
Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

Combinatorial and MC/DC Coverage Levels of Random Testing

Sergiy Vilkomir, Aparna Alluri
Department of Computer Science

East Carolina University
Greenville, NC 27858, USA

vilkomirs@ecu.edu

D. Richard Kuhn, Raghu N. Kacker
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899, USA
{kuhn, raghu.kacker}@nist.gov

Abstract—Software testing criteria differ in effectiveness,
numbers of required test cases, and a process of test generation.
Specific criteria are often compared with random testing as a
simplest basic approach and, in some cases, random testing
shows a surprisingly high level of effectiveness. One of the
reasons is that any random test set has a specific level of coverage
according to any coverage criterion. Numerical evaluation of
coverage levels of random testing according various coverage
criteria is interesting research task important for understanding
relationship between different testing approaches. In this paper
we experimentally evaluate coverage levels of random testing for
two criteria – MC/DC and combinatorial t-way testing. The
results could be used for selection optimal methods for practical
testing, and development of new testing methods based on
integration of existing approaches.

Keywords—random testing; combinatorial testing; MC/DC;
pairwise; coverage

I. INTRODUCTION
Testing coverage criteria are widely used in software

testing. According to ISO/IEC/IEEE 29119-1:2013 Standard
[1], test coverage is “a degree, expressed as a percentage, to
which specified test coverage items have been exercised by a
test case or test cases”. Simple examples include statement
coverage, path coverage, and branch coverage. A more
sophisticated example is t-way combinatorial coverage, which
requires every possible combination of values of t parameters
be included in some test case in the test suite [2, 3]. In the most
basic form for t=2, this criterion is known as pairwise testing
and requires all possible pairs of values be covered [4]. One of
the strongest coverage criteria for testing logical predicates is
Modified Condition/Decision Coverage (MC/DC) [5], which
requires every condition in a decision be covered, and “each
condition has been shown to independently affect the
decision’s outcome” [6]. MCDC coverage subsumes branch
coverage, and in turn, statement coverage of code.

Because MCDC is such a strong criterion, the US Federal
Aviation Administration (FAA) has for many years required
MCDC testing for Level A (life critical) software aboard
commercial aircraft [7, 8], but it is rarely used outside of the
aerospace industry. One of the most significant barriers to
wider use of MCDC is its expense. While testing for consumer
grade software is roughly the same as the cost of producing the
code, in the aviation industry spending could be seven times
more on verification than development [9]. To encourage wider

use of MCDC beyond the aerospace industry, the cost of its
application will need to be reduced.

Testing criteria differ in effectiveness, numbers of required
test cases, and a process of test generation. Empirical
evaluation and experimental comparison of testing criteria
started in 1980’s [10, 11] but this is still an important research
direction [12, 13, 14]. Specific criteria are often compared with
random testing as a simplest basic approach [15, 16, 17, 18].

In some cases, random testing shows a surprisingly high
level of effectiveness. For example, for testing logical
expressions, t-way testing have an advantage over random
testing but this benefit is not significant [18, 19]. One of the
reasons is that any random (or any other) test set has a specific
level of coverage according to any coverage criterion. Thus,
random testing has a certain level of pairwise coverage, etc.
This level is never 100% but could be quite high. Numerical
evaluation of coverage levels of random testing according
various coverage criteria is interesting and important research
task. It could be useful for understanding relationship between
different testing approaches, selection optimal methods for
practical testing, and development of new testing methods
based on integration of existing approaches.

In this paper we experimentally evaluate coverage levels of
random testing for two criteria – MC/DC and t-way testing.
The paper is structured as follows: Section II considers a
general problem of the integration of testing techniques to
reduce the number of test cases and increase the code coverage
and testing effectiveness. As a part of this problem, the more
specific research question about evaluation of the MC/DC and
combinatorial coverage levels of random testing is discussed.
The methods and scope of the investigation are described in
Section III. Section IV provides experimental results on the
MC/DC coverage level of random testing and Section V
provides similar results for combinatorial coverage levels.
Conclusions and directions for future work are presented in
Section VI.

II. RESEARCH QUESTION
Testing according to any coverage criterion, as well as

other testing approaches, has some benefits and some
challenges. For example, MC/DC has good effectiveness for
testing logical expressions but the process of test generation to
satisfy MC/DC is quite complicated. Random testing could be
effective but usually only for a large number of test cases.

Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

Combinatorial criteria are very effective in many situations but
not for testing logical expressions.

Taking this into consideration, a natural idea is trying to
combine different testing approaches to use advantages of each
of them. The purpose of such combination is to minimize a
number of test cases, maximize effectiveness of testing, and
simplify test generation as much as possible. Researches in this
direction include combining functional and structural testing
[20, 21], model-based and combinatorial testing [22], model-
based and search-based testing [23] and more.

Some preliminary research suggests that using
combinatorial testing in conjunction with model-based
approaches can significantly reduce the cost of achieving
MCDC coverage [24]. Part of the savings occurs because tests
based on t-way covering arrays will necessarily also cover
some proportion of MCDC and branch coverage. For example,
a test set covering all 2-way combinations of binary variable
settings will ensure that branch predicates containing only two
binary variables will be instantiated in all possible ways. But 2-
way (pairwise) test sets will also cover some proportion of t-
way combinations for all t > 2, up to n, where n is the number
of variables. Similarly, tests with random values will also cover
a significant proportion of t-way combinations.

