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 The interaction between screw dislocations and vacancies in body-centered cubic metals 

is investigated using molecular dynamics simulations.  For thirteen different classical interatomic 

potentials, materials properties relating to vacancies, dislocations, and the interaction between 

the two are evaluated. The potentials include six for iron, two for molybdenum, and five for 

tantalum, and they are a mix of embedded atom method (EAM), modified embedded atom 

method (MEAM), and angular dependent potential (ADP) styles. A previously unknown 

behavior was identified during the interaction simulations.  Out of the thirteen potentials 

investigated, ten predict a vacancy on the dislocation core to no longer remain as a discrete point 

defect, but rather to dissociate along the dislocation line. The structure of the dissociation is 

dependent on the potential and is characterized here. As this vacancy dissociation alters the core 

structure of the dislocation, it may prove to be a new mechanism for dislocation pinning and pipe 

diffusion. 
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I. INTRODUCTION 

 

The mechanical properties of metals are intimately tied to the nature of the dislocations 

within the material, and how those dislocations interact with other types of defects.  In particular, 

point defects can alter the slip nature of dislocations resulting in softening or hardening of the 

material, and self-point defects (vacancies and self-interstitial atoms) allow for dislocations with 

edge components to climb. This interaction is coupled in the sense that the presence of 

dislocations also alters the diffusion of the point defects.  Dislocations can serve as sinks for 

point defects, and diffusion along dislocation lines is different than in the bulk material (pipe 

diffusion) [1].  

Despite the importance of defect interactions, experimental measurements of behaviors 

and mechanisms at the relevant scales are limited. Computational tools and models can thus 

provide insight not easily obtained experimentally.  Atomic scale calculations have been used for 

decades to investigate the structures, motions and interactions of point defects and dislocations. 

Multiple studies have performed molecular statics calculations of the vacancy formation energy 

near the dislocation core [2-11].  Maps of the formation energy versus position have been 

compared to elasticity models [2, 5], used to estimate a vacancy trap energy and radius [5, 10], 

and used as the foundation for modeling the vacancy diffusion pathway in and around the 

dislocation core using a variety of techniques [7, 9, 10, 12, 13].  A hybrid quantum-classical 

investigation revealed that the core reconstruction influences the interaction energy close to the 

dislocation core [11].  Density functional theory (DFT) calculations of impurity interstitials in 

body-centered cubic (bcc) iron revealed that the impurities alter the stable screw dislocation core 

[14].   
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The power of classical atomistic simulations is that they allow for the prediction of 

materials properties and behaviors that require both an atomistic description as well as length and 

time scales far beyond what can be achieved with quantum-based atomic calculations.  The 

limitation is that their empirical nature means that the predictions obtained can be strongly 

potential-dependent, especially for behaviors that were not explicitly fit to. This is particularly 

relevant for the investigation here as, while most metallic potentials are fit with vacancy 

properties in mind, only a few so far have explicitly considered dislocation behaviors, and none 

have been fit to produce specific dislocation-vacancy interactions.  Because of this, it is 

necessary to consider the predictions of multiple potentials, and to show how each of those 

potentials predicts not only the dislocation-vacancy interaction, but also the more basic 

properties of the isolated defects. 

In this paper, we investigate the interaction of the bcc screw dislocation with vacancies 

using thirteen different classical interatomic potentials. The basic formation energies and 

structures for the isolated defects are calculated and compared.  Static dislocation-vacancy 

interaction maps are computed showing the strength of the dislocation-vacancy interaction as a 

function of the radial vector from the dislocation core to the vacancy’s position.  In investigating 

the size-dependence of the dislocation-vacancy interaction energies on the periodic z-dimension, 

it was revealed that a number of potentials predict the vacancy to dissociate along the dislocation 

line.  This dissociation is characterized for all of the potentials. 

