
1364 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 3, JULY 2017

Automated Planning for Robotic Cleaning Using
Multiple Setups and Oscillatory Tool Motions

Ariyan M. Kabir, Krishnanand N. Kaipa, Jeremy Marvel, and Satyandra K. Gupta

Abstract— This paper presents planning algorithms for robotic
cleaning of stains on nonplanar surfaces. Access to different
portions of the stain may require frequent repositioning and
reorienting of the object. Some portions with prominent stain
may require multiple passes to remove the stain completely. Two
robotic arms have been used in the experiments. The object is
immobilized with one arm and the cleaning tool is manipulated
with the other. The algorithm generates a sequence of reorien-
tation and repositioning moves required to clean the part after
analyzing the stain. The plan is generated by accounting for the
kinematic constraints of the robot. Our algorithm uses a depth-
first branch-and-bound search to generate setup plans. Cleaning
trajectories are generated and optimal cleaning parameters are
selected by the algorithm. We have validated our approach
through numerical simulations and robotic cleaning experiments
with two KUKA robots.

Note to Practitioners—We encounter nonrepetitive cleaning
tasks everyday in both industrial and household environments.
Variations in stain pattern, geometry, and material of the object
make it difficult to manually program robots for such tasks.
In this paper, we present planning algorithms to automate
the cleaning task using robots. The practical impact of our
approach is evidenced by the actual robot results involving
realistic examples like cleaning of hard paint stains on curved
surfaces and rust on metal surfaces. Practitioners from industry
can use the methods presented in this paper to develop auto-
mated robotic systems for nonrepetitive tasks like cleaning and
polishing. Our approach caters to the primary requirements of
these applications like multiple setups, multiple passes within
each setup, and determination of optimal motion parameters like
velocity, force, and oscillation frequency of the cleaning tool.

Manuscript received May 12, 2016; revised October 25, 2016; accepted
December 3, 2016. Date of publication March 14, 2017; date of current
version June 29, 2017. This paper was recommended for publication by
Associate Editors Z. Yin and Prof. M. Wang upon evaluation of the reviewers’
comments. This work was supported in part by the National Science Founda-
tion under Grant 1200087 and Grant 1634431 and in part by the National
Institute of Standards and Technology Cooperative Agreement under
Grant 70NANB15H250. Any commercial product or company name in this
paper is given for informational purposes only. Their use does not imply
recommendation or endorsement by NIST or the University of Southern
California or Old Dominion University.

A. M. Kabir and S. K. Gupta are with the Center for Advanced Manufactur-
ing, University of Southern California, Los Angeles, CA 90007 USA (e-mail:
guptask@usc.edu).

K. N. Kaipa is with the Department of Mechanical and Aerospace
Engineering, Old Dominion University, Norfolk, VA 23529 USA.

J. Marvel is with the National Institute of Standards and Technology,
Gaithersburg, MD 20899 USA.

This paper has supplementary downloadable multimedia material avail-
able at http://ieeexplore.ieee.org provided by the authors. The Supplemen-
tary Materials contains two video files titled “setup_planner_1.mp4” and
“setup_planner_2.mp4.” The videos demonstrates the working of the methods
presented in the paper and physical test results of the setup planner with two
robotic manipulators. A plastic bowl and a 3D printed part have been used
as target surfaces to clean. Acrylic paint has been used as surrogate for stain.
The materials are 16.3 MB and 8.53 MB respectively.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2017.2665460

Index Terms— Cleaning by scrubbing, nonrepetitive tasks,
robotic cleaning, setup planning.

I. INTRODUCTION

MANY applications like manufacturing, maintenance,
service, construction, food processing, and health care

involve the common task of cleaning tools and parts. Different
cleaning modes may be used, depending on the nature of
the cleaning task. Cleaning fluid is utilized, in some cases,
to separate foreign particles on the surface by force or to
dissolve them. Kitchen utensils and clothing are cleaned using
this mode. There are many other cleaning tasks that require
mechanical scrubbing with an oscillatory moving cleaning
tool. Abrasive particles are usually embedded in the surface
of the cleaning tool. Removal of foreign particles involves
mechanical erosion in this mode. This paper deals with robotic
cleaning with abrasive actions.