Even when two criteria are completely independent and use
different principles, a test set satisfied the first criterion has
some level of coverage according to the second criterion and
opposite. For example, 100% MC/DC test set has some
pairwise coverage and the test set provided 100% pairwise
coverage also provides a certain percentage of MC/DC
coverage. This fact is well-known and there are some initial
results on such relationships (i.e., for pairwise and MC/DC
testing [14]) but this area still requires more numerical
evaluations based on empirical investigations.

Because of its simplicity, random testing is a good
candidate for combining with coverage criteria. For this
purpose it is necessary to understand how good random testing
is in providing coverage for different criteria and how level of
coverage changes depending on the number of test cases in the
random test set. We consider two specific research questions:

• RQ1: What is the level of MC/DC coverage of random
test sets of different sizes?

• RQ2: What is the level of t-way coverage of random
test sets of different sizes?

Answers on these questions do not solve the problem of
combining different testing criteria but are necessary and
important steps in this direction.

III. METHODS AND SCOPE OF INVESTIGATION

A. Used tools
To measure MC/DC coverage, we used CodeCover and

Testwell CTC++ tools. CodeCover is an open-source white-
box testing tool developed at the University of Stuttgart,
Germany in 2007 [25, 26]. CodeCover measures several types
of coverage including term coverage (subsumes MC/DC) and
supports several programming languages including Java and C.

Testwell CTC++ is a code coverage and dynamic analysis tool
for C and C++ code but also supports Java, and C#. The tool
has been developed by Testwell Ltd company (Finland) [27]
and since 2013 is owned by Verifysoft Technology GmbH
[28]. As well as CodeCover, CTC++ provides measurements
of several types of coverage including MC/DC. A sample
report produced by Testwell CTC++ is presented in Fig. 1.

We used two tools to evaluate MC/DC levels because
results of such evaluation for the same software and the same
test sets often are different for different tools. The main reason
for this is that there is no commonly accepted definition of an
incomplete (not 100%) MC/DC coverage. Different principles
are used in different tools. Some tools evaluate coverage
separately for each logical condition and calculate an average
value then. Other tools create complete MC/DC test sets,
compare them with actually used test sets, and evaluate
percentage of coverage based on this.

Fig. 1. Testwell CTC++ sample report.

It is not our task in this paper to judge different approaches
to MC/DC evaluation. There are some justifications for all of
them. However, we provide the results of MC/DC evaluation
from two tools and compare them in Section 4.

To measure t-way coverage, we used the Combinatorial
Coverage Measurement (CCM) tool developed by National
Institute of Standards and Technology (NIST) and the Centro
Nacional de Metrologia of Mexico [29, 30]. CCM can analyze
existing levels of t-way (t=2…6) coverage for any test set. Fig.
2 shows CCM tool user interface. The tool displays a graph
showing the coverage for the given tests. Additional tests can
be added to increase the coverage. The percentage of coverage
can be viewed in the “Results” tab.

B. Main steps and the scope of the investigation
The general organization of experimental evaluation is

illustrated in Fig. 3.

Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

Fig. 2. CCM tool user interface.

Fig. 3. Organization of experimental evaluation.

The investigation included the following main steps:

Step 1. Generation of logical expressions of different sizes
(i.e., different numbers of logical variables in expressions). The
sets of expressions were put into software programs which are
without real functionality but used only for testing purposes to
evaluate coverage levels. A total of 100 logical expressions
were generated for testing. 50 expressions were generated from
10 fixed input variables and another 50 from 20 fixed input
variables. Both sets contain 25 simple and 25 complex
expressions of different sizes: 25 expressions of size 3, 15 of
size 4, 5 of size 5, 2 of size 6, and 1 of each size 7, 8, and 9.
Some examples of the generated expressions from 10 variables
are presented in Table I. The sizes of expressions were chosen
in such a way that they reflect situations in real software i.e.
more expressions of small size and less of large size. The used

proportion of different sizes approximately corresponds with
data on expression sizes reported at [31, 32].

TABLE I. EXAMPLES OF LOGICAL EXPRESSIONS

 Simple expressions Complex expressions
Size 3 d∨f∨c (i∨!d) ∧ (!i∨!e)
Size 4 (c∨f) ∧ (i∨g) (f∧ (a∨h)) ∨ (!h∧e∨!f)
Size 5 (c∧e) ∨ (!a∧f∨d) (!h∨!f) ∧ (!c∨h∨e∧a) ∧ (f∨!e)

Step 2. Generation of random test sets of different sizes,

where the size of a random test set is the number of test cases
in it. To generate test cases and check that all test cases in a test
set are different, we create a simple software program which
used Java random number generator. 42 random test sets of
different sizes were generated for 10 variables and 42 similar
sets for 20 variables. The sizes of the generated random test
sets were 1, 2, 3,… 25, 30, 40,…100, 200,….900, 1024. For
each size, 3 test sets were generated, so the coverage for any
random test size was the average of the three coverage values.

Step 3. Evaluation of MC/DC coverage for random test sets
using the CodeCover tool.

Step 4. Evaluation of MC/DC coverage for random test sets
using the Testwell CTC++ tool.

