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Abstract—Software testing criteria differ in effectiveness, 
numbers of required test cases, and a process of test generation. 
Specific criteria are often compared with random testing as a 
simplest basic approach and, in some cases, random testing 
shows a surprisingly high level of effectiveness. One of the 
reasons is that any random test set has a specific level of coverage 
according to any coverage criterion. Numerical evaluation of 
coverage levels of random testing according various coverage 
criteria is interesting research task important for understanding 
relationship between different testing approaches. In this paper 
we experimentally evaluate coverage levels of random testing for 
two criteria – MC/DC and combinatorial t-way testing. The 
results could be used for selection optimal methods for practical 
testing, and development of new testing methods based on 
integration of existing approaches. 

Keywords—random testing; combinatorial testing; MC/DC; 
pairwise; coverage 

I. INTRODUCTION  
Testing coverage criteria are widely used in software 

testing. According to ISO/IEC/IEEE 29119-1:2013 Standard 
[1], test coverage is “a degree, expressed as a percentage, to 
which specified test coverage items have been exercised by a 
test case or test cases”. Simple examples include statement 
coverage, path coverage, and branch coverage. A more 
sophisticated example is t-way combinatorial coverage, which 
requires every possible combination of values of t parameters 
be included in some test case in the test suite [2, 3]. In the most 
basic form for t=2, this criterion is known as pairwise testing 
and requires all possible pairs of values be covered [4]. One of 
the strongest coverage criteria for testing logical predicates is 
Modified Condition/Decision Coverage (MC/DC) [5], which 
requires every condition in a decision be covered, and “each 
condition has been shown to independently affect the 
decision’s outcome” [6]. MCDC coverage subsumes branch 
coverage, and in turn, statement coverage of code.   

Because MCDC is such a strong criterion, the US Federal 
Aviation Administration (FAA) has for many years required 
MCDC testing for Level A (life critical) software aboard 
commercial aircraft [7, 8], but it is rarely used outside of the 
aerospace industry. One of the most significant barriers to 
wider use of MCDC is its expense. While testing for consumer 
grade software is roughly the same as the cost of producing the 
code, in the aviation industry spending could be seven times 
more on verification than development [9]. To encourage wider 

use of MCDC beyond the aerospace industry, the cost of its 
application will need to be reduced.  

Testing criteria differ in effectiveness, numbers of required 
test cases, and a process of test generation. Empirical 
evaluation and experimental comparison of testing criteria 
started in 1980’s [10, 11] but this is still an important research 
direction [12, 13, 14]. Specific criteria are often compared with 
random testing as a simplest basic approach [15, 16, 17, 18]. 

In some cases, random testing shows a surprisingly high 
level of effectiveness. For example, for testing logical 
expressions, t-way testing have an advantage over random 
testing but this benefit is not significant [18, 19]. One of the 
reasons is that any random (or any other) test set has a specific 
level of coverage according to any coverage criterion. Thus, 
random testing has a certain level of pairwise coverage, etc. 
This level is never 100% but could be quite high. Numerical 
evaluation of coverage levels of random testing according 
various coverage criteria is interesting and important research 
task. It could be useful for understanding relationship between 
different testing approaches, selection optimal methods for 
practical testing, and development of new testing methods 
based on integration of existing approaches. 

In this paper we experimentally evaluate coverage levels of 
random testing for two criteria – MC/DC and t-way testing. 
The paper is structured as follows: Section II considers a 
general problem of the integration of testing techniques to 
reduce the number of test cases and increase the code coverage 
and testing effectiveness. As a part of this problem, the more 
specific research question about evaluation of the MC/DC and 
combinatorial coverage levels of random testing is discussed. 
The methods and scope of the investigation are described in 
Section III. Section IV provides experimental results on the 
MC/DC coverage level of random testing and Section V 
provides similar results for combinatorial coverage levels. 
Conclusions and directions for future work are presented in 
Section VI. 

