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Abstract. Untargeted omics analyses aim to comprehensively characterize biomol-
ecules within a biological system. Changes in the presence or quantity of these
biomolecules can indicate important biological perturbations, such as those caused
by disease.With current technological advancements, the entire genome can now be
sequenced; however, in the burgeoning fields of lipidomics, only a subset of lipids can
be identified. The recent emergence of high resolution tandem mass spectrometry
(HR-MS/MS), in combination with ultra-high performance liquid chromatography, has
resulted in an increased coverage of the lipidome. Nevertheless, identifications from
MS/MS are generally limited by the number of precursors that can be selected for
fragmentation during chromatographic elution. Therefore, we developed the software

IE-Omics to automate iterative exclusion (IE), where selected precursors using data-dependent topN analyses
are excluded in sequential injections. In each sequential injection, unique precursors are fragmented until HR-
MS/MS spectra of all ions above a user-defined intensity threshold are acquired. IE-Omics was applied to
lipidomic analyses in Red Cross plasma and substantia nigra tissue. Coverage of the lipidome was drastically
improved using IE. When applying IE-Omics to Red Cross plasma and substantia nigra lipid extracts in positive
ion mode, 69% and 40% more molecular identifications were obtained, respectively. In addition, applying IE-
Omics to a lipidomics workflow increased the coverage of trace species, including odd-chained and short-
chained diacylglycerides and oxidized lipid species. By increasing the coverage of the lipidome, applying IE to
a lipidomics workflow increases the probability of finding biomarkers and provides additional information for
determining etiology of disease.
Keywords: Lipids, Lipidomics, Data-dependent Analysis, Metabolomics, Mass spectrometry, Tandem mass
spectrometry, Diglyceride
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Introduction

Lipids serve numerous functions in organisms, and the
understanding of these roles has been shown to be impor-

tant in the characterization of human disease, health, and nu-
trition. Lipids serve as membrane structure and functional
components, modulators of immune system function [1], ener-
gy storage molecules, signaling molecules [2–4], and targets of
oxidation [5]. Perturbations in these biological functions fre-
quently correlate with shifts in lipid composition. Therefore, by
examining the lipidome, scientists can identify new diagnostic
markers that could increase our understanding of disease etiol-
ogy, detection, and progression. Recently, biomedical-related
international initiatives have inrcreased the awareness and
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methods for lipidomics (i.e., the measurement of all lipids
within a biological substrate of interest using mass spectrome-
try) including Japan’s LipidBank founded in 1989 [6], Lipid
Metabolites and Pathways Strategy (LIPIDMAPS) in the USA
founded in 2003 [7, 8], and the European Lipidomics Initiative:
shaping the life sciences (ELIFE) founded in 2004 [9].

Comprehensive characterization of the lipidome in biological
systems is challenging due to the diversity and quantity of lipid
structures, wide range of biological concentrations, and subtle,
but biologically important, differences in isomeric lipid struc-
tures. Lipid diversity stems from the numerous possible combi-
nations of Bbackbones,^ such as glycerol or sphingosine, with
various fatty acids differing in carbon length, number, and
positions of unsaturation. The number of lipids present in
LIPID MAPS structural databases is over 40,000 [10], while
over 300,000 possible lipid structures have been simulated in our
in-house lipid identification workflow, LipidMatch, which takes
into account oxidized species. Lipids have been shown to differ
in concentrations of over seven orders of magnitude between
classes; even within a lipid class, lipid concentrations can differ
over three orders of magnitude [11–13]. Electrospray ionization
mass spectrometry (ESI-MS) is the most widely employed ion-
ization strategy for lipidomics [14] because its ability to ionize
the diverse range of structures and concentrations.

However, isomeric species, lipid species containing different
fatty acid constituents with the same total number of carbons and
degrees of unsaturation [e.g., PC(16:0_20:1) and
PC(18:0_18:1)], cannot be separated using ESI-MS alone. If this
structural detail is desired, one solution is to employ liquid
chromatography to separate the isomers for quantification based
on polarity using reverse phase chromatography, in combination
with tandem mass spectrometry (MS/MS) to identify the fatty
acid constituents based on fragmentation patterns. However, this
strategy often leads to a conundrum, as increasing the peak
capacity in liquid chromatography to deconvolute more lipid
features for quantification requires narrower chromatographic
peaks, thus limiting the number of MS/MS scans that can be
obtained across the chromatographic peaks [15]. Therefore,
within lipid-rich retention time and m/z regimes, numerous ions
of different mass-to-charge ratios will be ionized at the same
elution time, but only a few can be selected for fragmentation in
a single injection. For lipidomic experiments where the lipids of
interest are unknown, heuristic rules have been developed to
fragment ions. One approach is to select ions with the highest
intensity for fragmentation, commonly referred to as data-
dependent topN (ddMS2-topN). Owing to concentration bias,
this strategy could miss important less abundant lipid species,
such as diacylglycerides and phosphatidylinositols in plasma,
which are both important signal molecule classes [16, 17].

