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Abstract

Purpose: The goal is to determine whether dual-energy computed tomography (CT) leads to a

unique reconstruction using two basis materials.

Methods: The beam-hardening equation is simplified to the single-voxel case. The simplified

equation is rewritten to show that the solution can be considered to be linear operations in a vector10

space followed by a measurement model which is the sum of the exponential of the coordinates.

The case of finding the concentrations of two materials from measurements of two spectra with

three photon energies is the simplest non-trivial case and is considered in detail.

Results: Using a material basis of water and bone, with photon energies of 30 keV, 60 keV, and

100 keV, a case with two solutions is demonstrated.15

Conclusions: Dual-energy reconstruction using two materials is not unique as shown by an exam-

ple. Algorithms for dual-energy, dual-material reconstructions need to be aware of this potential

ambiguity in the solution.
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I. INTRODUCTION

Dual-energy Computed Tomography (CT) is now an established technology giving in-20

formation beyond the gray-scale images of traditional CT, namely information about the

material composition as well. Traditional single-energy CT leads to reconstructions mea-

sured (at least in medicine) in Hounsfield Units (HU) which are defined in terms of the x-ray

attenuation of the sample compared to water. The HU does not specify the exact conditions

(e.g., x-ray tube voltage, filters, and detector response) and thus represents an incomplete25

description. Since the contrast of the elements can vary with the x-ray photon energy, dif-

ferent HU values are reported for heterogeneous samples as the conditions (typically, the

tube voltage) are varied. For example, if two images are taken with 80 kV and 120 kV tube

voltages, the Hounsfield Unit may be extended to be reported as HU80 and HU120.

One might ask why dual-energy CT is popular while using three or four energies is not30

common. In the medical case, this is because the linear x-ray attenuation coefficients of

most elements found in the human body (with atomic numbers up to Z = 20 for calcium)

can be reasonably well described with two basis functions.[1–3] In principle, K edges in the

spectral region would increase the number of observation conditions required. Dentistry

in particular could take advantage of this because of the presence of heavy elements used35

as dental fillings. Although multiple energies may be necessary in principle for a complete

description of CT, the subject of this paper is restricted to the dual-energy, dual-material

case.

Introductions to CT[5] usually begin with the exponential attenuation rule or Beer’s Law.

In fact, Beer’s Law is hardwired into the definition of one of the principal reconstruction40

algorithms, namely filtered backprojection[4] in the sense that one takes the logarithm of the

ratio of the observed signal to the initial signal. In fact, other attenuation-thickness relations

can arise physically, for example due to multiple scattering in electron tomography.[6, 7] In

the case of medical CT, multiple-scattering corrections are applied to return the problem to

tomography with projections, i.e., tomography based on a probe interacting with straight45

lines through the sample domain.[5] Even after multiple-scattering corrections are made,

because x-rays with different photon energies are attenuated at different rates as a beam

goes through the material, the surviving beam has more penetrating power. If the sample is

composed of a single material, the attenuation of the broad-band spectrum of an x-ray tube
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source leads to a unique attenuation-thickness relationship,[8] which can form the basis for50

tomography with projections.[6]

What if the density of two materials is reconstructed from two measurements? Will

there be a unique solution? While two linear equations in two unknowns will have a unique

solution (except for special cases with no solution or infinitely many solutions), nonlinear

equations can have more than one discrete solution. The equations of tomography with beam55

hardening and multiple materials are nonlinear, even for a single voxel. The purpose of this

paper is to explore the problem in the simplest case for which uniqueness is in question: the

case of reconstructing two materials from two measurements based on spectra with three

photon energies. Only noise-free measurements are considered in this manuscript. The use

of two spectra is denoted here by “dual energy” because the terminology in the field refers60

to the number of x-ray tube voltages (and hence primary electron energies) as the “energies”

not the number of photon energies.

II. MATERIALS AND METHODS

The beam hardening equation of x-ray tomography is

Ijψ =
∫
dE Sj(E) exp

(
−
∑
ir

firαi(E)Arψ

)
(1)65

where j denotes the observation condition (typically, the tube voltage). The detection

efficiency Dj(E) and the x-ray source spectrum I
(0)
j (E) only enter through their product

Sj(E) = Dj(E)I
(0)
j (E). In practice, only the source spectrum is varied and not the detector.