II. RESEARCH QUESTION 
Testing according to any coverage criterion, as well as 

other testing approaches, has some benefits and some 
challenges. For example, MC/DC has good effectiveness for 
testing logical expressions but the process of test generation to 
satisfy MC/DC is quite complicated. Random testing could be 
effective but usually only for a large number of test cases. 
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Combinatorial criteria are very effective in many situations but 
not for testing logical expressions. 

Taking this into consideration, a natural idea is trying to 
combine different testing approaches to use advantages of each 
of them. The purpose of such combination is to minimize a 
number of test cases, maximize effectiveness of testing, and 
simplify test generation as much as possible. Researches in this 
direction include combining functional and structural testing 
[20, 21], model-based and combinatorial testing [22], model-
based and search-based testing [23] and more. 

Some preliminary research suggests that using 
combinatorial testing in conjunction with model-based 
approaches can significantly reduce the cost of achieving 
MCDC coverage [24]. Part of the savings occurs because tests 
based on t-way covering arrays will necessarily also cover 
some proportion of MCDC and branch coverage. For example, 
a test set covering all 2-way combinations of binary variable 
settings will ensure that branch predicates containing only two 
binary variables will be instantiated in all possible ways. But 2-
way (pairwise) test sets will also cover some proportion of t-
way combinations for all t > 2, up to n, where n is the number 
of variables. Similarly, tests with random values will also cover 
a significant proportion of t-way combinations.  

Even when two criteria are completely independent and use 
different principles, a test set satisfied the first criterion has 
some level of coverage according to the second criterion and 
opposite. For example, 100% MC/DC test set has some 
pairwise coverage and the test set provided 100% pairwise 
coverage also provides a certain percentage of MC/DC 
coverage. This fact is well-known and there are some initial 
results on such relationships (i.e., for pairwise and MC/DC 
testing [14]) but this area still requires more numerical 
evaluations based on empirical investigations. 

Because of its simplicity, random testing is a good 
candidate for combining with coverage criteria. For this 
purpose it is necessary to understand how good random testing 
is in providing coverage for different criteria and how level of 
coverage changes depending on the number of test cases in the 
random test set. We consider two specific research questions: 

• RQ1: What is the level of MC/DC coverage of random 
test sets of different sizes?  

• RQ2: What is the level of t-way coverage of random 
test sets of different sizes?  

Answers on these questions do not solve the problem of 
combining different testing criteria but are necessary and 
important steps in this direction. 

III. METHODS AND SCOPE OF INVESTIGATION 

A. Used tools 
To measure MC/DC coverage, we used CodeCover and 

Testwell CTC++ tools. CodeCover is an open-source white-
box testing tool developed at the University of Stuttgart, 
Germany in 2007 [25, 26]. CodeCover measures several types 
of coverage including term coverage (subsumes MC/DC) and 
supports several programming languages including Java and C. 

Testwell CTC++ is a code coverage and dynamic analysis tool 
for C and C++ code but also supports Java, and C#. The tool 
has been developed by Testwell Ltd company (Finland) [27] 
and since 2013 is owned by Verifysoft Technology GmbH 
[28]. As well as CodeCover, CTC++ provides measurements 
of several types of coverage including MC/DC. A sample 
report produced by Testwell CTC++ is presented in Fig. 1. 

We used two tools to evaluate MC/DC levels because 
results of such evaluation for the same software and the same 
test sets often are different for different tools. The main reason 
for this is that there is no commonly accepted definition of an 
incomplete (not 100%) MC/DC coverage. Different principles 
are used in different tools. Some tools evaluate coverage 
separately for each logical condition and calculate an average 
value then. Other tools create complete MC/DC test sets, 
compare them with actually used test sets, and evaluate 
percentage of coverage based on this. 

 

Fig. 1. Testwell CTC++ sample report. 

It is not our task in this paper to judge different approaches 
to MC/DC evaluation. There are some justifications for all of 
them. However, we provide the results of MC/DC evaluation 
from two tools and compare them in Section 4.  