A strategy that overcomes the drawback of traditional
ddMS2-topN, in terms of the limited number of MS/MS spectra
acquired at any given retention time, is to continuously repeat
ddMS2-topN analysis on the same sample, excluding previously
selected precursors ions in each sequential analysis.
Theoretically, iterative repeat injections can be used to acquire
MS/MS of all precursor ions above background signal,

providing a substantial wealth of information for identification.
A schematic of this technique, iterative exclusion (IE), is shown
in Figure 1. Although still uncommon, this technique has been
applied in the proteomics community. In 2009, Bendall et al.
designed a proteomics software approach for their strategy
termed iterative exclusion-mass spectrometry (IE-MS) [18],
which excluded all ions in previous runs regardless of assign-
ment. Using this technique, Bendall et al. identified 30% more
unique proteins after five IE-MS acquisitions, compared with
five repetitive traditional data-dependent scans. Rudomin et al.
[19] were also able to identify 49% more unique proteins using
this strategy. IE has been applied to LC/MS approaches with
both LTQ-Orbitrap [20] and qTOF platforms [18] and has been
shown to be advantageous for proteomic applications. Examples
employing this approach include using IE to study post-
translational modifications of proteins [21], discover previously
unknown human embryonic growth promoters [18], identify
genital track markers [20], characterize Matrigel marketed as a
basement membrane matrix for stem cell growth [22], and track
pH-induced protein changes [23]. In all these applications, IE
enabled the ability to characterize a greater variety of proteins,
including trace proteins.
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Figure 1. Strategy for iterative exclusion (IE) based data-
dependent topN analysis (IE-ddMS2-topN). Multiple injections
of a sample are analyzed. The first injection (a) is used to create
an exclusion list that is applied for the second injection (b).
Hence, the next top N most abundant ions are selected and
this process can be continued for N injections
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Although numerous applications have shown the benefit of
using IE across platforms for proteomics, most omics analyses
do not take full advantage of IE. In part, this may be due to a
lack of a simple software program capable of generating ex-
clusion lists automatically as traditionally this is achieved
manually. Furthermore, using available software, iterative ac-
quisitions cost time and money, thus putting heavy emphasis
on determining whether additional sample injections for IE are
worth added instrument time. To this end, we have developed
an R-script named BIE-omics^ for generating exclusion lists
from open-source formatted data easily converted from various
vendor formats; as a demonstration, we have applied it to
lipidomics. IE-Omics is advantageous over the IE-MS script
in providing multiple user parameters in a relatively simple
interface and providing the ability to directly import multiple
vendor formats.

Recently, IE has been adapted to other omics fields, such as
in lipidomics and metabolomics, as noted in Sandra et al. [24]
and Edmands et al. [25], respectively. For lipidomics, IE type
analyses have been used in direct infusion approaches by
increasing the duration of dynamic exclusion to the length of
the analysis. For example, Nazari and Muddiman [26] used
gas-phase fractionation and dynamic exclusion to increase
coverage of the lipidome, especially of low abundance species.
Schwudke et al. [27] emulated precursor and neutral loss
scanning using data-dependent analysis with a dynamic exclu-
sion and inclusion list-based workflow for increasing the
lipidome coverage. The success of IE type approaches for
direct infusion supports the utility of IE for LC-MS/MS.
While direct infusion allows rapid biomarker discovery, LC-
MS/MS has been found to be more comprehensive [28].

To our knowledge, no research has shown the benefit of
applying IE versus traditional approaches for lipidomics using
LC-MS/MS. In addition, no omics studies have compared
results across different matrices with varying amounts of fea-
tures. Herein, we report the use of our user customizable R-
script for IE to lipid extracts of both Red Cross plasma and
substantia nigra brain tissue in both positive and negative
polarity. The results show that due to the spectral density of
numerous lipid species in a chromatographic run, especially in
positive ion mode, a substantial benefit is obtained using IE for
LC-MS/MS based lipidomics.