 

II. CALCULATION METHODS 

  

 In order to differentiate the various interatomic potentials used here, we follow the 

convention used on the National Institute of Standards and Technology’s Interatomic Potential 

Repository website.  The name for each potential is composed by combining the publication 

year, first author’s last name and initials, and short description of the model.  The six potentials 

of iron used are 1997--Ackland-G-J--Fe [15], 2003--Mendelev-M-I--Fe-2 [16], 2003--Mendelev-

M-I--Fe-5 [16], 2004--Zhou-X-W--Fe [17], 2006--Chamati-H--2006--Fe [18], and 2012--

Proville-L--Fe [19].  The two potentials of molybdenum used are 2004--Zhou-X-W--Mo [17] 

and 2012--Park-H--Mo [20].  And, the five potentials of tantalum used are 2003--Li-Y-H--Ta 

[21], 2004--Zhou-X-W--Ta [17], 2013--Ravelo-R--Ta-1 [22], 2013--Ravelo-R--Ta-2 [22], and 

2015--Purja-Pun-G-P--Ta [23].  All of these potentials are embedded atom method (EAM) 

potentials [24] with the exception of 2012--Park-H--Mo being a modified embedded atom 

method (MEAM) potential [25] and 2015--Purja-Pun-G-P--Ta being an angular dependent 

(ADP) potential [26]. 

Performing the calculations in a high-throughput manner was further supported by the 

iprPy Python-based framework (source code available at https://github.com/usnistgov/iprPy).  

This framework was developed as part of the NIST Interatomic Potential Repository project to 

assist in evaluating and comparing how different interatomic potentials predict a variety of basic 

materials properties.  The atomman Python package (source code available at 

https://github.com/usnistgov/atomman) was used as a wrapper for the LAMMPS molecular 

dynamics software [27, 28] by preparing atomic systems, constructing LAMMPS input scripts, 

executing LAMMPS, and performing post-run analysis of the simulation results.  Embedding the 

simulations in Python is advantageous as it creates a complete record of the calculation process 

which supports sharing the calculation code for verification and knowledge transfer. 

https://github.com/usnistgov/iprPy
https://github.com/usnistgov/atomman
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Additionally, atomman treats LAMMPS potentials as modular entries making it easier to 

perform the same simulations with multiple potentials.     

Lattice and elastic constants were calculated using the refine_structure calculation in 

iprPy.  This routine starts with an initial guess for the lattice constants of a structure. System-

wide pressures are evaluated statically using LAMMPS for both the initial system as well as for 

small strains ( 5101  ).  The elastic constants of the system are obtained by comparing changes 

in stress (pressure) to changes in strain, and a new lattice parameter guess is obtained by 

assuming linear elasticity and extrapolating to the lattice dimensions associated with zero 

pressure.  The calculation then iterates until the lattice parameters converge. 

 The iprPy calculation point_defect_static was used to compute the vacancy formation 

energy.  Perfect systems are constructed using the refined lattice constant values, then an atom is 

deleted and the local atomic positions are allowed to relax to a force tolerance of 8101  eV/Å.  

The formation energy is obtained as the change in energy of the system with the addition of the 

vacancy minus the per-atom cohesive energy of the perfect system.  This is repeated for 

supercells ranging from 333  to 101010  , and final values are obtained by plotting the 

formation energy versus the inverse number of atoms and extrapolating to infinite atoms.   

Dislocations were investigated using dislocation monopole systems. Initially, a perfect bcc block 

of atoms was constructed with Cartesian axes corresponding to the crystallographic axes of 

      111,011,121 . The dimensions of the atomic block are Zaa  280648 , where a  is the 

cubic lattice constant and Z  varies with different simulations. Z  is always a multiple of b2 , 

where b  is the magnitude of the ]111[2a  Burgers vector. 

A dislocation parallel to the z-axis was created by adding to the atom positions the 

displacements associated with the Eshelby anisotropic elasticity solution [29] for a perfectly 

straight dislocation.  The anisotropic elasticity solution was obtained using the Stroh method [30-

32] code contained in atomman.  

The system is divided into two regions: an active region defined by the volume within a 

cylinder parallel to the z-axis, and a non-active region defined as the remaining volume of the 

system. The atoms in the non-active region remain fixed at the positions associated with the 

anisotropic displacement solution while the atoms in the active region are relaxed using energy 

minimization.  The radius of the active region is defined such that the non-active region is 

always at least 3a thick, i.e.   aaractive 284.253220  . The atoms in the active region were 

relaxed by performing 10000 Nose-Hoover NVT integrations at 100 K, followed by 1000 NVT 

integrations with the temperature linearly scaling down to 0.01 K, and finally performing a 

minimization to a force tolerance of 5101  eV/Å.   