To measure t-way coverage, we used the Combinatorial 
Coverage Measurement (CCM) tool developed by National 
Institute of Standards and Technology (NIST) and the Centro 
Nacional de Metrologia of Mexico [29, 30]. CCM can analyze 
existing levels of t-way (t=2…6) coverage for any test set. Fig. 
2 shows CCM tool user interface. The tool displays a graph 
showing the coverage for the given tests. Additional tests can 
be added to increase the coverage. The percentage of coverage 
can be viewed in the “Results” tab. 

B. Main steps and the scope of the investigation 
The general organization of experimental evaluation is 

illustrated in Fig. 3. 
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Fig. 2. CCM tool user interface. 

 

 

Fig. 3. Organization of experimental evaluation. 

The investigation included the following main steps: 

Step 1. Generation of logical expressions of different sizes 
(i.e., different numbers of logical variables in expressions). The 
sets of expressions were put into software programs which are 
without real functionality but used only for testing purposes to 
evaluate coverage levels. A total of 100 logical expressions 
were generated for testing. 50 expressions were generated from 
10 fixed input variables and another 50 from 20 fixed input 
variables. Both sets contain 25 simple and 25 complex 
expressions of different sizes: 25 expressions of size 3, 15 of 
size 4, 5 of size 5, 2 of size 6, and 1 of each size 7, 8, and 9. 
Some examples of the generated expressions from 10 variables 
are presented in Table I. The sizes of expressions were chosen 
in such a way that they reflect situations in real software i.e. 
more expressions of small size and less of large size. The used 

proportion of different sizes approximately corresponds with 
data on expression sizes reported at [31, 32]. 

TABLE I.  EXAMPLES OF LOGICAL EXPRESSIONS 

 Simple expressions Complex expressions 
Size 3 d∨f∨c (i∨!d) ∧ (!i∨!e) 
Size 4 (c∨f) ∧ (i∨g) (f∧ (a∨h)) ∨ (!h∧e∨!f) 
Size 5 (c∧e) ∨ (!a∧f∨d) (!h∨!f) ∧ (!c∨h∨e∧a) ∧ (f∨!e) 

 
Step 2. Generation of random test sets of different sizes, 

where the size of a random test set is the number of test cases 
in it. To generate test cases and check that all test cases in a test 
set are different, we create a simple software program which 
used Java random number generator. 42 random test sets of 
different sizes were generated for 10 variables and 42 similar 
sets for 20 variables. The sizes of the generated random test 
sets were 1, 2, 3,… 25, 30, 40,…100, 200,….900, 1024. For 
each size, 3 test sets were generated, so the coverage for any 
random test size was the average of the three coverage values. 

Step 3. Evaluation of MC/DC coverage for random test sets 
using the CodeCover tool. 

Step 4. Evaluation of MC/DC coverage for random test sets 
using the Testwell CTC++ tool. 

Step 5. Evaluation of t-way coverage for random test sets 
using the CCM tool. 

Step 6. Analysis of experimental data. 

The total numbers of logical expressions and test sets are 
summarized in Table II. 

TABLE II.  SCOPE OF EXPERIMENTAL TESTING 

Number of 
Logical 

Variables 
Logical Expressions of 

mixed sizes 
Random 
Test Sets 

10 50 126 
20 50 126 

Total 100 252 

IV. MC/DC LEVEL OF RANDOM TESTING 
All test inputs in generated random test sets have values T 
(True) or F (False). The example of the test set of size 5 as one 
of 42 generated random test sets is presented in Table III. 
Detailed data on MC/DC coverage by CoderCover and CTC++ 
tools for all random test sets are given in Table IV. 

TABLE III.  EXAMPLE OF THE RANDOM TEST SET OF SIZE 5 

 a b c d e f g h i j 
1 T T F F T F F F T F  
2 T F T F F T T F F F  
3 T F T F T T T T T F  
4 T T F F F T F F F F  
5 F T F F F T T T T F  

 
The obtained results showed that MC/DC coverage 
demonstrated a fast growing trend when the number of 
random test cases increased. This trend was shown both by 
CoderCover (Fig. 4) and CTC++ (Fig. 5) tools for the simple 
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and complex expressions. For the simple expressions, MC/DC 
coverage reached 99% level for 55 random test cases and 
complete 100% MC/DC coverage was achieved started from 
100 tests. The results by CoderCover  and CTC++ for simple 
expressions were similar and close to each other (Fig. 6). 