Experimental
Chemicals and Materials

Ammonium acetate and all analytical grade solvents (formic
acid, chloroform, and methanol) were purchased from Fisher
Scientific (Waltham, MA, USA). All mobile-phase solvents
were Fisher Optima LC/MS grade (acetonitrile, isopropanol,
and water). For Red Cross plasma, the following lipid stan-
dards were used: triglyceride [TG(15:0/15:0/15:0) and
TG(17:0/17:0/17:0)] purchased from Sigma-Aldrich (St.
Louis, MO, USA), and lysophosphatidylcholine [LPC(17:0)
and LPC(19:0)], phosphatidylcholine [PC(17:0/17:0) and

PC(19:0/19:0)], phosphatidylethanolamine [PE(15:0/15:0)
and PE(17:0/17:0)], phosphatidylserine [PS(14:0/14:0) and
PS(17:0/17:0)], and phosphatidylglycerol [PG(14:0/14:0) and
PG(17:0/17:0)] purchased from Avanti Polar Lipids
(Alabaster, AL, USA). For substantia nigra samples, the fol-
lowing standards were used: TG(15:0/15:0/15:0) from Sigma-
Aldrich, and PC(19:0/19:0), DG(14:0/14:0), SM(d18:1/17:0),
Cer(d18:1/17:0), 13C2-cholesterol, PE(15:0/15:0), LPC(19:0),
PG(14:0/14:0), and PS(14:0/14:0) purchased from Avanti
Polar Lipids. All lipid standards were diluted prior to analysis
in 1:2 (v/v) chloroform:methanol and a working 100 mg/L
standard mix was then prepared by diluting the stock solution
with the same solvent mixture.

Sample Preparation

Pooled Red Cross human EDTA plasma was purchased from
the American Red Cross National Testing Laboratories
(Detroit, MI, USA) and samples were stored at –80 °C. All
plasma aliquots (40 μL) were thawed on ice prior to extraction.

Substantia nigra samples were obtained from C57BL/6
mice. The Institutional Animal Care and Use Committee
(IACUC # 20148382) at the University of Florida approved
the use of all mice and procedures. The mice were housed with
a 12 h light-12 h dark schedule and were provided food and
water ad libitum. Five-month-old mice were anesthetized using
isoflurane vapors. The mice were sacrificed and whole brains
were harvested immediately from the skull and placed on a
glass petri dish. A scalpel was used to carefully remove the
substantia nigra region of the brain. Upon receipt, the tissue
was placed in a freezer maintained at –80 °C for storage. A Bel-
Art mortar (Bel-Art Scienceware, Wayne, NJ, USA) was used
to pulverize the frozen tissue samples under liquid nitrogen
condition. The frozen tissue powder (10–20 mg, in triplicate)
was weighed in homogenization tubes containing zirconium
beads (0.7 mm diameter; BioSpec Products, Bartlesville, OK,
USA).

Both Red Cross plasma and frozen substantia nigra tissue
powder were extracted using the Folch method (2:1, v/v,
chloroform:methanol) [29]. Briefly, 5 μL of internal standard
(IS) mix (100 mg/L) was spiked into the Red Cross blood
plasma (40 μL) on ice (IS info in Chemicals and Materials).
For Red Cross plasma, 160 μL of methanol and 320 μL of
chloroform were added to all samples. Samples were incubated
on ice for 30 min and centrifuged at 4 °C for 5 min at
15,000 rpm. To induce phase separation, 150 μL of water
was added and samples were incubated on ice for an additional
10 min. The organic layer was removed and the aqueous layer
was re-extracted with 250 μL of chloroform:methanol (2:1,
v/v). The organic layers were combined, evaporated under
nitrogen, and reconstituted in 100 μL of isopropanol (for
lipidomics). For substantia nigra tissue, the ground tissue was
homogenized for 120 s, with 100 μL of methanol and 200 μL
of chloroform for every 15 mg of tissue. Five μL of IS mix
(100 mg/L) was spiked into the chloroform:methanol (2:1, v/v)
mixture before homogenization. Samples were incubated as for
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plasma, and water was added at a volume of one-fourth of the
Folch solvent. Substantia nigra was re-extracted with 50 μL of
methanol and 100 μL of chloroform for every 15 mg of tissue
and dried down. Substantia nigra samples were reconstituted in
200 μL of isopropanol.

Data Acquisition

For both lipidomics analyses, a Dionex Ultimate 3000 RS
UHLPC system (Thermo Scientific, San Jose, CA, USA) was
employed. Ionization was performed with heated electrospray
ionization probe (HESI II) and mass spectra acquired using a
Q-Exactive Orbitrap (Thermo Scientific). Source parameters
for lipidomics, in positive and negative polarity, are provided in
Supplementary Table S-3. Samples were maintained at 4 °C in
the autosampler. Two μL of sample was injected onto aWaters
Acquity BEH C18 column (50 mm × 2.1 mm, 1.7 μm,Waters,
Milford, MA, USA) maintained at 30 °C. For negative ion
mode, 5 μL of sample was injected onto the column and
analyzed with the same mass spectral parameters
(Supplementary Table S-2). A gradient ramp (Supplementary
Table S-1) was employed consisting of mobile phase C (60:40
acetonitrile:water, volume fraction) and mobile phase D
(90:8:2 isopropanol:acetonitrile:water, volume fraction), both
with 10 mmol/L ammonium formate and 0.1% formic acid.