Step 5. Evaluation of t-way coverage for random test sets
using the CCM tool.

Step 6. Analysis of experimental data.

The total numbers of logical expressions and test sets are
summarized in Table II.

TABLE II. SCOPE OF EXPERIMENTAL TESTING

Number of
Logical

Variables
Logical Expressions of

mixed sizes
Random
Test Sets

10 50 126
20 50 126

Total 100 252

IV. MC/DC LEVEL OF RANDOM TESTING
All test inputs in generated random test sets have values T
(True) or F (False). The example of the test set of size 5 as one
of 42 generated random test sets is presented in Table III.
Detailed data on MC/DC coverage by CoderCover and CTC++
tools for all random test sets are given in Table IV.

TABLE III. EXAMPLE OF THE RANDOM TEST SET OF SIZE 5

 a b c d e f g h i j
1 T T F F T F F F T F
2 T F T F F T T F F F
3 T F T F T T T T T F
4 T T F F F T F F F F
5 F T F F F T T T T F

The obtained results showed that MC/DC coverage
demonstrated a fast growing trend when the number of
random test cases increased. This trend was shown both by
CoderCover (Fig. 4) and CTC++ (Fig. 5) tools for the simple

Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

and complex expressions. For the simple expressions, MC/DC
coverage reached 99% level for 55 random test cases and
complete 100% MC/DC coverage was achieved started from
100 tests. The results by CoderCover and CTC++ for simple
expressions were similar and close to each other (Fig. 6).

For complex expressions, more test cases were required to
reach maximum MC/DC coverage. The coverage was very
close to maximum from 200 test cases and maximum MC/DC
coverage required approximately 400 random test cases.
However, it is necessary to mention two distinctive features of
estimation of MC/DC coverage for complex expressions:

• The MC/DC levels reported by two tools were
significantly different (Fig. 7).

• The maximum of MC/DC coverage did not reach
100%. Even for exhaustive testing (all 1024 possible
test cases for 10 variables), the maximum level of
MC/DC coverage was 93% according to CodeCover
and only 77% according to CTC++.

0

10

20

30

40

50

60

70

80

90

100

R1 R3 R5 R7 R9 R1
1

R1
3

R1
5

R1
7

R1
9

R2
1

R2
3

R2
5

R4
0

R6
0

R8
0

R1
00

R3
00

R5
00

R7
00

R9
00

Simple&Complex exp. Simple exp. Complex exp.

Fig. 4. MC/DC coverage by CodeCover for Random tests (10 variables).

0

10

20

30

40

50

60

70

80

90

100

R1 R3 R5 R7 R9 R1
1

R1
3

R1
5

R1
7

R1
9

R2
1

R2
3

R2
5

R4
0

R6
0

R8
0

R1
00

R3
00

R5
00

R7
00

R9
00

Simple & Complex exp. Simple exp. Complex exp.

Fig. 5. MC/DC coverage by Testwell CTC++ for Random tests (10
variables.).

0

10

20

30

40

50

60

70

80

90

100

R1 R3 R5 R7 R9 R1
1

R1
3

R1
5

R1
7

R1
9

R2
1

R2
3

R2
5

R4
0

R6
0

R8
0

R1
00

R3
00

R5
00

R7
00

R9
00

CodeCover CTC++

Fig. 6. Comparison of CodeCover and Testwell CTC++ results for Simple
Expressions (10 variables).

0

10

20

30

40

50

60

70

80

90

100

R1 R3 R5 R7 R9 R1
1

R1
3

R1
5

R1
7

R1
9

R2
1

R2
3

R2
5

R4
0

R6
0

R8
0

R1
00

R3
00

R5
00

R7
00

R9
00

CodeCover CTC++

Fig. 7. Comparison of CodeCover and Testwell CTC++ results for Complex
Expressions (10 variables).

0

10

20

30

40

50

60

70

80

90

100

R1 R3 R5 R7 R9 R1
1

R1
3

R1
5

R1
7

R1
9

R2
1

R2
3

R2
5

R4
0

R6
0

R8
0

R1
00

R3
00

R5
00

R7
00

R9
00

Simple & Complex exp. Simple exp. Complex exp.

Fig. 8. MC/DC coverage by CodeCover for Random tests (20 variables).

The similar situation is not only for CodeCover and CTC++
but also for other tools provided MC/DC coverage, for
example, Kalimetrix Logiscope [33] or TESSY [34]. The
reason, as it was mentioned in Section 3.A, could be that
different tools could use different principles for coverage
evaluation. They also can evaluate different types of MC/DC,
for example, Unique-Cause MC/DC vs. Masking MC/DC.

Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

Other factors that affect evaluation of coverage are how tools
treat short-circuit Boolean expressions and multiple
occurrences of logical variables in expressions. Thus, in our
case, CTC++ considers multiple occurrences of the same
variable as different variables and requires test cases with
different values of the first and second occurrences of the
variable, that is impossible. Under this definition used,

complex expressions never can have 100% MC/DC coverage.
In contrast with CTC++, CodeCover considers multiple
occurrences as the same variable so 100% MC/DC coverage
for complex expressions is possible. However, when the short-
circuit operator is used for evaluation of expression values,
CodeCover considers some variables as uncovered even if test
cases provide necessary coverage.