For complex expressions, more test cases were required to 
reach maximum MC/DC coverage. The coverage was very 
close to maximum from 200 test cases and maximum MC/DC 
coverage required approximately 400 random test cases. 
However, it is necessary to mention two distinctive features of 
estimation of MC/DC coverage for complex expressions: 

• The MC/DC levels reported by two tools were 
significantly different (Fig. 7). 

• The maximum of MC/DC coverage did not reach 
100%. Even for exhaustive testing (all 1024 possible 
test cases for 10 variables), the maximum level of 
MC/DC coverage was 93% according to CodeCover 
and only 77% according to CTC++. 
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Fig. 4. MC/DC coverage by CodeCover for Random tests (10 variables). 
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Fig. 5. MC/DC coverage by Testwell CTC++ for Random tests (10 
variables.). 
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Fig. 6. Comparison of CodeCover and Testwell CTC++ results for Simple 
Expressions (10 variables). 
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Fig. 7. Comparison of CodeCover and Testwell CTC++ results for Complex 
Expressions (10 variables). 
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Fig. 8. MC/DC coverage by CodeCover for Random tests (20 variables). 

The similar situation is not only for CodeCover and CTC++ 
but also for other tools provided MC/DC coverage, for 
example, Kalimetrix Logiscope [33] or TESSY [34]. The 
reason, as it was mentioned in Section 3.A, could be that 
different tools could use different principles for coverage 
evaluation. They also can evaluate different types of MC/DC, 
for example, Unique-Cause MC/DC vs. Masking MC/DC.  
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Other factors that affect evaluation of coverage are how tools 
treat short-circuit Boolean expressions and multiple 
occurrences of logical variables in expressions. Thus, in our 
case, CTC++ considers multiple occurrences of the same 
variable as different variables and requires test cases with 
different values of the first and second occurrences of the 
variable, that is impossible. Under this definition used, 

complex expressions never can have 100% MC/DC coverage. 
In contrast with CTC++, CodeCover considers multiple 
occurrences as the same variable so 100% MC/DC coverage 
for complex expressions is possible. However, when the short-
circuit operator is used for evaluation of expression values, 
CodeCover considers some variables as uncovered even if test 
cases provide necessary coverage. 

TABLE IV.  MC/DC COVERAGE FOR RANDOM TESTS (10 VARIABLES) 

Random 
Test Set 

Size 

MC/DC Coverage for Simple and 
Complex Expressions 

MC/DC Coverage for  
Simple Expressions 

MC/DC Coverage for  
Complex Expressions 

CodeCover Testwell 
CTC++ CodeCover Testwell 

CTC++ CodeCover Testwell 
CTC++ 

1 17.97 16.00 21.63 21.00 16.40 15.00 
2 32.50 23.67 37.13 32.33 30.30 21.00 
3 42.47 32.00 49.13 42.00 38.93 27.67 
4 48.30 36.33 53.80 47.00 45.47 31.33 
5 56.50 44.00 65.10 58.33 51.77 36.00 
6 59.10 45.67 66.87 59.67 54.93 37.67 
7 68.60 53.67 74.70 68.33 65.30 45.33 
8 67.43 54.67 74.57 69.33 63.50 47.00 
9 69.17 54.67 76.30 69.33 65.27 45.67 