Mass spectra were acquired in full scan mode using data-
dependent top5 analysis (ddMS2-top5) in both positive and
negative polarity with a mass resolution of 70,000. Full scan
and ddMS2-top5 scan parameters are shown in Supplementary
Table S-2. Before each analysis, the instrument was externally
calibrated and at least three blanks were analyzed. Internal
mass calibrants (lock masses) were used in positive ion mode
and consisted of diisooctyl phthalate (m/z 391.2842) and
polysiloxanes (m/z 371.1012 and 445.1200). No stable lock
mass was observed to be used in negative ion mode. To
compare IE with traditional ddMS2-top5 for lipidomics, a
minimum of four sequential injections were analyzed by
ddMS2-top5 with IE and four without IE, for both negative
and positive polarity analysis of Red Cross and substantia nigra
lipid extracts. For excluding ions previously selected for frag-
mentation and placed on an exclusion list, a 10 ppm exclusion
tolerance was used.

Software Platform for IE

A software program BIE-Omics^ was written using R [30] to
directly intake a .ms2 file converted usingMSConvert [31] and
output an exclusion list (.csv) in a format that can be directly
imported by Q-Exactive instruments. User-defined parameters
include the retention time and m/z window for combining
selected precursors to reduce the size of the exclusion list. A
0.02m/z window and 0.3 min retention time window was used
in this experiment. In this case, ions selected at m/z values of
400.02, 400.01, and 400.01, and respective retention times of
5.10, 5.15, and 5.30 min, would be combined in one row asm/z
400.02 excluded between 4.95 and 5.45 min. In addition, users
can denote the number of times ions with the same m/z are

selected before being considered background ions and exclud-
ed for the entire duration of the chromatographic run. In this
experiment, a minimum of 15 instances of ions selected for
fragmentation with the same m/z was used, excluding these
ions from 0 to 18 min. The IE-Omics script can be found in the
Supplementary Information and the most up-to-date version on
the Southeast Center for Integrated Metabolomics (SECIM)
webpage (http://secim.ufl.edu/secim-tools/).

Feature Detection and Identification

Lipids were identified using both an in-house workflow,
LipidMatch, and LipidSearch (Thermo Scientific, San Jose,
CA, USA) [32]. LipidMatch consists of R-scripts which iden-
tify lipids by matching MS/MS fragments indicative of class
and fatty-acid constituents from experimental fragmentation to
in-silico fragmentation libraries (covering over 250,000 lipid
species across 56 lipid types). Only exact mass of the MS/MS
fragments (not intensity) is used for matching. Fragment
criteria used for identification of lipids by LipidMatch can be
found in Table S-6. Before LipidMatch was applied, features
were determined using MZmine 2.0 [33], with the batch mode
file containing all the parameters. Both the MZmine batch file
and LipidMatch software can be found at <http://secim.ufl.edu/
secim-tools/> in the LipidMatch zip file. LipidMatch used the
features exact mass determined by MZmine with a 10 ppmm/z
window for precursor ion matching. Both for LipidMatch and
LipidSearch, a 10 ppmm/z window was used for fragment
matching. In LipidMatch, fragments were only considered
confirmed if they were above 1000 intensity units and found
in at least one scan within a 0.3 min window of the feature
being identified; in LipidSearch, only lipids classified with
grade A were kept. The 0.3-min retention time used for
finding MS/MS scans and excluding precursors in sequential
injections employing the IE-Omics script was close to the
median of the full width at half maximum (FWHM) for all
features (Supplementary Figure S-1). After lipid ions were
annotated, redundant annotations, for example, different lipid
ion adducts of the same molecular species, were combined
separately for positive and negative analysis.

Results and Discussion
By only fragmenting ions not selected in the previous injec-
tions, applying IE increased the coverage of both analyte and
background ions for lipids (Figures 2 and 3). As can be seen,
for example for the background ion m/z 300.2253 in Figure 2,
some ions selected in the first injection and placed on an
exclusion list were unexpectedly selected in the second injec-
tion. The reason for these ions not being excluded is that the
mass trigger used to select ions for fragmentation is stored with
a m/z value with two decimal digits in the Thermo.raw file.
Therefore, the m/z 300.23 was placed on an exclusion list, and
using a 10 ppm exclusion tolerance ions from 300.2270 to
300.2330 were excluded. In the second injection, the ion was
measured at 300.2253 and therefore was not excluded, and
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again was placed on an exclusion list at 300.23. This problem
can be overcome by either changes in Thermo.raw data storage,
in order to store the mass trigger for obtaining MS/MS past the
third decimal point (which has been implemented in the Q-
Exactive Plus and HF), or by the user increasing the exclusion
tolerance, such as to 100 ppm. Since different ions with m/z
values within 100 ppm will all be isolated and fragmented
using a 1 Da isolation window, this solution would be suffi-
cient. Either modification would ensure that ions isolated and
fragmented once are never isolated and fragmented again,
thereby decreasing the number of injections needed to fragment
all ions of interest.