TABLE IV. MC/DC COVERAGE FOR RANDOM TESTS (10 VARIABLES)

Random
Test Set

Size

MC/DC Coverage for Simple and
Complex Expressions

MC/DC Coverage for
Simple Expressions

MC/DC Coverage for
Complex Expressions

CodeCover Testwell
CTC++ CodeCover Testwell

CTC++ CodeCover Testwell
CTC++

1 17.97 16.00 21.63 21.00 16.40 15.00
2 32.50 23.67 37.13 32.33 30.30 21.00
3 42.47 32.00 49.13 42.00 38.93 27.67
4 48.30 36.33 53.80 47.00 45.47 31.33
5 56.50 44.00 65.10 58.33 51.77 36.00
6 59.10 45.67 66.87 59.67 54.93 37.67
7 68.60 53.67 74.70 68.33 65.30 45.33
8 67.43 54.67 74.57 69.33 63.50 47.00
9 69.17 54.67 76.30 69.33 65.27 45.67

10 73.03 59.67 79.90 76.00 69.23 50.00
11 73.97 59.00 77.33 72.33 72.20 51.33
12 78.53 65.67 87.13 82.33 73.77 55.67
13 81.07 64.67 84.03 78.67 74.27 56.67
14 83.70 66.67 86.60 81.67 76.90 58.00
15 81.93 68.00 87.27 83.00 79.00 59.67
16 82.77 70.67 91.40 89.33 77.90 59.33
17 85.47 72.67 91.73 88.33 81.97 63.33
18 85.10 72.67 91.93 89.33 81.27 63.00
19 86.87 75.00 95.33 93.67 82.07 64.00
20 84.37 71.33 91.10 87.33 80.67 62.00
21 87.33 75.00 92.97 90.00 84.23 66.33
22 85.23 73.33 89.33 86.33 82.93 65.67
23 88.00 75.33 94.67 92.67 84.23 65.33
24 89.73 77.00 95.53 92.67 86.47 67.67
25 87.90 75.00 94.67 91.67 84.10 65.67
30 89.13 76.67 97.10 96.00 84.60 65.00
40 93.20 82.33 98.63 98.00 90.13 72.67
50 92.90 81.67 98.80 98.00 89.53 71.33
60 93.53 83.33 99.83 99.67 89.93 73.00
70 93.40 83.00 99.83 99.67 89.77 73.00
80 93.27 82.33 99.13 99.67 89.93 73.00
90 94.47 84.00 99.13 98.67 91.80 75.00
100 94.50 84.33 100.00 100.00 91.30 74.67
200 95.30 85.33 100.00 100.00 92.60 76.33
300 95.50 85.67 100.00 100.00 92.90 76.67
400 95.70 86.00 100.00 100.00 93.20 77.00
500 95.70 86.00 100.00 100.00 93.20 77.00
600 95.70 86.00 100.00 100.00 93.20 77.00
700 95.70 86.00 100.00 100.00 93.20 77.00
800 95.70 86.00 100.00 100.00 93.20 77.00
900 95.70 86.00 100.00 100.00 93.20 77.00

1024 95.70 86.00 100.00 100.00 93.20 77.00

To investigate how the total number of logical variables in
software affects MC/DC coverage of random testing, we
repeated testing with 20 variables instead of 10 variables. The
sizes of logical expressions remained the same (from 3 to 9)
but variables for each expression were selected from the set of
20 variables. Each random test case had also 20 input values
though not all of them where used for each expression.
Detailed data for this testing are presented in Table V and Fig.
8 and 9.

Some conclusions were similar for 10 and 20 variables:

• The levels of MC/DC coverage for simple expressions
by CodeCover and CTC++ were close each other
(Fig.10).

• The levels of MC/DC coverage for complex
expressions by CodeCover and CTC++ were
significantly different (Fig. 11) and CodeCover reported
higher levels of coverage.

Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

TABLE V. MC/DC COVERAGE FOR RANDOM TESTS (20 VARIABLES)

Rando
m Test
Set Size

MC/DC Coverage for Simple
and Complex Expressions

MC/DC Coverage for
Simple Expressions

MC/DC Coverage for
Complex Expressions

CodeCover Testwell CTC++ CodeCover Testwell CTC++ CodeCover Testwell CTC++
1 19.10 16.00 18.40 20.00 20.13 17.00
2 34.60 26.67 33.80 31.67 35.67 26.00
3 44.87 34.00 43.83 38.67 46.00 33.33
4 48.03 39.00 46.53 43.33 49.50 37.33
5 57.57 43.67 55.87 49.00 59.13 42.33
6 65.67 51.00 62.23 53.67 68.40 50.67
7 66.00 53.33 60.63 54.33 70.17 53.67
8 67.57 54.67 63.37 57.33 70.87 54.33
9 71.80 57.67 64.47 57.33 77.43 59.33