10 73.03 59.67 79.90 76.00 69.23 50.00 
11 73.97 59.00 77.33 72.33 72.20 51.33 
12 78.53 65.67 87.13 82.33 73.77 55.67 
13 81.07 64.67 84.03 78.67 74.27 56.67 
14 83.70 66.67 86.60 81.67 76.90 58.00 
15 81.93 68.00 87.27 83.00 79.00 59.67 
16 82.77 70.67 91.40 89.33 77.90 59.33 
17 85.47 72.67 91.73 88.33 81.97 63.33 
18 85.10 72.67 91.93 89.33 81.27 63.00 
19 86.87 75.00 95.33 93.67 82.07 64.00 
20 84.37 71.33 91.10 87.33 80.67 62.00 
21 87.33 75.00 92.97 90.00 84.23 66.33 
22 85.23 73.33 89.33 86.33 82.93 65.67 
23 88.00 75.33 94.67 92.67 84.23 65.33 
24 89.73 77.00 95.53 92.67 86.47 67.67 
25 87.90 75.00 94.67 91.67 84.10 65.67 
30 89.13 76.67 97.10 96.00 84.60 65.00 
40 93.20 82.33 98.63 98.00 90.13 72.67 
50 92.90 81.67 98.80 98.00 89.53 71.33 
60 93.53 83.33 99.83 99.67 89.93 73.00 
70 93.40 83.00 99.83 99.67 89.77 73.00 
80 93.27 82.33 99.13 99.67 89.93 73.00 
90 94.47 84.00 99.13 98.67 91.80 75.00 
100 94.50 84.33 100.00 100.00 91.30 74.67 
200 95.30 85.33 100.00 100.00 92.60 76.33 
300 95.50 85.67 100.00 100.00 92.90 76.67 
400 95.70 86.00 100.00 100.00 93.20 77.00 
500 95.70 86.00 100.00 100.00 93.20 77.00 
600 95.70 86.00 100.00 100.00 93.20 77.00 
700 95.70 86.00 100.00 100.00 93.20 77.00 
800 95.70 86.00 100.00 100.00 93.20 77.00 
900 95.70 86.00 100.00 100.00 93.20 77.00 

1024 95.70 86.00 100.00 100.00 93.20 77.00 
       

To investigate how the total number of logical variables in 
software affects MC/DC coverage of random testing, we 
repeated testing with 20 variables instead of 10 variables. The 
sizes of logical expressions remained the same (from 3 to 9) 
but variables for each expression were selected from the set of 
20 variables. Each random test case had also 20 input values 
though not all of them where used for each expression. 
Detailed data for this testing are presented in Table V and Fig. 
8 and 9. 

Some conclusions were similar for 10 and 20 variables: 

• The levels of MC/DC coverage for simple expressions 
by CodeCover and CTC++ were close each other 
(Fig.10). 

• The levels of MC/DC coverage for complex 
expressions by CodeCover and CTC++ were 
significantly different (Fig. 11) and CodeCover reported 
higher levels of coverage. 
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TABLE V.  MC/DC COVERAGE FOR RANDOM TESTS (20 VARIABLES) 

Rando
m Test 
Set Size 

MC/DC Coverage for Simple 
and Complex Expressions 

MC/DC Coverage for  
Simple Expressions 

MC/DC Coverage for  
Complex Expressions 

CodeCover Testwell CTC++ CodeCover Testwell CTC++ CodeCover Testwell CTC++ 
1 19.10 16.00 18.40 20.00 20.13 17.00 
2 34.60 26.67 33.80 31.67 35.67 26.00 
3 44.87 34.00 43.83 38.67 46.00 33.33 
4 48.03 39.00 46.53 43.33 49.50 37.33 
5 57.57 43.67 55.87 49.00 59.13 42.33 
6 65.67 51.00 62.23 53.67 68.40 50.67 
7 66.00 53.33 60.63 54.33 70.17 53.67 
8 67.57 54.67 63.37 57.33 70.87 54.33 
9 71.80 57.67 64.47 57.33 77.43 59.33 