It is well-known that background ions compete with analytes
of interest for selection and fragmentation. Therefore, by dis-
cerning the background ion patterns and automatically placing
those ions on an exclusion list, analyte coverage can be in-
creased. A background ion from the mobile phase, ESI source,
or from column bleed (to name a few sources), can be discerned
by a single m/z covering a large portion of the retention time
region, as inm/z 300.2253 discussed above. An exclusion list for
background ions can often be generated by running several
blank injections, but this can be an inefficient process; when
the column or mobile phase changes, a new list would need to be

created. From this IE type of run, it can be seen that a large
portion of ions selected and fragmented are background ions as
depicted by a horizontal pattern across the chromatographic run
(Figure 2). Therefore, this pattern can be readily used to exclude
background ions in the IE-Omics software.

Using the default IE-Omics parameters, if the same m/z is
selected more than 15 times, with each instance being at least
0.15 min apart, thatm/z is annotated as background and placed
on an exclusion list across the entire analysis time. For exam-
ple,m/z 391.28 was excluded across the entire retention time in
the second injection, after being selected in the first injection of
Red Cross plasma 134 times (Figure 2). Annotated background
ions can also be excluded in future experiments. After the first
injection, 17 ions were automatically annotated as background
ions by IE-Omics software in positive ion mode of Red Cross
plasma. After six injections, 54m/z values were annotated as
background ions according to this algorithm.

In addition to generation of exclusion lists of background
ions, IE also enhanced coverage of the lipidome. When compar-
ing the second to first injection after applying IE, it can be seen
that many additional unique precursors are selected in both the
glycerophospholipid (GP) (aboutm/z 700–900 at 5–10 min) and
triglyceride (TG) regions (about m/z 700–1100 at 11–16 min)
(Figure 2). Figure 3 compares unique ions selected for fragmen-
tation in positive mode analysis of Red Cross plasma lipid
extracts in six sequential injections without IE applied
(Figure 3a) and with IE applied (Figure 3b). The IE-omics
approach shows that after six sequential injections, the number
of unique ions fragments is substantially higher (Figure 3b). As
discussed previously, both new background ion signatures and
lipid ions (as can be seen in the GP and TG region) are selected
using IE (Figure 3). An analogous figure for substantia nigra is
shown in the Supplementary Information (Supplementary
Figure S-2), with a zoom in of the GP region overlaid with
unique molecular species annotated by LipidMatch
(Supplementary Figure S-3).

Figure 4 displays the cumulative number of features with
lipid identifications across injection number using LipidMatch
from both positive and negative mode analysis of plasma and
substantia nigra lipid extracts. In all cases, a greater number of
features were identified as lipids using the IE approach com-
pared with a traditional ddMS2-top5 approach. The application
of IE was most advantageous in positive ion mode analysis of
plasma and substantia nigra lipid extracts. For plasma extracts
in positive mode, applying IE and using six sequential injec-
tions increased the coverage of features annotated with unique
molecular species by 69% compared with the traditional
ddMS2-topN approach across six sequential injections. A total
of 728 unique lipid molecular species were identified with IE,
compared to 431 without IE (Figure 4a). In negative mode
analysis of Red Cross plasma, only 10% more identifications
were obtained using IE (Figure 4b). In positive mode analysis
of substantia nigra, after the five sequential injections, 40%
more features were identified using IE compared with without
IE (Figure 4c), whereas in negative mode analysis, 18% more
identifications were obtained when applying IE (Figure 4d).

background

TAG region

PL region

LPL region

Y region

Figure 2. Selected precursor ions retention time and m/z for
Red Cross plasma compared between the first injection (black
dots) and second injection (red dots) with IE ddMS2 applied.
The Y region is an unknown regionwithmolecules separated by
14 Da corresponding to CH2 repeating units, likely representing
polymer species. Three background ions are indicated with
arrows, which were selected at m/z 391.28, 354.29, and
303.23 from highest to lowest mass, respectively
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Applying a different identification software, LipidSearch, pro-
vided the same general trend, with IE providing the most
advantage in positive mode analysis of Red Cross plasma and
substantia nigra (71% and 34% more identifications, respec-
tively) and least advantage in negative mode analysis of Red
Cross plasma and substantia nigra (18% and 4%, respectively)
(Supplementary Figure S-4). Unique annotations of lipid mo-
lecular species with retention time information, exact m/z from

full scan data, and average peak intensity compiled across all
sequential injections for positive and negative polarity analysis
of Red Cross plasma and substantia nigra can be found in
Supplementary Tables S-5 and S-4, for LipidSearch and
LipidMatch, respectively. Fragments observed for identifica-
tion by LipidSearch are also included in Supplementary
Table S-5, and fragmentation criteria for LipidMatch is includ-
ed in Supplementary Table S-6.