Consider a remanufacturing application where the task is to
remove rust from a nonplanar surface. The task needs to be
handled differently based on factors like patterns of rust, prop-
erties of the metal surface, and geometry of the part. Therefore,
this is a representative example of nonrepetitive tasks. Typi-
cally, this task is performed by humans and is very tedious
in nature. If robots can perform this task automatically, then
human workers can allocate their time to other tasks where
their skills are more needed. A bimanual robotic setup can be
useful to reduce the use of fixtures for different parts. One
manipulator can be used to immobilize the part and the other
can perform the operation. However, it is challenging to auto-
mate this seemingly simple task due to the following reasons.

1) It may be difficult to clean the entire stain from one
posture. Often, the part must be moved and regrasped
to ensure access to the entire part surface.

2) Cleaning progress must be constantly monitored and the
plan modified, if needed, to ensure efficient cleaning.
This requires a sensor-based feedback loop.

3) Cleaning with mechanical action requires application of
force. Often, the parts being cleaned cannot withstand
arbitrarily large forces. This requires that the applied
force be monitored and controlled to ensure that the part
being cleaned is not physically damaged.

4) Cleaning time is considered as a nonvalue-added
time in manufacturing applications. Hence, it needs
to be minimized by carefully selecting cleaning
parameters.

5) Cleaning complex geometries require complex motions.
Past generation industrial robots were not equipped to

automatically perform nonrepetitive tasks like cleaning.

1545-5955 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KABIR et al.: AUTOMATED PLANNING FOR ROBOTIC CLEANING USING MULTIPLE SETUPS AND OSCILLATORY TOOL MOTIONS 1365

Fig. 1. Robotic setup built with two KUKA robots and Microsoft Kinect.
(a) Kinect. (b) Holding robot arm. (c) Cleaning robot arm.

Robotic cleaning has become feasible with recent technologi-
cal advances. Bimanual robotic setups can be used to immo-
bilize the object to be cleaned with one arm and manipulate
the cleaning tool with the other arm. This enables frequent
part reorientation without requiring part-specific fixtures, and
hence, offers flexibility while performing tasks dealing with a
wide variety of geometries. High-resolution torque/force sen-
sors, with support for impedance control, are being integrated
into some current robots. These features ensure safe robotic
cleaning without causing physical damage to the part.

In this paper, we describe planning algorithms to remove
stains from nonplanar objects. Some stain regions may require
multiple cleaning passes and the object may need to be repo-
sitioned and/or reoriented multiple times. The stain intensity
determines the number of required cleaning passes. We used
a cleaning tool with an abrasive surface. The experimental
setup involves two robot arms. The first arm immobilizes
the object. The second arm moves the cleaning tool. Fig. 1
shows the experimental setup used to implement the results of
the planning algorithm. The algorithm analyzes the stain and
determines the sequence of poses (positions and orientations)
needed to clean the part based on the kinematic constraints of
the robot arm. Each pose is referred to as a cleaning setup in
this paper. Our algorithm generates multipass trajectories for
the cleaning tool to follow. Cleaning performance is further
optimized through selection of optimal cleaning parameters by
our algorithm. The algorithm is capable of refining the plan
by observing the cleaning performance.

In our previous work [1], we presented a preliminary
approach and studied its feasibility to address the problem
of robotic cleaning. This paper builds on our previous work
with the following new contributions:

1) improved heuristics based on probabilistic estimation to
optimize computation time;

2) analysis of gradient descent approach to improve candi-
date samples;

3) analysis of different bounds on future cost and their
impact on convergence rate and optimality.

In this paper, we propose planning algorithms for robotic
cleaning by changing the object’s pose based on robot’s
reachability constraints. Our focus is on problems involving
hard stains that typically require multiple passes of mechanical
scrubbing over the same surface area and setup change for
complete coverage.

II. RELATED WORK

The research community is showing a growing interest
in robotic cleaning in recent years. Previous works have
approached the problem using perception [2], control [3]–[6],
coverage path planning [7], and learning [8]–[10]. Both mobile
robots [2] and robot manipulators [3]–[5], [7]–[10] have been
utilized in different modes of cleaning. Variation in stain
type, geometry of object, surface material, and environmental
constraints have led to different approaches. Mobile robots
have been used to vacuum dirt like clips, sticks, and paper-
balls lying on floors. Robot manipulators have been deployed
to clean particles/seeds, talc powder, dry erase marker ink,
powdered candy mixed with food color, etc., from flat and
curved surfaces. We are interested in cleaning hard stains on
curved surfaces that require mechanical scrubbing by robot
manipulators. Therefore, we confine our review of prior work
to this topic.