The Peierls barrier was evaluated using nudged elastic band (NEB) calculations [33, 34]. 

Two dislocation monopole systems with Z thickness of 2b are constructed in which the 

dislocations are one periodic distance apart along the  011  slip plane. The NEB calculation 

identifies the low energy transition pathway between the two initial end states giving the non-

kinked slip barrier of the dislocation.   

The interaction of the dislocation with a vacancy was examined by performing multiple 

simulations where a single atom at radial position, r , from the dislocation core’s xy position was 

removed from the relaxed dislocation monopole system, and the system was relaxed to a force 

tolerance of 5101   eV/Å.  The formation energy of the vacancy near the dislocation core, 

 rfE , was then obtained by comparing the energy of the dislocation system before and after the 
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vacancy was added. Finally, the dislocation-vacancy interaction (DVI) energy, DVIE , is taken to 

be the vacancy formation energy relative to the bulk formation energy, 0

fE ,   

    0

ffDVI EEE  rr .        (1) 

 

III. RESULTS AND DISCUSSION 

 

A. Basic properties 

 

 The lattice constants, elastic constants, cohesive energy, vacancy formation energy, 

dislocation core structure and Peierls barrier shape results are summarized in Table I. These 

basic properties of the perfect crystal and the isolated defects of interest all influence how the 

defects move and interact with each other. The bulk crystal and vacancy property values can be 

directly compared to experimental measurements.  

Across the potentials of the same element we see that the bulk property values tend to be 

similar, with most differences due to the potentials fitting these values precisely to different 

reference values.  The only unexplained outlier is that the lattice constant for the 2012--Proville-

L--Fe potential is noticeably smaller than the other iron potentials.  There is more variation 

across the vacancy formation energies, but for the most part the values are near the experimental 

values.  In fact, only the 2013--Ravelo-R--Ta-2 potential gives a formation energy outside the 

experimental range of values (experimentally, 2.8 ± 0.6 eV [35]). 

While experimental observations cannot be directly made for the dislocation character, 

specific features of interest have been identified that can be compared to density functional 

theory (DFT) calculations.  Two types of stable core configurations (Fig. 1) are observed with 

classical atomistic potentials: the compact (non-dissociated) core and the polarized (dissociated) 

core. The core structure affects kink nucleation, which in turn affects the critical resolved shear 

stress for slip activation, and slip direction [36].  DFT calculations of dislocation cores have 

revealed that for pure, perfect bcc screw dislocations at 0 K and zero stress, the stable dislocation 

core is compact [37-40]. 

The simulation results here reveal that nine out of the thirteen potentials investigated 

predict a compact core.  During tests, it was revealed that thermally relaxing the dislocations is 

necessary to correctly capture the stable core structure.  The elasticity solution constructs the 

dislocations as being compact, and only performing a minimization relaxation may not capture 

that the potential predicts a polarized core instead.   

A second feature that affects the slip nature of the dislocation is the shape of the Peierls 

barrier.  For potentials that predict the stable compact core, the energy pathway for slip may 

either be single- or double-peaked.  Double-peaked Peierls barriers result from the presence of an 

intermediate metastable core structure.  and cause partial kinks to form during slip [41], and may 

alter the resulting slip plane from being  110  to being  112 [42].  DFT calculations for all bcc 

transition metals reveal single-peaked Peierls barriers [39, 43-45], and low-temperature 

experiments show that  110  slip is the fundamental slip plane for bcc metals [46].  The Peierls 

barriers for the polarized core potentials are not included here as the barrier depends on the 

orientation of the dislocation’s polarization in the two reference states, and that the resulting slip 

typically involves multiple barriers along multiple  110  planes.     



5 

 

Out of the nine potentials that have stable compact dislocation cores, only three show 

single-peaked Peierls barriers.  The 2012--Proville-L--Fe potential was specifically fit to 

reproduce the DFT Peierls barrier, whereas the other two potentials, 2006--Chamati-H--Fe and 

2012--Park-H--Mo, were not fit to this behavior specifically.  Analysis of slip using the 2006--

Chamati-H--Fe and 2012--Proville-L--Fe potentials reveals that the correct  110  slip is 

observed when the Peierls barrier is single peaked, and the dislocation core remains compact and 

non-planar [47].  This is important for any investigations into the dislocation’s slip behavior. 