Based on these results, it is clear that the number of additional
identifications obtained when applying IE depends on sample
type and the polarity measured by the mass spectrometer. It is
expected that if the mass spectrum is sparse, a traditional ddMS2

approach will likely select the majority of ions above an MS2

threshold limit. In the lipidomic analyses, where applying IE
was less advantageous in negative ion mode, negative ion
spectra showed fewer ions than positive ion spectra. For exam-
ple, the number of features (which is inversely related to spectral
sparseness), was drastically lower in negative mode than posi-
tive mode, with only 4258 features in Red Cross negative mode
data versus 19,231 features in Red Cross positive mode data.
Therefore, after applying exclusion lists generated by IE, fewer
precursors remain above the threshold to be selected for frag-
mentation in negative ion mode. For example, in negative
polarity analysis of plasma, MS/MS scans drastically declined
from the first to the fifth sequential injection (from 2491 to 414
scans), showing depletion of precursors for selection, whereas in
positive polarity there was less of a decline in MS/MS scans
(from 2746 to 2581 scans) (Supplementary Figure S-5).
Therefore, experimental design affecting spectral density will
be a major factor in determining the additional benefit of IE. For
example, increasing the chromatographic gradient time would
increase separation of lipids while decreasing spectral density at
a given time point, and, hence, potentially decrease the advan-
tage of applying IE versus traditional ddMS2-topN approaches.

It should be noted that additional identifications using IE are
only useful if they provide unique information. After excluding
previously selected high abundance lipids for fragmentation,

b)a) With IEWithout IE

Figure 3. Selected precursor ionsm/z and retention times for six repetitive injections using the traditional ddMS2 approach (a) and
iterative based-exclusion ddMS2 (IE-ddMS2) (b) for Red Cross plasma lipid extracts analyzed in positive mode. The higher density of
selected precursor ions in (b) shows selection of precursor ions using IE, which were not fragmented using the traditional ddMS2

approach

a) Plasma positive b) Plasma negative

c) Substantia nigra positive d) Substantia nigra negative

Legend: 

Figure 4. Cumulative unique lipid molecular identifications
using LipidMatch software across multiple data acquisitions
are shown. IE-based data-dependent top5 (IE-ddMS2-top5)
described in this paper is compared with traditional ddMS2

top5 for extracts of Red Cross plasma in positive mode (a)
and negative mode (b), and extracts of substantia nigra in
positive mode (c) and negative mode (d)
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sequential injections should provide fragmentation of lower
abundance species when applying IE. Often, less abundant or
trace species serve as critical biomarkers, such as phos-
phatidylinositol (PI), which is an important signaling molecule
class. Phosphatidylcholine (PC) concentrations in plasma, for
example, are about 20-fold higher than concentrations of phos-
phatidylinositol (PI), phosphatidylserine (PS), and phosphatid-
ic acid (PA) combined [34]. After applying IE in the second
injection, peak heights of identified lipids were significantly
lower than the initial injection for positive and negative polarity
analysis of both plasma and substantia nigra lipid extracts (P-
value < 0.05) (Figure 5). For plasma in positive ion mode, the
average intensity of selected precursors seemed to continue to
decrease using IE up to the fourth injection, although not
significantly (Supplementary Figure S-6; P-value > 0.05).
Exclusion of trace ions close to the threshold intensity for
fragmentation in certain chromatographic regions, while high
intensity species such as in the TG region where spectra are
dense, continue to be selected, explains why the average

intensity of ions does not continue to decrease after a certain
number of sequential injections. This is supported by the fact
that the number of precursors selected declines across sequen-
tial injections when applying IE, and therefore in certain re-
gions ions are no longer being selected for fragmentation
(Supplementary Figure S-5). For example, the TG region
contained 4819 features above 5 × 104 in 4 minutes (11 to
15 min) in Red Cross plasma, while the lysophospholipid
region contained 3859 features in 4 min (0.5 to 4.5 min).

The reduced intensity of precursor ions selected after apply-
ing IE suggests lower MS/MS spectral quality. This is espe-
cially true for positive ion mode fragmentation of most
glycerophospholipids, where fatty acyl indicative fragments
are of low abundance. To determine the quality of MS/MS

a) Plasma 

positive

b) Plasma

negative

c) Substantia 

nigra positive

d) Substantia 

nigra negative

Figure 5. Boxplots of log transformed peak heights (base 10)
from MZmine for unique lipid molecules identified in the first
ddMS2-top5 acquisition using LipidMatch (IE1) and after apply-
ing an exclusion list using the algorithm described in this paper
(IE2). Comparisons are made for extracts of Red Cross plasma
in positive mode (a) and negative mode (b), and extracts of
substantia nigra in positive mode (c) and negative mode (d).
All differences where highly significant with a P-value for a
Student t-test less than 0.001