10 74.63 62.67 69.83 64.33 78.40 63.00
11 76.97 63.67 72.50 65.67 80.43 63.67
12 79.67 67.33 74.47 68.33 83.67 68.33
13 81.50 68.33 77.93 75.33 84.27 68.00
14 80.53 68.00 74.77 68.67 84.97 68.33
15 83.73 72.00 80.47 74.67 86.27 71.67
16 84.87 74.00 79.83 75.00 88.73 74.67
17 85.17 74.00 80.33 75.00 88.83 74.33
18 88.67 78.67 87.13 83.00 89.90 76.33
19 89.00 79.00 84.10 80.33 92.70 78.67
20 86.67 75.67 80.97 76.67 90.93 76.33
21 87.93 77.33 81.93 77.00 92.50 78.33
22 89.40 79.67 85.83 81.33 92.13 78.67
23 89.20 79.33 84.30 79.00 92.97 80.00
24 91.37 81.00 86.97 81.33 94.60 81.33
25 91.07 82.00 85.73 81.67 95.07 82.67
30 91.87 82.67 88.10 86.67 94.73 82.00
40 95.67 88.00 94.27 91.67 96.70 85.00
50 95.57 88.33 94.63 93.00 96.33 85.00
60 96.27 89.00 95.70 94.33 96.70 85.33
70 97.23 90.67 98.10 97.33 96.57 85.67
80 96.57 90.00 96.37 95.33 96.80 85.67
90 97.50 91.33 98.40 97.67 96.80 86.00
100 97.00 90.67 97.30 96.00 96.80 86.00
200 98.07 92.00 99.67 99.33 96.80 86.00
300 98.20 92.00 100.00 100.00 96.80 86.00
400 97.70 92.00 100.00 100.00 96.80 86.00
500 98.20 92.00 100.00 100.00 96.80 86.00
600 98.20 92.00 98.90 98.33 96.80 86.00
700 98.20 92.00 100.00 100.00 96.80 86.00
800 98.20 92.00 100.00 100.00 96.80 86.00
900 98.20 92.00 100.00 100.00 96.80 86.00

1024 98.20 92.00 100.00 100.00 96.80 86.00

0

10

20

30

40

50

60

70

80

90

100

R1 R3 R5 R7 R9 R1
1

R1
3

R1
5

R1
7

R1
9

R2
1

R2
3

R2
5

R4
0

R6
0

R8
0

R1
00

R3
00

R5
00

R7
00

R9
00

Simple & Complex exp. Simple exp. Complex exp.

Fig. 9. MC/DC coverage by Testwell CTC++ for Random tests (20
variables).

• Maximal level of MC/DC coverage for complex
expressions did not reach 100%.

However, numerical data were slightly different for 20
variables vs. 10 variables:

• For the simple expressions, MC/DC coverage reached
99% level for 200 random test cases and complete
100% MC/DC coverage was achieved started from 400
tests.

• For the complex expressions, the maximal possible
levels of MC/DC coverage was 96.8% by CodeCover
and 86% by CTC++.

• For the complex expressions, the maximal levels of
MC/DC coverage were reached after 100 random test
cases.

Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

0

10

20

30

40

50

60

70

80

90

100

R1 R3 R5 R7 R9 R1
1

R1
3

R1
5

R1
7

R1
9

R2
1

R2
3

R2
5

R4
0

R6
0

R8
0

R1
00

R3
00

R5
00

R7
00

R9
00

CodeCover CTC++

Fig. 10. Comparison of CodeCover and Testwell CTC++ results for Simple
Expressions (20 variables).

0

10

20

30

40

50

60

70

80

90

100

R1 R3 R5 R7 R9 R1
1

R1
3

R1
5

R1
7

R1
9

R2
1

R2
3

R2
5

R4
0

R6
0

R8
0

R1
00

R3
00

R5
00

R7
00

R9
00

CodeCover CTC++

Fig. 11. Comparison of CodeCover and Testwell CTC++ results for Complex
Expressions (20 variables).

In general, random test cases achieved a high level of
MC/DC coverage very fast when the number of test increased.
The precise data are given above but, very approximately,
around 100 random tests provided high MC/DC coverage in all
cases. Of course, this number is much higher than the amount
of MC/DC test cases for one expression which is n+1 for
expressions size n, i.e., maximum 10 tests for expressions size
9. However, the number of different MC/DC tests necessary
for all expressions together can be close to these 100 tests. At
the same time, the process of MC/DC test generation is much
harder comparing with random testing and should been done
separately for each expression. It makes random testing a good
basis for development new approaches to achieve MC/DC
coverage.

V. COMBINATORIAL COVERAGE LEVEL OF RANDOM TESTING
In contrast to MC/DC, combinatorial coverage level does

not depend on logical expressions in software and depends
only on input variables.

In this section we evaluate t-way coverage of random test
cases for t=2…6. Similar to Section IV, we consider this
coverage for 10 input variables (Table VII) and 20 input
variables (Table VIII). We use the same random test cases as in
Section IV with sizes from 2 to 1024.

To understand how high the combinatorial coverage level
of random test cases is, it is necessary to random sets of the
same sizes as t-way sets. The sizes of combinatorial test sets
for t=2…6 and for n=10 and n=20 are presented in Table VI.
They are not optimal (minimal) but are close to optimal values
and reflect sizes of combinatorial test sets generated by ACTS
tool.