 

B. Dislocation-vacancy interactions 

 

   A size-dependent analysis was performed with the 2006--Chamati-H--Fe and 2012--Park-

H--Mo potentials to investigate the influence of the periodic z-direction thickness, Z, on the 

interaction energy. With a periodic boundary, the vacancy added to the system is not actually an 

isolated point defect but rather an infinitely long chain of vacancies.  Z ranging from 4b to 80b 

were explored for both dislocation-free and dislocation-containing systems to determine what 

thickness is necessary for the bulk vacancy formation energy, 
0

fE , and the vacancy formation 

energy near the dislocation,  rfE , to converge.   

Plots of 
0

fE  and  rfE as a function of Z are shown in Fig. 2 for the 2006--Chamati-H--

Fe potential. Values of
0

fE  and  rfE  with |r| > 5 Å converge within 0.0002 eV for Z ≥ 12b.  For 

the four unique vacancy positions with |r| < 5 Å, the thickness needed to reach the same 

convergence increases with decreasing |r|.  Positions with |r| = 4.92 Å converge at Z = 20b, while 

positions at |r| = 3.54 Å and 2.76 Å converge at Z = 28b.  For the center of the core (|r| = 1.35 

Å), there is still an energy difference of 0.002 eV between systems of Z = 52b and Z = 56b.   In 

contrast, results with the Park-H--2012--Mo potential do not reveal this strong size dependence 

as the formation energies for all r are nearly constant for Z ≥ 12b. 

Figure 3 shows the static dislocation-vacancy energy maps for all of the potentials 

computed using Z = 20b. The interaction energies are shown for vacancy positions |r| < 50 Å for 

all potentials. Only the qualitative appearance of the long-range interactions is considered here as 

these maps are very sensitive to the choice of potential.  The color value range was chosen to 

reveal the features of the long-distance interaction.  While values for small |r| may depend on the 

Z thickness, the effect is not relevant to these maps as the attractive energy at the dislocation core 

always greatly exceeds the plotted color value range.    

There is a clear correlation between the energy maps and the character of the stable 

dislocation core. For nearly all of the potentials that predict the compact core to be stable, the 

energy map has a three-fold rotational symmetry and mirror symmetry revealing an angular 

dependence where long-range attraction and repulsion alternates. This is consistent with previous 

reports using the 2003--Mendelev-M-I--Fe-2 potential [5]. The only exception is the 2012--

Proville-L--Fe potential which shows a slightly unfavorable shell region around the core, and 

considerably smaller long-range interaction energies than the other iron potentials.   

While the compact core is believed to be the correct stable core, it is still of interest to 

show the interaction energy maps for polarized cores.  With the 1997--Ackland-G-J--Fe, 2013--

Ravelo-R--Ta-1, and 2013--Ravelo-R--Ta-2 potentials, the interaction energy maps are very 

similar to those observed with the compact dislocation core, except that the mirror symmetry is 

broken with an off-axis twist.  Finally, the 2004--Zhou-X-W--Mo is unique in that the interaction 

energy is always attractive and depends on |r| without any angular dependence. 
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C. Vacancy dissociation 

 

 The dislocation core structure was examined more closely in order to gain insight into the 

strong size-dependency seen with the 2006--Chamati-H--Fe potential.  In Fig. 4, the three  111

columns of atoms at the center of the dislocation core are extracted and shown from the side for a 

Z = 32b system.   Figure 4(a) shows the initial unrelaxed structure, where the vacancy is clearly 

visible near the center of the middle (green) column of atoms.  Guidelines are drawn in to show 

the z-position alignment of the three columns is consistent for the whole extracted section. 

Figure 4(b) shows the system after it has relaxed.  There is no clear position for the vacancy 

anymore and the columns of atoms no longer line up with the guidelines.  This indicates that the 

vacancy relaxes from a discrete position to being dissociated along the dislocation line.  For bcc 

metals, the  111  direction is a close packed direction meaning that this dissociation is similar to 

what is seen with a crowdion interstitial, except there is a missing atom instead of an extra one.     

Simulations were performed in order to determine which potentials predict this 

dissociation, and to better characterize the structure of the dislocation core with the vacancy.  