Table 1. Comparison of Diglyceride (DG) Peak Heights and Fatty Acid
Compositions Between the First ddMS2-top5 Acquisition Using LipidMatch
(IE 1, a) and After Applying an Exclusion List Using the Algorithm Described
in this Paper Using Six Iterations (IE 6, b)

DG(C:DB) Peak height DG fatty acid chains

(a) IE 1 (plasma positive)
DG(32:1) 1.7 × 107 DG(16:0–18:1)

DG(16:1–18:0)
DG(32:2) 2.0 × 107 DG(16:0–18:2)

DG(16:1–18:1)
DG(36:1) 2.4 × 106 DG(16:0–20:1)

DG(18:0–18:1)
DG(36:2) 1.9 × 107 DG(16:0–20:2)

DG(16:1–20:1)
DG(18:0–18:2)
DG(18:1–18:1)

DG(38:5) 5.1 × 106 DG(16:0–22:5)
DG(18:1–20:4)
DG(18:2–20:3)

DG(36:3) 3.5 × 107 DG(16:1–20:2)
DG(18:0–18:3)
DG(18:1–18:2)

DG(36:3) 1.0 × 107 DG(16:1–20:3)
DG(18:1–18:3)
DG(18:2–18:2)

DG(36:3) 4.7 × 104 DG(18:1_18:2)
(b) IE 6 (plasma positive)

DG(30:0) 4.2 × 105 DG(12:0–18:0)
DG(14:0–16:0)
DG(15:0–15:0)

DG(30:1) 3.5 × 105 DG(12:0–18:1)
DG(14:0–16:1)
DG(14:1–16:0)

DG(30:3) 2.6 × 105 DG(12:0–18:3)
DG(32:3) 2.2 × 105 DG(14:0–18:3)

DG(14:1–18:2)
DG(34:4) 3.6 × 105 DG(14:0–20:4)

DG(16:0–18:4)
DG(36:5) 3.3 × 105 DG(16:0–20:5)
DG(38:4) 3.9 × 105 DG(16:0–22:4)

DG(18:1–20:3)
DG(35:3) 3.0 × 105 DG(17:1–18:2)

DG(17:2–18:1)
DG(38:2) 3.4 × 105 DG(18:1–20:1)
DG(38:4) 5.8 × 105 DG(18:1–20:3)
DG(38:5) 6.9 × 105 DG(18:1–20:4)

DG(18:2–20:3)
DG(40:7) 9.1 × 105 DG(18:1–22:6)
DG(40:7) 4.1 × 105 DG(18:2–22:5)

Data are from Red Cross plasma acquired in positive polarity
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spectra across sequential injections, the percentage of lipids
identified with grade A, calculated by (A/(A + B + C)), was
determined using LipidSearch. These grades are based on the
number of fragments identified that contain species-specific
structural information, with lipid identifications graded A hav-
ing the most structural information in MS/MS spectra.
Following a similar trend to the selected ion signal, the sequen-
tial injections after applying IE had a general drop in percent A
and, hence, decrease in MS/MS spectral quality (Supplementary
Figure S-7). Injections in which IE was applied had significantly
lower average percentages of A compared with sequential injec-
tions without IE, for negative and positive polarity analysis of
substantia nigra tissue lipid extracts (P-value < 0.05) and for
positive polarity analysis of Red Cross plasma (P-value <
0.005). No significant difference was observed for negative
polarity analysis of Red Cross plasma. Therefore, unique iden-
tifications provided by IE of low abundance species often pro-
vide less structural information and are more tentative.

Diglycerides (DG) are often present at low abundance and
have been noted as important signaling molecules. In plasma
lipid extracts, lower abundance DG species were identified
after sequential injections applying IE (Supplementary
Figure S-8). In the initial injection, all DG species identified
except one had peak heights of 106 or 107, whereas after the
sixth injection applying IE, all species identified had peak
heights of 105 (Table 1). All DGs at the level of carbons and

double bonds in Table 1 have been confirmed previously in
human plasma [13], except for DG(30:3), identified as
DG(12:0_18:3). In addition, all fatty acid constituents
contained in DGs have been confirmed in plasma using fatty
acyl profiling [13] or have been found in DGs using derivati-
zation [35]. The lower abundance DG species identified after
applying IE contained both odd-chain (15:0, 17:1, and 17:2),
and shorter chain (12:0, 14:0, and 14:1) species, which were
not identified without IE (Table 1). These fatty acids are in
lower abundance in human plasma [13] and odd-chain species
could represent exogenous fatty acid species or those produced
by gut microbiota [36]. In this case, these species represent
additional biological information otherwise not obtained.