TABLE VI. SIZES OF COMBINATORIAL TEST SETS

Number of
logical variables

2-
way

3-
way

4-
way

5-
way

6-
way

10 10 20 44 93 178
20 12 27 66 165 375

TABLE VII. COMBINATORIAL COVERAGE FOR RANDOM TESTS (10
VARIABLES)

Random
Test Set

Size
2-way 3-way 4-way 5-way 6-way

2 46.85 24.51 12.44 6.25 3.12
3 60.55 34.27 18.08 9.25 4.67
4 68.33 41.24 22.63 11.86 6.08
5 76.85 49.51 28.12 14.96 7.70
6 83.52 55.49 32.11 17.31 9.01
7 85.74 59.23 35.48 19.58 10.33
8 85.92 63.96 39.61 22.20 11.78
9 92.78 70.48 44.58 25.28 13.47

10 96.85 76.70 49.29 27.94 14.86
11 94.44 76.60 51.57 30.10 16.20
12 98.52 81.39 54.71 32.17 17.52
13 97.78 83.40 57.68 34.31 18.76
14 97.78 83.16 58.00 35.03 19.48
15 99.26 87.95 63.13 38.37 21.18
16 98.15 86.84 63.43 39.53 22.30
17 99.44 91.42 69.30 43.66 24.43
18 99.44 90.73 68.26 43.27 24.63
19 99.81 94.10 73.06 46.64 26.40
20 98.89 91.18 70.29 45.43 26.21
21 99.81 94.69 75.81 50.24 29.09
22 99.81 95.69 77.41 51.41 29.87
23 100.00 95.49 77.80 52.35 30.76
24 100.00 96.84 79.70 54.14 32.02
25 100.00 97.51 81.58 56.31 33.43
30 100.00 98.23 86.07 61.76 37.85
40 100.00 99.51 92.74 72.51 47.37
50 100.00 99.96 97.12 81.48 55.84
60 100.00 100.00 96.32 84.80 60.76
70 100.00 100.00 99.01 93.29 75.71
80 100.00 100.00 99.53 93.01 73.16
90 100.00 100.00 99.65 94.43 76.68

100 100.00 100.00 99.87 96.60 81.34
200 100.00 100.00 100.00 99.96 97.42
300 100.00 100.00 100.00 100.00 99.61
400 100.00 100.00 100.00 100.00 99.98
500 100.00 100.00 100.00 100.00 100.00
600 100.00 100.00 100.00 100.00 100.00
700 100.00 100.00 100.00 100.00 100.00
800 100.00 100.00 100.00 100.00 100.00
900 100.00 100.00 100.00 100.00 100.00
1024 100.00 100.00 100.00 100.00 100.00

As it is possible to conclude from Tables VII and VIII, the
level of combinatorial coverage of random test cases is quite
high. Thus, in all situations for any n and t, this level for

Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

random test sets of the same size as combinatorial test sets is
around 90-97%.

The level of combinatorial coverage grows very fast when
the number of random tests increases. However, after 90% the
increase becomes significantly slow. To reach 100% of
combinatorial coverage, significantly more random tests are
required comparing with the combinatorial test sets. Thus, 23
(for n=10) and 24 (for n=20) random test cases are necessary to
archive 100% pairwise coverage comparing with 10 and 12 test
cases in pairwise test sets. The similar situations are for t-way
coverage as it is possible to see from Tables VII and VIII.

TABLE VIII. COMBINATORIAL COVERAGE FOR RANDOM TESTS (20
VARIABLES)

Random
Test Set

Size
2-way 3-way 4-way 5-way 6-way

2 46.57 24.43 12.41 6.23 3.12
3 58.34 33.41 17.80 9.16 4.64
4 64.02 38.91 21.67 11.54 6.01
5 77.19 48.80 27.50 14.62 7.54
6 84.61 56.70 32.82 17.60 9.10
7 88.03 61.58 36.68 20.02 10.46
8 90.48 65.84 40.40 22.46 11.86
9 92.19 68.71 43.16 24.45 13.07

10 94.38 74.22 48.49 28.14 15.29
11 95.97 77.20 50.84 29.45 15.89
12 96.88 80.29 54.19 31.79 17.26
13 97.24 81.22 55.66 33.22 18.27
14 98.64 84.71 59.52 35.94 19.83
15 98.64 85.55 61.20 37.54 20.94
16 99.47 90.09 66.24 40.86 22.71
17 99.65 89.75 66.19 41.38 23.33
18 99.69 91.83 69.41 43.92 24.87
19 99.56 91.38 69.98 45.04 25.82
20 99.56 92.38 71.31 46.10 26.54
21 99.83 94.10 73.94 48.33 27.96
22 99.96 95.95 77.69 51.54 29.88
23 99.91 95.73 78.03 52.40 30.72
24 100.00 96.79 80.17 54.36 31.96
25 99.96 96.99 81.05 55.43 32.81
30 100.00 98.69 86.76 62.43 38.18
40 100.00 99.60 92.40 71.66 46.51
50 100.00 99.89 96.10 79.74 54.68
60 100.00 99.94 97.82 84.91 60.86
70 100.00 99.99 98.86 88.99 66.54
80 100.00 100.00 99.52 92.51 72.08
90 100.00 100.00 99.64 93.97 75.40

100 100.00 100.00 99.84 95.59 78.80
200 100.00 100.00 100.00 99.83 95.64
300 100.00 100.00 100.00 99.99 99.10
400 100.00 100.00 100.00 100.00 99.79
500 100.00 100.00 100.00 100.00 99.96
600 100.00 100.00 100.00 100.00 99.99
700 100.00 100.00 100.00 100.00 100.00
800 100.00 100.00 100.00 100.00 100.00
900 100.00 100.00 100.00 100.00 100.00
1024 100.00 100.00 100.00 100.00 100.00

0

10

20

30

40

50

60

70

80

90

100

R2 R4 R6 R8 R1
0

R1
2

R1
4

R1
6

R1
8

R2
0

R2
2

R2
4

R3
0

R5
0

R7
0

R9
0

R2
00

R4
00

R6
00

R8
00

R1
02

4

2-way 3-way 4-way 5-way 6-way

Fig. 12. Combinatorial coverage for Random tests (10 variables).