Dislocation monopole systems with Z = 64b were constructed for all of the potentials with a 

vacancy placed at the dislocation core.  These simulations were performed in exactly the same 

manner as reported before, except that the thermal anneal occurred after the vacancy was 

inserted as opposed to before.  This was done since the vacancy-free dislocation may move 

during a thermal anneal, and to help relax the dislocation-vacancy structure. 

The atomic structure of the vacancy dissociation is explored by determining the fraction 

of the vacancy that is associated with each pair of atoms along the  111  column of atoms 

containing the vacancy.  Cumulatively summing this vacancy fraction along the column provides 

an informative method for mapping out the vacancy’s position and dissociation 
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Here, 
 iz  refers to the z-coordinate of the ith atom in the column. The difference in z positions is 

scaled by b as it is the ideal z-distance between two atoms in the  111  column when there is no 

vacancy present. The value of N can range 11  BN , where bZB / .  Note that 
 0z  is the 

periodic image of 
 1Bz , and that   11 B . Vacancies with discrete positions will show up as 

a sudden jump in  from 0 to 1, whereas fully dissociated vacancies will have  linearly 

increase from 0 to 1 over the entire periodic length.  

 Plots of  N  vs. N for all of potentials are shown in Fig. 5 revealing a variety of 

vacancy dissociation behaviors.  Out of all of the potentials, only three (1997--Ackland-G-J--Fe, 

2012--Park-H--Mo and 2003--Li-Y-H--Ta) show a true discrete vacancy structure with a single 

sharp change in  N  and only a slight relaxation of the atoms near the vacancy.  Sharp jumps 

are also seen for the 2004--Zhou-X-W--Mo, except that there are two jumps indicating that the 

effect of the vacancy has split.   

All the rest of the potentials show that the vacancy dissociates over a range of the 

dislocation line.  For the 2003--Mendelev-M-I--Fe-2, 2003--Mendelev-M-I--Fe-5, 2004--Zhou-

X-W--Fe, 2012--Proville-L--Fe, and 2004--Zhou-X-W--Ta potentials there seems to be a width 

for the dissociation.  In contrast, the dissociation seen for the 2006--Chamati-H--Fe, 2013--
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Ravelo-R--Ta-1, and 2013--Ravelo-R--Ta-2 potentials is complete across the width of the system 

indicating that if these potentials do have a vacancy dissociation width that it is greater than the 

64b thickness of the system.  Finally, the 2015--Purja-Pun-G-P--Ta potential appears to consist 

of three steps with each having roughly the same width.   

No clear correlation is found between the basic properties computed here and whether a 

particular potential predicts a dissociated vacancy.  The only possible trend is that the two 

molybdenum potentials predict discrete dislocation points. More examinations are needed to 

determine if the dissociation relates to an inherent aspect of the potential or a basic material 

property. 

The vacancy dissociation observed with many of the potentials will likely have an effect 

on predicted yield and diffusion behaviors. Related to diffusion, the dissociation could prove to 

be a new mechanism for pipe diffusion. As the dissociation is similar to a crowdion interstitial, it 

is expected that the mobility barrier for vacancy diffusion along the column of atoms in which it 

has spread is considerably smaller than the bulk mobility barrier. Evidence for this is observed in 

Fig. 5 where the center of the vacancy has shifted along the z-axis for the potentials that predict 

the vacancy to dissociate. For example, with the 2003--Mendelev-MI--Fe-2 potential the 

vacancy’s initial position was halfway between atoms with indices 32 and 33. After relaxation, 

the dissociation width crosses the periodic boundary and the center of the dissociation width is 

near atom index 57 indicating that the vacancy has moved roughly 25b along the dislocation line.  

By dissociating, the vacancy may also show substantial effects on dislocation slip. The 

dissociated vacancy alters the dislocation’s core structure over a length of the dislocation line, 

which will likely influence kink formation. A strong pinning effect of the dislocation is also 

expected due to the large formation energy of the vacancy on the dislocation core and the fact 

that the vacancy must revert to a discrete state in order for it to separate from the dislocation. 

Also, the vacancy breaks the three-fold rotational symmetry of the dislocation core, which will 

influence the stress-state dependent critical resolved shear stress.   

The different interatomic potentials selected here reveal a wide range of predicted 

behaviors. This suggests more work should be done to understand what the most physically 

realistic behavior is, and to elucidate how the different atomistic predictions influence dynamic 

processes. Only then will it be known which potentials are most suited for these types of studies 

and what implications the behaviors will have in modeling at higher length scales. 