In Eq. (1), ψ denotes a path of the x-ray photon through the sample, Ijψ is a detected

intensity, E is a photon energy, Sj(E) is the spectrum-detector product for condition j, r70

denotes a voxel in the sample, i denotes a material, fir is the quantity of material i in voxel

r, αi(E) is the linear attenuation coefficient for material i, and Arψ is an element of the

system matrix that is not zero if a projection runs through a given voxel and it may contain

partial volume weightings as well. In Eq. (1), all quantities except fir are known; finding

the fir is called “performing a reconstruction.”75

To simplify the analysis, consider a single measurement of a single voxel. Then the system

matrix may be omitted and both r and ψ may be suppressed, leaving only the spectrum index

j. The integral over energies is also replaced by a discrete sum to arrive at a single-voxel
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beam-hardening equation

Ij =
∑
E

SjE exp

(
−
∑
i

fiαiE

)
(2)80

where the fi are to be determined in terms of the other quantities. In this paper, Eq. (2) is

explored for the case of two materials i, two spectra j, and three energies E. The case of

two materials, two spectra, and two energies is a special case of N materials, N spectra, and

N photon energies which, it is not difficult to show, leads to a unique solution unless certain

matrices are singular. Thus, the case considered in this paper is the simplest nontrivial case85

to look for multiple solutions.

Eq. (2) may be rewritten as

Ij =
∑
E

exp

(
sjE −

∑
i

fiαiE

)
(3)

where sjE = lnSjE. The sjE may be thought of as a set of Nj points in a vector space of

dimension NE which are translated by the material vector −∑i fiαiE to a corresponding90

point in the vector space. The material vector does not depend on the spectrum j. The sjE

are called “log-spectra” here. The sjE are known system parameters.

Eq. (3) is illustrated graphically in Fig. 1 for a single value of j for the case NE = 3. In

our example, the three photon energies will be chosen to be 30 keV, 60 keV, and 100 keV.

Each measurement constrains material vector fi to lie on the surface shown in the figure.95

The surface resembles a rounded corner cube. Any two isosurfaces of Ij are translations of

each other along the (1, ..., 1) direction even if the values of j differ. Such a translation may

be obtained physically by adjusting the tube current.

In Fig. 1, a measurement is viewed as the translation of a log-spectrum by a vector

representing the attenuation due to the material. The resulting point is in the same space as100

a log-spectrum, and the result of a measurement is represented as a point on an isosurface of

I1. The single measurement constrains the solution to lie on a curve which is the intersection

of an isosurface of I1 and the plane defined by the set s1E−
∑
i fiαiE for real numbers fi. To

achieve a modicum of realism, the coefficients α are selected using water and bone as basis105

functions with x-ray energies typical of medical imaging. The values are given in Table I.

Before showing the curve of intersection in 2D, it proves helpful to introduce a linear

change of coordinates. Define an orthonormal set of vectors ~β1, ~β2, ~β3 such that ~β
(0)
3 =

~α1 × ~α2, ~β3 = ~β
(0)
3 /|~β(0)

3 |, ~β
(0)
2 = (1, 1, 1)− ~β3~β3 · (1, 1, 1), ~β2 = ~β

(0)
2 /|~β(0)

2 |, and ~β1 = ~β2 × ~β3.110
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FIG. 1. Graphical representation of objects in the log spectrum space. Each axis labeled sE

for E = 1, 2, 3, represents a component in the log-spectrum space. The purple dot represents

the initial spectrum; technically, it is a point representing the log of the source-detector product.

Symbolically, the purple dot represents sjE in Eq. (3) for a particular j and all E. The black arrow

represents effect of attenuation by the material on the spectrum, symbolically −
∑
i fiαiE . It is the

vector sum of the blue arrow representing the attenuation −f1α1E , due to the first material, water,

and the brown arrow representing the attenuation −f2α2E due to the second material, bone. The

tip of the black arrow is located at sjE −
∑
i fiαiE . The two-dimensional subspace spanned by the

attenuation due to the two materials including the initial spectrum is shown in the lavender plane.

The light brown surface, which includes the point at the tip of the black arrow, represents the

isosurface to which a particular measurement, i.e., a particular value of Ij , constrains the solution

to lie in.

5



TABLE I. Linear x-ray mass attenuation cross sections from XCOM[9] for water and bone for three

selected photon energies.

photon µ/ρ

energy (cm2/g)

(keV) water bone

30 0.3756 1.331

60 0.2059 0.3148

100 0.1707 0.1855

The attenuation can be written as
∑2
i=1 fi~αi =

∑2
i=1 ci

~βi, introducing the coefficients (c1, c2).

The intersection of the plane and the detector function in these coordinates is shown in Fig. 2.

The fact that the curve of intersection is a relatively simple function c2 of c1 motivates the

change of coordinates.115

If a second spectrum is measured, a second point s2E is translated by the same ma-

terial vector −∑i fiαiE to another isosurface I2. As an example, let s2E = s1E + β3E =

(0.93, 1.71, 0.30). The measurement process for the new point is shown in Fig. 3. The light

green plane is parallel to the lavender plane because both are defined in terms of the same

material vectors. It does not matter that some components of s2E are greater than the120

corresponding components of s1E and some are less. A condition of strictly increasing or

strictly decreasing components could be achieved because it is always possible in principle

to add a multiple of (1, 1, 1) without changing the solution,

Even though the starting point is translated when the spectrum is changed, the attenu-

ation due to the material is identical to that shown in Fig. 1. The curve of intersection is125

shown in Fig. 4 which is analogous to Fig. 2.