0

10

20

30

40

50

60

70

80

90

100

R2 R4 R6 R8 R1
0

R1
2

R1
4

R1
6

R1
8

R2
0

R2
2

R2
4

R3
0

R5
0

R7
0

R9
0

R2
00

R4
00

R6
00

R8
00

R1
02

4

2-way 3-way 4-way 5-way 6-way

Fig. 13. Combinatorial coverage for Random tests (20 variables).

VI. CONCLUSIONS AND FUTURE WORK
This paper evaluates the ability of random testing to

provide coverage according to MC/DC and t-way testing
criteria. One hundred logical expressions of different sizes
were generated. We also generated 252 random test sets with
from 2 to 1024 test cases in a set. These sets were used to test a
software program with logical expressions and the levels of
coverage were evaluated using the structural coverage tools
CodeCover, Testwell CTC++, and CCM, which measures the
coverage of input value combinations in a test suite.

Our experiments show that for simple expressions, when
the number of random test cases increased, they quickly reach
a high level of coverage both for MC/DC and 2-way. The close
to 100% level of MC/DC coverage is achieved after
approximately 100 random tests in many cases, but full
coverage may require doubling test set size. Complex
expressions required a much larger test set size for MC/DC
coverage on the order of 90%, again doubling the number of
tests for full coverage. The paper provides detailed data for
different types of expressions and different testing tools.

An unexpected result of the study was that structural
coverage tools differ in their definition of partial MC/DC
coverage, resulting in significant variation in coverage
calculations. The primary standard for MC/DC coverage,

Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

RTCA DO-178B, requires full coverage, so partial coverage
numbers are generally not used. In cases where knowledge of
less than complete MC/DC coverage is of interest, a consistent
definition of partial coverage will need to be specified.

Random test sets of the same sizes as t-way sets provide the
90-97% level of combinatorial coverage. However, much more
random tests are required to reach 100% coverage. The paper
provides detailed data for different numbers of input variables,
different types of expressions, and t-way coverage for t=2…6.

The obtained results can help for integration random testing
with other approaches (in particular, MC/DC and
combinatorial testing) to increase of effectiveness of testing
software with complex logical structure.

ACKNOWLEDGMENT
This work was performed under the following financial

assistance award 70NANB15H217 from the U.S. Department
of Commerce, National Institute of Standards and Technology.

Disclaimer: Products may be identified in this document, but identification
does not imply recommendation or endorsement by NIST, nor that the products
identified are necessarily the best available for the purpose.

REFERENCES
[1] International Standard ISO/IEC/IEEE 29119-1:2013 “Software and

systems engineering — Software testing — Part 1: Concepts and
definitions,” 2013.

[2] M. Grindal, J. Offutt, S. Andler, “Combination Testing Strategies: a
Survey,” Software Testing, Verification and Reliability, Vol. 15, No. 3,
pp. 167-199, 2005.

[3] D. R. Kuhn, R. Kacker, and Y. Lei, Introduction to Combinatorial
Testing, Chapman and Hall/CRC, 2013, 341 pages.

[4] D. R. Kuhn, R. Kacker, Y. Lei, and J. Hunter, “Combinatorial software
testing, ” IEEE Computer, vol. 42, no. 8, August 2009.

[5] RTCA/DO-178B, “Software Considerations in Airborne Systems and
Equipment Certification,” RTCA, Washington D.C., USA, 1992.

[6] J. Chilenski and S. Miller, “Applicability of Modified
Condition/Decision Coverage to software testing,” Software
Engineering Journal, September 1994, pp. 193-200.

[7] RTCA/DO-178B “Software Considerations in Airborne Systems and
Equipment Certification,” Radio Technical Commission for
Aeronautics, 1992.

[8] RTCA/DO-178C “Software Considerations in Airborne Systems and
Equipment Certification,” Radio Technical Commission for
Aeronautics, 2012.

[9] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate, “Testing or
Formal Verification: DO-178C Alternatives and Industrial Experience,”
IEEE Software, May/June 2013, Volume 30, Issue 3, pp. 50-57.

[10] M. R. Girgis and M. R. Woodward, “An experimental comparison of the
error exposing ability of program testing criteria,” Proceedings of the
Workshop on Software Testing, pp. 64-73. IEEE Computer Society
Press, July 1986.

[11] V. Basili and R. Selby, “Comparing the Effectiveness of Software
Testing Strategies,” IEEE Trans. Softw. Eng. SE-13, (December 1987),
pp. 1278–1296.

[12] C.-A. Sun, Y. Zai, and H. Liu, “Evaluating and comparing fault-based
testing strategies for general boolean specifcations: A series of
experiments,” The Computer Journal, 2015, Volume 58, Issue 5, pp.
1199-1213.