 

IV. SUMMARY 

 

The static interaction between a vacancy and a bcc screw dislocation was examined using 

classical atomistics and a variety of interatomic potentials. A number of basic properties related 

to dislocation and vacancy formation are calculated in order to characterize and compare the 

different potentials. All of the potentials provide decent predictions of bulk and vacancy 

properties. However, the dislocation core structures and Peierls barrier shapes vary due to the 

fact that most were not fit with these behaviors in mind. 

Dislocation-vacancy interaction maps are constructed for all of the potentials. While most 

reveal similar qualitative behaviors, differences are observed due to how the potentials predict 

the relaxed dislocation core structure. 

With vacancies positioned directly on the dislocation cores, an interesting new 

mechanism is observed in which the vacancy dissociates along the dislocation line. This vacancy 

dissociation is observed for many but not all of the potentials. Characterization of the 
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dissociation across the different potentials reveals differences in the structure of this relaxation. 

Further exploratory work is needed of this mechanism as it may influence dislocation pinning, 

vacancy trapping, and pipe diffusion. 
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TABLE I. List of the potential models investigated and basic properties for each. The lattice 

constant, a0, is in Å, the elastic constants, Cij, are in GPa, and the cohesive energy, Ecoh, and bulk 

vacancy formation energy, 
0

fE , are in eV. 

Potential Style a0 Ecoh C11 C12 C44 
0

fE  
dislocation 

core 

Peierls 

shape 

1997--Ackland-G-J--Fe EAM 2.8665 -4.32 243.4 145.1 116.0 1.70 Polarized   

2003--Mendelev-M-I--Fe-2 EAM 2.8553 -4.12 243.4 145.0 116.0 1.71 Compact Double 

2003--Mendelev-M-I--Fe-5 EAM 2.8553 -4.13 243.9 145.3 116.1 1.63 Compact Double 

2004--Zhou-X-W--Fe EAM 2.8659 -4.29 231.3 136.7 117.8 1.67 Compact Double 

2006--Chamati-H--Fe EAM 2.8665 -4.28 241.1 146.8 114.0 1.86 Compact Single 

2012--Proville-L--Fe EAM 2.8148 -4.12 243.4 145.0 116.0 1.96 Compact Single 

2004--Zhou-X-W--Mo EAM 3.1502 -6.81 456.3 167.4 115.3 2.95 Polarized   

2012--Park-H--Mo MEAM 3.1674 -6.82 423.3 143.1 95.5 2.96 Compact Single 

2003--Li-Y-H--Ta EAM 3.3026 -8.09 247.5 143.6 86.6 2.75 Compact Double 

2004--Zhou-X-W--Ta EAM 3.3025 -8.09 264.4 159.5 80.9 2.98 Compact Double 

2013--Ravelo-R--Ta-1 EAM 3.3040 -8.10 262.6 160.7 81.8 2.40 Polarized   

2013--Ravelo-R--Ta-2 EAM 3.3040 -8.10 266.9 160.4 86.0 1.96 Polarized   

2015--Purja-Pun-G-P--Ta ADP 3.3040 -8.10 268.9 157.6 90.4 3.06 Compact Double 
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FIG. 1: Differential displacement maps of bcc screw dislocations showing (a) the compact core 

structure and (b) the dissociated/polarized core structure. 

  
FIG. 2. Size dependent investigation of the vacancy formation energies with respect to system 

width using the 2006--Chamati-H--Fe potential. 
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FIG. 3. Maps of the interaction energy between a screw dislocation and a vacancy at different 

positions relative to the dislocation core. 
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FIG. 4. Cross-section view of the three columns of atoms at the center of the dislocation core 32b 

long showing vacancy dissociation.  (a) Before relaxation the vacancy is clearly visible in the 

center of the top (blue) column of atoms.  (b) After relaxation there is no discrete vacancy 

position observed.  The black lines are guides showing that the alignment of atoms changes from 

(a) to (b) indicating that the vacancy has spread along the dislocation column.  (c) Top-down 

view indicating the three columns of atoms shown in (a) and (b). 
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FIG. 5. Cumulative vacancy fraction plots showing the various vacancy dissociation behaviors 

across the different potentials. 

 