III. RESULTS

The figures were drawn for the material concentration vector (f1, f2) = (2.5, 1.0), where

f1 gives a concentration of water in the voxel and f2 gives a concentration of bone. (The130

units of concentration are g/cm2 in this example; the unusual units for concentration arise

because there is no length specified for the voxel.) In the orthonormal basis, the values of

the two coefficients are (c1, c2) = (−1.27, 2.14) as shown in Fig. 2 and Fig. 4.
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FIG. 2. The c1, c2 plane is a linear transformation of the light blue plane shown in Fig. 1. The

purple dot and the black arrow are defined in Fig. 1. The blue curve is the intersection of the

lavender and brown surface in Fig. 1, transformed to the c1, c2 coordinates.

The two constraints, shown in Fig. 5, must be satisfied simultaneously. In Fig. 5,

the two unattenuated log-spectrum points are co-incident because no attenuation implies135

(f1, f2) = 0, hence (c1, c2) = 0. As shown in Fig. 5 and Fig. 6 there is a second solution

at (c1, c2) = (−0.74, 1.91), corresponding to (f1, f2) = (4.09, 0.13). These are two distinct,

isolated solutions both of which satisfy fi ≥ 0 which is the physical requirement that the140

concentration of materials cannot be negative.

It is relatively simple to find cases with a unique solution, but that is not treated explicitly

here. In particular, if the s2 is chosen to be s1 translated by a vector proportional to β2, the

solutions are frequently unique.
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FIG. 3. The cyan dot represents a second spectrum-detector product and is analogous to the purple

dot in Fig. 1. The black arrow is the same vector as in Fig. 1. The pink surface and the light green

plane are analogous to the light brown surface and the lavender plane in Fig. 1, respectively.

IV. DISCUSSION145

The paper gives an example of non-uniqueness of the solution to the problem of dual-

energy CT in the presence of beam hardening. In contrast to the single material case,[8]

in the presence of two materials with two spectra, there is not necessarily a unique recon-

struction. The results section demonstrates a case of two isolated solutions for noise-free

measurements. If noise were considered, it is likely that a region of the plane defined by150

the coefficients (f1, f2) including the line segment connecting the two values would represent

possible values to reconstruct. In addition to the discrete ambiguity, in cases in which a sec-

ond solution exists, uncertainty estimates of the concentrations based on linearizing about
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FIG. 4. The cyan dot and green curves are analogous to the purple dot and blue curve of Fig. 2.

The black arrow is the same vector as in Fig. 2.

a solution may be too small — even though the intersection at a small angle suggests the

possibility of a large solution region in the presence of noise.155

Although the argument in this paper is about a simplified single-voxel version of the

beam hardening problem for dual energy, it is likely that the considerations of this problem

apply to CT more generally. The nonlinearity in the simplified problem is inherent in the

full Eq. (1).

It was necessary to consider a spectral shift in which the source strength at the middle160

energy was increased while both ends of the spectrum were reduced. While this may seem

somewhat unnatural, an equivalent issue could arise if a material dominated by a middle

atomic number is to be distinguished from a material which contains both higher and lower

atomic number elements. The presence of a K edge in one of the materials also could lead
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FIG. 5. Figs. 2 and 4 are superposed. The purple and cyan dots are co-located at the origin. The

black arrow points to the intersection of the two curves. This point is at the expected solution, by

construction.

to a similar effect. Recall that “middle” is defined in terms of the middle of the ratio of the165

attenuation coefficients which need not occur in energy order.

V. CONCLUSIONS

The dual-energy beam-hardening problem is reduced to consideration of the intersection

of a plane with a nonlinear function in a vector space representing the detector. The source

spectrum, detection efficiency, and the measured value are represented together as a point in170

this space called here the “log spectrum.” The effect of x-ray attenuation in the sample is to

translate the log spectrum to another point in the space. That new point cannot be measured

10



expected solution

second solution

-2.0 -1.5 -1.0 -0.5 0.0

1.8

2.0

2.2

2.4

c1

c 2

FIG. 6. A blow-up of the c1-c2 plane, the material plane in a transformed variable. The solid circle

is centered at the expected solution. The dashed circle is centered at a second solution.

directly. However, it is constrained to lie in a plane because it is a linear combination

of material basis functions. Moreover, a measurement constrains the solution to lie on a

particular isosurface determined by the detection process. Although all of the detector175

isosurfaces have the same shape, the shapes of the intersection with the material subspace

can vary. The beam hardening problem is solved by searching for the 2D intersection of two

curves which are themselves intersections in the 3D log-spectrum space.

The key result of the paper is that the intersection of all the constraining surfaces need

not be unique. This is demonstrated in a simple example. The result could be an important180

consideration in the development of protocols and algorithms for dual-energy reconstruc-

tions.
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