10 74.63 62.67 69.83 64.33 78.40 63.00 
11 76.97 63.67 72.50 65.67 80.43 63.67 
12 79.67 67.33 74.47 68.33 83.67 68.33 
13 81.50 68.33 77.93 75.33 84.27 68.00 
14 80.53 68.00 74.77 68.67 84.97 68.33 
15 83.73 72.00 80.47 74.67 86.27 71.67 
16 84.87 74.00 79.83 75.00 88.73 74.67 
17 85.17 74.00 80.33 75.00 88.83 74.33 
18 88.67 78.67 87.13 83.00 89.90 76.33 
19 89.00 79.00 84.10 80.33 92.70 78.67 
20 86.67 75.67 80.97 76.67 90.93 76.33 
21 87.93 77.33 81.93 77.00 92.50 78.33 
22 89.40 79.67 85.83 81.33 92.13 78.67 
23 89.20 79.33 84.30 79.00 92.97 80.00 
24 91.37 81.00 86.97 81.33 94.60 81.33 
25 91.07 82.00 85.73 81.67 95.07 82.67 
30 91.87 82.67 88.10 86.67 94.73 82.00 
40 95.67 88.00 94.27 91.67 96.70 85.00 
50 95.57 88.33 94.63 93.00 96.33 85.00 
60 96.27 89.00 95.70 94.33 96.70 85.33 
70 97.23 90.67 98.10 97.33 96.57 85.67 
80 96.57 90.00 96.37 95.33 96.80 85.67 
90 97.50 91.33 98.40 97.67 96.80 86.00 
100 97.00 90.67 97.30 96.00 96.80 86.00 
200 98.07 92.00 99.67 99.33 96.80 86.00 
300 98.20 92.00 100.00 100.00 96.80 86.00 
400 97.70 92.00 100.00 100.00 96.80 86.00 
500 98.20 92.00 100.00 100.00 96.80 86.00 
600 98.20 92.00 98.90 98.33 96.80 86.00 
700 98.20 92.00 100.00 100.00 96.80 86.00 
800 98.20 92.00 100.00 100.00 96.80 86.00 
900 98.20 92.00 100.00 100.00 96.80 86.00 

1024 98.20 92.00 100.00 100.00 96.80 86.00 
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Fig. 9. MC/DC coverage by Testwell CTC++ for Random tests (20 
variables). 

 

• Maximal level of MC/DC coverage for complex 
expressions did not reach 100%. 

However, numerical data were slightly different for 20 
variables vs. 10 variables: 

• For the simple expressions, MC/DC coverage reached 
99% level for 200 random test cases and complete 
100% MC/DC coverage was achieved started from 400 
tests. 

• For the complex expressions, the maximal possible 
levels of MC/DC coverage was 96.8% by CodeCover 
and 86% by CTC++. 

• For the complex expressions, the maximal levels of 
MC/DC coverage were reached after 100 random test 
cases. 
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Fig. 10. Comparison of CodeCover and Testwell CTC++ results for Simple 
Expressions (20 variables). 
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Fig. 11. Comparison of CodeCover and Testwell CTC++ results for Complex 
Expressions (20 variables). 

In general, random test cases achieved a high level of 
MC/DC coverage very fast when the number of test increased. 
The precise data are given above but, very approximately, 
around 100 random tests provided high MC/DC coverage in all 
cases. Of course, this number is much higher than the amount 
of MC/DC test cases for one expression which is n+1 for 
expressions size n, i.e., maximum 10 tests for expressions size 
9. However, the number of different MC/DC tests necessary 
for all expressions together can be close to these 100 tests. At 
the same time, the process of MC/DC test generation is much 
harder comparing with random testing and should been done 
separately for each expression. It makes random testing a good 
basis for development new approaches to achieve MC/DC 
coverage. 

V. COMBINATORIAL COVERAGE LEVEL OF RANDOM TESTING 
In contrast to MC/DC, combinatorial coverage level does 

not depend on logical expressions in software and depends 
only on input variables. 

In this section we evaluate t-way coverage of random test 
cases for t=2…6. Similar to Section IV, we consider this 
coverage for 10 input variables (Table VII) and 20 input 
variables (Table VIII). We use the same random test cases as in 
Section IV with sizes from 2 to 1024. 

To understand how high the combinatorial coverage level 
of random test cases is, it is necessary to random sets of the 
same sizes as t-way sets. The sizes of combinatorial test sets 
for t=2…6 and for n=10 and n=20 are presented in Table VI. 
They are not optimal (minimal) but are close to optimal values 
and reflect sizes of combinatorial test sets generated by ACTS 
tool. 