[13] P.S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite
effectiveness: Empirical study with real bugs in large systems,”
Proceedings of the IEEE 22nd International Conference on Software

Analysis, Evolution and Reengineering (SANER), Montreal, Canada, 2-
6 March 2015, pp. 560-564.

[14] S. Vilkomir and D. Anderson, “Relationship between pair-wise and
MC/DC testing: Initial experimental results,” Proceedings of the IEEE
8th International Conference on Software Testing, Verification and
Validation Workshops (ICSTW 2015), 13-17 April 2015, Graz, Austria.

[15] P. Thevenod-Fosse, H. Waeselynck, and Y. Crouzet, “An experimental
study on software structural testing: deterministic versus random input
generation,” Proceedings of the 21st International Symposium on Fault-
Tolerant Computing (FTCS 91), IEEE Press, Jun. 1991, pp. 410-417.

[16] M. A. Vouk, K-C. Tai, and A. Paradkar, “Empirical studies of predicate-
based software testing,” Proceedings of the 5th International Symposium
on Software Reliability Engineering, 1994.

[17] T. Y. Chen, F. C. Kuo, H. Liu, and W. E. Wong, “Code coverage of
adaptive random testing,” IEEE Transactions on Reliability, 2013,
62(1), pp. 226-237.

[18] S. Vilkomir, O. Starov, and R. Bhambroo, “Evaluation of t-way
Approach for Testing Logical Expressions in Software,” Proceedings of
the IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW 2013), 18–20 March
2013, Luxembourg, pp. 249-256.

[19] W. Ballance, S. Vilkomir, and W. Jenkins, “Effectiveness of Pair-wise
Testing for Software with Boolean Inputs,” Proceedings of the Fifth
International Conference on Software Testing, Verification and
Validation (ICST 2012), April 17-21, 2012, Workshop on Combinatorial
Testing (CT-2012), Montreal, Canada, pp. 580-585.

[20] S. Liu and Y. Chen, “A relation-based method combining functional and
structural testing for test case generation,” Journal of Systems and
Software 81.2 (2008), pp. 234-248.

[21] C. Pfaller and M. Pister, “Combining Structural and Functional Test
Case Generation,” Proceedings of the Software Engineering Conference
(SE08) , Munich, February 2008., pp. 229-241.

[22] C. D. Nguyen, A. Marchetto, and P. Tonella, “Combining model-based
and combinatorial testing for effective test case generation,”
Proceedings of the 2012 International Symposium on Software Testing
and Analysis, pp. 100-110. ACM, 2012.

[23] E. P. Enoiu, K. Doganay, M. Bohlin, D. Sundmark, and P. Pettersson,
“MOS: an integrated model-based and search-based testing tool for
function block diagrams,” Proceedings of the 1st International
Workshop on Combining Modelling and Search-Based Software
Engineering, pp. 55-60. IEEE Press, 2013.

[24] R. Bartholomew, “An industry proof-of-concept demonstration of
automated combinatorial test,” Proceedings of the 8th International
Workshop on Automation of Software Test (AST’13), May 18-19, 2013,
San Francisco, CA, USA, pp. 118-124.

[25] “CodeCover,” http://codecover.org
[26] R. Schmidberger, “Well-Defined Coverage Metrics for the Glass Box

Test,” In Testing Software and Systems, pp. 113-128. Springer Berlin
Heidelberg, 2014.

[27] Testwell, “Testwell CTC++. Test Coverage Analyzer for C/C++,”
http://www.testwell.fi/ctcdesc.html

[28] Verifysoft Technology GmbH, “Testwell CTC++ Test Coverage
Analyser,” http://www.verifysoft.com/en_ctcpp.html

[29] National Institute of Standards and Technology (NIST), “Combinatorial
Coverage Measurement Tool, User Guide, January 30, 2011,”
http://csrc.nist.gov/groups/SNS/acts/documents/ComCoverage110130.p
df

[30] I. D. Mendoza, D. R. Kuhn, R. N. Kacker, and Y. Lei, “CCM: A Tool
for Measuring Combinatorial Coverage of System State Space,”
Proceedings of the ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2013), 10-11 Oct.
2013, Baltimore, Maryland, USA, p. 291.

[31] J. Chilenski, “An investigation of three forms of the modified condition
decision coverage (MCDC) criterion,” Tech. Report DOT/FAA/AR-
01/18, FAA, 2001.

[32] V. Durelli, et al., “What to expect of predicates: An empirical analysis
of predicates in real world programs,” Journal of Systems and Software
113, 2016, pp. 324-336.

http://codecover.org/
http://www.verifysoft.com/en_ctcpp.html
http://csrc.nist.gov/groups/SNS/acts/documents/ComCoverage110130.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/ComCoverage110130.pdf

Preprint: Software Quality, Reliability and Security Companion (QRS-C), 2017 IEEE International Conference on, pp. 61-68. IEEE, 2017

[33] Kalimetrix, “Logiscope TestChecker,”
http://www.kalimetrix.com/logiscope/testchecker

[34] Razorcat, “Automated testing of embedded software,”
http://www.razorcat.eu/tessy.html

http://www.kalimetrix.com/logiscope/testchecker

