If the guess is correct, i.e., Hit occurs, no 𝑈𝑈∗ assigned (𝐼𝐼∗,𝑑𝑑𝑑𝑑∗) is corrupted at the end of

Game 3 since Π𝑈𝑈∗ who receives Test query must be fresh.

14

Wrap�𝑘𝑘𝑖𝑖1,𝐷𝐷0�, … , Wrap �𝑘𝑘𝑖𝑖𝑗𝑗−1,𝐷𝐷0� ,𝐶𝐶∗, Wrap �𝑘𝑘𝑖𝑖𝑗𝑗+1,𝐷𝐷1� , … , Wrap �𝑘𝑘𝑖𝑖𝑛𝑛𝑔𝑔∗ ,𝐷𝐷1�
where 𝑛𝑛𝑔𝑔∗ is the number of ciphertext contained in 𝐺𝐺𝐺𝐺𝐷𝐷∗

─ When Π𝑈𝑈𝑗𝑗
s∗ receives Test query, it returns a group session key KDF(𝐷𝐷0).

Let Hj be a hybrid game that 𝐺𝐺𝐺𝐺𝐷𝐷∗ = Wrap�𝑘𝑘𝑖𝑖1,𝐷𝐷0�, … , Wrap �𝑘𝑘𝑖𝑖𝑗𝑗−1,𝐷𝐷0�,

Wrap �𝑘𝑘𝑖𝑖𝑗𝑗 ,𝐷𝐷0� , Wrap �𝑘𝑘𝑖𝑖𝑗𝑗+1,𝐷𝐷1� , … , Wrap �𝑘𝑘𝑖𝑖𝑛𝑛𝑔𝑔∗ ,𝐷𝐷1�. Let 𝑏𝑏𝑟𝑟 be the bit of IND-RPA
game. If 𝑏𝑏𝑟𝑟 = 0, Game 3 is the same as 𝐻𝐻j+1 since 𝐶𝐶∗= Wrap(𝑊𝑊,𝐷𝐷0). If 𝑏𝑏𝑟𝑟 = 1, Game
3 is the same as 𝐻𝐻𝑗𝑗 since 𝐶𝐶∗= Wrap(𝑊𝑊,𝐷𝐷1). Let 𝐸𝐸𝑖𝑖 be an event that occurs if A AKE
outputs 1 in 𝐻𝐻i, then |Pr[𝐸𝐸𝑖𝑖−1] − Pr[𝐸𝐸𝑖𝑖]| ≤ AdvA, KW

kw.rpa (κ) holds. By the hybrid argu-
ment, we have

�Pr[𝐸𝐸0] − Pr �𝐸𝐸𝑛𝑛𝑔𝑔∗ �� = � | Pr[𝐸𝐸𝑖𝑖−1] − Pr [𝐸𝐸𝑖𝑖]|
𝑛𝑛𝑔𝑔∗

𝑖𝑖=1
≤ 𝑛𝑛𝑔𝑔∗⋅AdvA, KW

kw.rpa (κ).

Accordingly, 𝐻𝐻0 is the same as Game 3 when 𝑏𝑏 = 1, and 𝐻𝐻𝑛𝑛𝑔𝑔∗ is the same as Game 3
when 𝑏𝑏 = 0;

Pr[S3] − 1/2 = |Pr[AAKE → 1 in Game 3 ∧ b = 1]
+ Pr[AAKE → 0 in Game 3 ∧ b = 0] − 1/2|

 =
1
2

|Pr[A AKE → 1 in Game 3 |b = 1]

− (1 − Pr[AAKE → 1 in Game 3 |b = 0]) − 1|
 = 1

2
�Pr[𝐸𝐸0] − Pr �𝐸𝐸𝑛𝑛𝑔𝑔∗ � . � (5)