TABLE VI.  SIZES OF COMBINATORIAL TEST SETS 

Number of 
logical variables 

2-
way  

3-
way  

4-
way  

5-
way  

6-
way  

10 10 20 44 93 178 
20 12 27 66 165 375 

TABLE VII.  COMBINATORIAL COVERAGE FOR RANDOM TESTS (10 
VARIABLES) 

Random 
Test Set 

Size 
2-way  3-way  4-way  5-way  6-way  

2 46.85 24.51 12.44 6.25 3.12 
3 60.55 34.27 18.08 9.25 4.67 
4 68.33 41.24 22.63 11.86 6.08 
5 76.85 49.51 28.12 14.96 7.70 
6 83.52 55.49 32.11 17.31 9.01 
7 85.74 59.23 35.48 19.58 10.33 
8 85.92 63.96 39.61 22.20 11.78 
9 92.78 70.48 44.58 25.28 13.47 

10 96.85 76.70 49.29 27.94 14.86 
11 94.44 76.60 51.57 30.10 16.20 
12 98.52 81.39 54.71 32.17 17.52 
13 97.78 83.40 57.68 34.31 18.76 
14 97.78 83.16 58.00 35.03 19.48 
15 99.26 87.95 63.13 38.37 21.18 
16 98.15 86.84 63.43 39.53 22.30 
17 99.44 91.42 69.30 43.66 24.43 
18 99.44 90.73 68.26 43.27 24.63 
19 99.81 94.10 73.06 46.64 26.40 
20 98.89 91.18 70.29 45.43 26.21 
21 99.81 94.69 75.81 50.24 29.09 
22 99.81 95.69 77.41 51.41 29.87 
23 100.00 95.49 77.80 52.35 30.76 
24 100.00 96.84 79.70 54.14 32.02 
25 100.00 97.51 81.58 56.31 33.43 
30 100.00 98.23 86.07 61.76 37.85 
40 100.00 99.51 92.74 72.51 47.37 
50 100.00 99.96 97.12 81.48 55.84 
60 100.00 100.00 96.32 84.80 60.76 
70 100.00 100.00 99.01 93.29 75.71 
80 100.00 100.00 99.53 93.01 73.16 
90 100.00 100.00 99.65 94.43 76.68 

100 100.00 100.00 99.87 96.60 81.34 
200 100.00 100.00 100.00 99.96 97.42 
300 100.00 100.00 100.00 100.00 99.61 
400 100.00 100.00 100.00 100.00 99.98 
500 100.00 100.00 100.00 100.00 100.00 
600 100.00 100.00 100.00 100.00 100.00 
700 100.00 100.00 100.00 100.00 100.00 
800 100.00 100.00 100.00 100.00 100.00 
900 100.00 100.00 100.00 100.00 100.00 
1024 100.00 100.00 100.00 100.00 100.00 

 

As it is possible to conclude from Tables VII and VIII, the 
level of combinatorial coverage of random test cases is quite 
high. Thus, in all situations for any n and t, this level for 
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random test sets of the same size as combinatorial test sets is 
around 90-97%. 

The level of combinatorial coverage grows very fast when 
the number of random tests increases. However, after 90% the 
increase becomes significantly slow. To reach 100% of 
combinatorial coverage, significantly more random tests are 
required comparing with the combinatorial test sets.  Thus, 23 
(for n=10) and 24 (for n=20) random test cases are necessary to 
archive 100% pairwise coverage comparing with 10 and 12 test 
cases in pairwise test sets. The similar situations are for t-way 
coverage as it is possible to see from Tables VII and VIII. 