Coverage was improved for certain lipid classes using the IE
approach. The majority of unique lipid molecules identified by
IE in positive analysis of Red Cross plasma, but not by the
traditional data-dependent approach, were mainly glycerolipids,
specifically TGs, oxidized TGs, ether-linked TGs, and DGs
(Figure 6a and c). These molecular species were of low intensity
and were present in chromatographic regions where mass spec-
tra were dense. Hence, using traditional approaches, these lower
intensity ions generally never make it on the list of the top-5
most intense ions to be included for fragmentation. In addition,
there was minimal identification of ether-linked TGs, oxidized
lysophosphatidylcholines (OxLPC), and acyl-carnitines using
the traditional ddMS2-top5 approach. Applying IE significantly

Figure 6. Distribution of lipids identified using LipidMatch by lipid class using IE-based data-dependent top5 (IE-ddMS2-top5)
acquisitions in positive ion mode. The lipid class distribution of all identifications across sequential injections using the traditional
ddMS2-top5 approach is shown for Red Cross plasma (a) and substantia nigra tissue lipid extracts (b). In addition, the distribution of
additional unique lipid molecular identifications after applying IE across lipid classes are shown for Red Cross plasma (c) and
substantia nigra lipid extracts (d)

J. P. Koelmel et al.: Lipidomics with Automated Exclusion Lists



increased the coverage of these lipid classes. Ether-linked TGs
are a trace fraction of the total TGs in blood, for example, only
comprising of 0.1% of chylomicrons in human blood plasma,
where they have been noted to concentrate [37]. By applying IE,
these low abundant ions (making up less than 0.1% of TG peak
area signal) were selected for fragmentation and tentatively
identified by exact mass of the precursor and exact masses of
the neutral losses of the two non-ether fatty acyl constituents.

In substantia nigra positive mode analysis (Figure 6b and d),
IE improved the coverage of phosphatidylserine (PS), oxidized
phosphatidylcholine (OxPC), phosphatidylglycerol (PG), and
sulfatide species, which were minimally covered by the tradi-
tional approach. In negative ion mode analysis of substantia
nigra tissue, using the traditional ddMS2-top5 approach, there
was no coverage of sulfatides and minimal coverage of phos-
phatidic acid (PA). Applying IE significantly increased cover-
age of both of these species (Supplementary Figure S-9). These
findings highlight that IE not only increases the total number of
lipid identifications but increases identifications of trace lipid
species of potential interest, which are minimally covered by
traditional approaches.

Future developments will continue to increase the advan-
tages of applying IE-Omics. Currently, the script is not inte-
grated in Xcalibur software, and therefore exclusion lists are
not generated in real time and must be uploaded into new
method files before each iterative injection. In our lipidomics
workflow, we suggest using three to four iterative injections on
pooled samples, which can be used to identify features of a
given sample group. Therefore, this method is sufficient for
lipid identification in large quantitative studies to determine
biomarkers where thousands of samples are required, as only a
few additional injections are used for IE and, hence, there is
minimal addition of acquisition time. Fewer injections may be
required if the exclusion window is increased from 10 ppm, for
example, to 100 ppm. By increasing the exclusion window,
isobaric ions will only be selected in one injection, reducing the
number of injections needed to select all ions above a certain
threshold. In the future, fully automated exclusion list genera-
tion may be developed.

Conclusion
We have semi-automated the IE approach using a simple open
source R script. The script uses open source formatted files that
can be converted from various vendor formats and produces an
exclusion list in the format required for importing into Thermo
Scientific instruments (.csv). Features include smart exclusion
list generation, which combines ions selected in similarm/z and
retention time windows to generate a shorter exclusion list, and
automatic annotation of background ions. After applying the
software, IE-Omics, to lipidomic datasets in Red Cross plasma
and substantia nigra brain tissue lipid extracts, IE was shown to
be most advantageous in complex matrices with a high number
of analyte species. Applying IE to lipidomics analyses in
certain cases increased identifications by over 50%. The

greatest advantage using IE was shown in positive ion mode
and in Red Cross plasma versus substantia nigra lipid extracts,
where spectra were most dense. In lipidomics, trace species,
such as odd-chained and short-chained DGs, were identified
only after applying the IE technique.

Future data acquisition strategies, for example only includ-
ing precursor ions for fragmentation that match lipid masses
and identifying polymer patterns for exclusion, could prove
advantageous. In most cases, however, such as in negative
mode, after only using a few sequential injections, all ions
above the threshold limit for fragmentation were selected, and
therefore new data-acquisition methods would not provide
additional advantage in terms of MS/MS spectral coverage.
New data-acquisition methods might be able to reduce the
number of injections needed for coverage of the majority of
lipid ions and notify the user when additional injections are no
longer required. Applying IE expands the scope of the lipidome
covered, both increasing the total number and diversity of
lipids identified.
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