According to Eq. (1), (2), (3), (4), and (5),

AdvA𝐴𝐴𝐴𝐴𝐴𝐴,P
gk−𝑏𝑏 (𝜅𝜅) = �Pr[𝑆𝑆0] −

1
2
�

= �Pr[S1] + |Pr[S1] − Pr[S0]| −
1
2
� ≤ �Pr[𝑆𝑆1] + AdvA,Σ

euf−𝑐𝑐𝑐𝑐𝑐𝑐(𝜅𝜅) −
1
2
�

= �Pr[S2] + AdvA,Σ
euf−𝑐𝑐𝑐𝑐𝑐𝑐(𝜅𝜅) −

1
2
�

= �(2𝑁𝑁 − 1) ⋅ 𝑛𝑛s �Pr[S3] −
1
2
� + AdvA,Σ

euf−𝑐𝑐𝑐𝑐𝑐𝑐(𝜅𝜅)�

≤
(2𝑁𝑁 − 1) ⋅ ns ⋅ ng∗

2
⋅AdvA, KW

kw.rpa (κ) + AdvA,Σ
euf−𝑐𝑐𝑐𝑐𝑐𝑐(𝜅𝜅).

7 Prototyping

We implemented the group key distribution protocol as described in section 5 and
measured the processing time of group manager (GM) and receivers. In real systems,
the receivers may have memory constraints. For such system, the code footprint size is
also important. Therefore, we also measure the footprint size of the receivers. Table 1
shows the benchmark of the computing machine used for GM and receivers.

15

Table 1. Computing Machine Specification

 GM Receivers
CPU Core i5-4310M, 2.7 GHz ARM11176JZF-S, 700 MHz
RAM 4GB 512 MB
OS Ubuntu 14.04.4 Raspbian

 We considered the number of receivers is 1024, with threshold of fragmentation as
32. Table 2 shows processing time that GM takes to generate the protocol messages
and the receiver takes to process them. During processing cycle, signing time and ver-
ification time of ECDSA are dominant, when ECDSA is attached to each messages.
Table 3 shows the size of the protocol messages. The processing time and message size
depend on the selection of group members.

Table 2. Processing times

 GM Receiver
 Average [msec] Max [msec] Average [msec] Max [msec]
Best case 4.71 4.74 265.15 303.59
Worst case 83.80 85.01 4253.91 4276.05

Table 3. Protocol message size

 Message size[bytes]
Best case 272
Worst case 18336

In a best case scenario, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 contains only one ciphertext and hence GM
sends only one message. In worst case scenario, GM sends 512 ciphertexts, where GM
issues 16 messages with 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 which contains 32 ciphertexts (given the
threshold of fragmentation is 32). In our implementation, when the receiver receives a
message, it first verifies an ECDSA signature in the message. Therefore in worst case
scenario, receiver verifies 16 messages and hence the processing time increases. On the
decryption side though the receiver needs to decrypt only one message that carries the
complete subtree covering the receiver in order to extract the group key, and other 15
messages can be ignored after verification. So even in worst case, there is a significant
advantage in terms of overall processing time.

Table 4 shows foot print size of the receivers.

Table 4. Footprint size of Receivers

 size [Byte]
heap 55264
stack 12200
text 172257
data 1268
bss 119900

16

Total 360889

We measured the memory usage occupied on the virtual memory space. The text seg-
ment corresponds to the code size. The data and bss segments include pre-defined var-
iables (data has initialized data, while bss is uninitialized). The stack area is used for
storing temporal variables on the program that is executed. The heap area is managed
by malloc()-like functions. Each size of text, data, and bss segments are fixed in every
program executions. These values are measured by the size of the command. In this
early prototype implementation, we focus on reducing the heap size for to simplify
memory management simplification. The maximum sizes of stack or heap areas are
measured by valgrindTM [19].