TABLE VIII.  COMBINATORIAL COVERAGE FOR RANDOM TESTS (20 
VARIABLES) 

Random 
Test Set 

Size 
2-way  3-way  4-way  5-way  6-way  

2 46.57 24.43 12.41 6.23 3.12 
3 58.34 33.41 17.80 9.16 4.64 
4 64.02 38.91 21.67 11.54 6.01 
5 77.19 48.80 27.50 14.62 7.54 
6 84.61 56.70 32.82 17.60 9.10 
7 88.03 61.58 36.68 20.02 10.46 
8 90.48 65.84 40.40 22.46 11.86 
9 92.19 68.71 43.16 24.45 13.07 

10 94.38 74.22 48.49 28.14 15.29 
11 95.97 77.20 50.84 29.45 15.89 
12 96.88 80.29 54.19 31.79 17.26 
13 97.24 81.22 55.66 33.22 18.27 
14 98.64 84.71 59.52 35.94 19.83 
15 98.64 85.55 61.20 37.54 20.94 
16 99.47 90.09 66.24 40.86 22.71 
17 99.65 89.75 66.19 41.38 23.33 
18 99.69 91.83 69.41 43.92 24.87 
19 99.56 91.38 69.98 45.04 25.82 
20 99.56 92.38 71.31 46.10 26.54 
21 99.83 94.10 73.94 48.33 27.96 
22 99.96 95.95 77.69 51.54 29.88 
23 99.91 95.73 78.03 52.40 30.72 
24 100.00 96.79 80.17 54.36 31.96 
25 99.96 96.99 81.05 55.43 32.81 
30 100.00 98.69 86.76 62.43 38.18 
40 100.00 99.60 92.40 71.66 46.51 
50 100.00 99.89 96.10 79.74 54.68 
60 100.00 99.94 97.82 84.91 60.86 
70 100.00 99.99 98.86 88.99 66.54 
80 100.00 100.00 99.52 92.51 72.08 
90 100.00 100.00 99.64 93.97 75.40 

100 100.00 100.00 99.84 95.59 78.80 
200 100.00 100.00 100.00 99.83 95.64 
300 100.00 100.00 100.00 99.99 99.10 
400 100.00 100.00 100.00 100.00 99.79 
500 100.00 100.00 100.00 100.00 99.96 
600 100.00 100.00 100.00 100.00 99.99 
700 100.00 100.00 100.00 100.00 100.00 
800 100.00 100.00 100.00 100.00 100.00 
900 100.00 100.00 100.00 100.00 100.00 
1024 100.00 100.00 100.00 100.00 100.00 
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Fig. 12. Combinatorial coverage for Random tests (10 variables). 
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Fig. 13. Combinatorial coverage for Random tests (20 variables). 

VI. CONCLUSIONS AND FUTURE WORK 
This paper evaluates the ability of random testing to 

provide coverage according to MC/DC and t-way testing 
criteria. One hundred logical expressions of different sizes 
were generated. We also generated 252 random test sets with 
from 2 to 1024 test cases in a set. These sets were used to test a 
software program with logical expressions and the levels of 
coverage were evaluated using the structural coverage tools 
CodeCover, Testwell CTC++, and CCM, which measures the 
coverage of input value combinations in a test suite. 

Our experiments show that for simple expressions, when 
the number of random test cases increased, they quickly reach 
a high level of coverage both for MC/DC and 2-way. The close 
to 100% level of MC/DC coverage is achieved after 
approximately 100 random tests in many cases, but full 
coverage may require doubling test set size. Complex 
expressions required a much larger test set size for MC/DC 
coverage on the order of 90%, again doubling the number of 
tests for full coverage. The paper provides detailed data for 
different types of expressions and different testing tools. 

An unexpected result of the study was that structural 
coverage tools differ in their definition of partial MC/DC 
coverage, resulting in significant variation in coverage 
calculations. The primary standard for MC/DC coverage, 
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RTCA DO-178B, requires full coverage, so partial coverage 
numbers are generally not used. In cases where knowledge of 
less than complete MC/DC coverage is of interest, a consistent 
definition of partial coverage will need to be specified.   

Random test sets of the same sizes as t-way sets provide the 
90-97% level of combinatorial coverage. However, much more 
random tests are required to reach 100% coverage. The paper 
provides detailed data for different numbers of input variables, 
different types of expressions, and t-way coverage for t=2…6. 

The obtained results can help for integration random testing 
with other approaches (in particular, MC/DC and 
combinatorial testing) to increase of effectiveness of testing 
software with complex logical structure. 
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