8 Conclusion

We introduced a secure multicast-based group key management and key distribution
protocol that is recently standardized in IEEE 802.21. Although it is based on the con-
cept of logical key hierarchy, a method has been specified on how the ‘Complete Sub-
tree’ can be used to optimize the number of encryptions for each group key distribution.
A data format called ‘Group Data Block’ has been used for encoding the ‘Complete
Subtree’ and other data associated with it. To support the practical applications, the
standard assumes an architecture whereby a group manager is responsible for distrib-
uting the group key. The group key distribution protocol uses a deterministic symmetric
key wrapping scheme and a digital signature scheme. A formal security analysis and
corresponding proof have been performed based on Bresson and Manulis model. While
additional work is required, an early prototype implementation results with 1024 nodes
and tree depth of 7 show that the scheme is realizable in memory constrained devices.
It provides an easy way to securely add and remove group members.

References

1. IEEE Standard for Local and metropolitan area networks- Part 21: Media Independent Hand-
over Services- IEEE Std 802.21™-2008, January 2009.

2. IEEE Standard for Local and metropolitan area networks- Part 21: Media Independent Hand-
over; Amendment 1: Security Extensions to Media Independent Handover Services and Pro-
tocol, May 2012.

3. IEEE Standard for Local and metropolitan area networks- Part 21: Media Independent Hand-
over; Amendment 4: Multicast Group Management, July 2015.

4. D. Wallner, E. Harder, and R. Agee Key Management for Multicast: Issues and Architec-
tures Request for Comments: 2627 June 1999.

5. C. K. Wong, M. Gouda, and S. S. Lam, “Secure Group Communications Using Key
Graphs,” IEEE/ACM Transactions on Networking, vol. 8, No. 1, pp. 16-30, 2000.

6. ISO/IEC 11770-5 Information technology – Security techniques - Key management – Part
5: Group key management, 2011.

7. A. Fiat and M. Naor, Broadcast Encryption, Advances in Cryptology - CRYPTO’93, LNCS
773, Springer, 1994, pp. 480-491.

17

8. B. Weis, S. Rowles, and T. Hardjono The Group Domain of Interpretation IETF, Request
for Comments 6407, October 2011

9. IEEE Standard for Information technology—Telecommunications and information ex-
change between systems—Local and metropolitan area networks—Specific requirements
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations, 2015.

10. D. Naor, M. Naor, and J. Lotspiech, Revocation and tracing schemes for stateless receivers.
In Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pages 41–62, 2001.

11. W. Di ffie, P. C. van Oorschot, and M. J. Wiener. A d key ex-
changes. Des. Codes Cryptography, 2(2):107–125, 1992.

12. M. Burmester, On the risk of opening distributed keys. In Advances in Cryptology
CRYPTO ’94, 14th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 21-25, 1994, Proceedings, pages 308–317, 1994

13. Y. Kim, A. Perrig, and G. Tsudik, Simple and fault-tolerant key agreement for dynamic
collaborative groups. In CCS 2000, Proceedings of the 7th ACM Conference on Computer
and Communications Security, Athens, Greece, November 1-4, 2000., pages 235–244, 2000.

14. C. G. Gu¨nther. An identity-based key-exchange protocol. In Advances in Cryptology
EUROCRYPT ’89, Workshop on the Theory and Application of Cryptographic Techniques,
Houthalen, Belgium, April 10-13, 1989, Proceedings, pages 29–37, 1989.

15. T. Brecher, E. Bresson, and M. Manulis, Fully robust tree-diffie-hellman group key ex-
change. In Cryptology and Network Security, 8th International Conference, CANS 2009,
Kanazawa, Japan, December 12-14, 2009. Proceedings, pages 478–497, 2009.

16. R. Gennaro and S. Halevi, More on key wrapping. In Selected Areas in Cryptography 16th
Annual International Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009,
Revised Selected Papers, pages 53–70, 2009.

17. Burton H. Bloom, Space/time trade-offs in hash coding with allowable errors, Communica-
tions of the ACM, vol. 13, Issue 7, July 1970.

18. V. Shoup, Sequences of games: a tool for taming complexity in security proofs, IACR Cryp-
tology ePrint Archive, 2004:332, 2004.

19. Valgrind, http://valgrind.org/