Coverage path planning to clean curved surfaces has been
addressed by Hess et al. [7] using a robot manipulator. They
considered different inverse kinematics solutions as graph
nodes and grouped the nodes in clusters. They formulated the
problem as a generalized traveling salesman problem where
the arm needs to visit at least one node in each cluster.
They achieved lower completion time and manipulation effort
compared to Euclidean coverage algorithms. However, their
work concentrated on area coverage and did not consider
evaluating cleaning performance.

Sato et al. [3] worked on cleaning dry erase marker
ink from a white board using a robot manipulator. They
developed a trajectory and force tracking controller. Planning
for high-level manipulation actions has been presented by
Martinez et al. [11] where they approached the problem of
cleaning dry erase marker on white board and particles/seeds
on a flat surface. They used a perception feedback loop to
replan actions based on change in dirt distribution. They also
presented a learning method to adapt the system with different
tool grasp, robot, and surfaces. Equilibrium point control has
been used by King et al. [4] to introduce wiping motions
with relatively low force (<3 N) by a robot for a bed bathing
application in hospital environments. Powdered candy mixed
with food color was used to create stains on a human body
in their experiments. The stain was detected by analyzing the
hue content with image processing. Imitation learning based on
dynamic Bayesian network was used by Eppner et al. [9] to
develop a two-layer framework that models a human through
vision and then uses force profiling to wipe a kitchen table.
Dynamic motion primitives was used by Nemec and Ude [10]
to wipe a table. In our earlier works [12]–[14], we used
semi-supervised learning approaches to learn optimal opera-
tion parameters for robotic cleaning.

1366 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 3, JULY 2017

Efforts on painting, grinding, and polishing are related to
robotic cleaning of curved surfaces. Grinding and polishing
tasks have considered automated tool path planning on curved
surfaces. Ng et al. [15] developed a framework to bridge
the knowledge transfer gap of the manual operator’s skills
to a robot program by capturing contact force and tool path
with a sensorizedž handheld belt grinder. Zhao et al. [16]
used a parallel plane slicing method to plan trajectories for
robotic blade grinding. Wang et al. [17] compared different
path patterns for robot-assisted grinding. There have been
studies on tool path planning for automotive body painting
tasks. Sheng et al. [18] developed a method for spray painting
complicated, multipatch, sheet-metal surfaces. They partition
the surface into feasible patches and generate tool paths
to optimize performance. Conner et al. [19] considered the
effects of surface curvature and deposition pattern to automate
tool trajectory generation. Force models for shaving and face
wiping have been presented by Hawkins et al. [20].

Position and force control methods have been developed
by Nagata et al. [5] for polishing molds with curved surface.
Liu et al. [21] used a supervised learning method to learn
human welder intelligence for polishing tasks.

III. PROBLEM FORMULATION

We have adapted the problem formulation that we intro-
duced in our earlier work [1]. We define the task for the robot
as cleaning stains on an arbitrary curved surface � ∈ R

3. Let
� ∈ R

6 = {x, y, z, α, β, γ } represent a general pose where
(x, y, z) and (α, β, γ) represent the position and orientation,
respectively, in 3-D. Let �(�) represent the target surface
oriented in an arbitrary pose �. We approximate the stain
on the surface as a set of small discrete stain patches P =
{pi : i = 1, 2, . . . , n}. Each patch pi is a small planar triangle
with an area ai ≤ am , where am is the surface area of the tip
of the cleaning tool. Fig. 2(a) demonstrates an example of a
surface after triangulation. The red region represents P .

We assume that the stain intensity is not uniform across the
surface and that a single pass may not be able to clean the
entire stain region completely. Let Ni represent the number of
cleaning passes required to remove the stain from patch pi .
The number of passes is determined by image processing
explained in Section VII. We restrict the robot’s motion such
that its tool axis aligns to the surface normal and the sweeping
motions are orthogonal to the surface normal. The robot may
fail to satisfy these conditions for some segments of P , for
some �(�). For each �(�), we can test how many patches can
be reached by the robot by solving its inverse kinematics. This
reachability problem can be solved by changing �(�) in steps
such that all the subsets of the target surface fall in the robot’s
reachability space at least once. Therefore, we formulate our
cleaning problem as a multisetup, multipass, cleaning task with
setup planning for the target surface and trajectory planning
for the cleaning robot.

We define a set of candidate setups S = {s j ; j =
1, 2, . . . ,m}, where s j = {pi

j : i = 1, 2, . . . , k} ⊆ P , k ≤ n
and the conditions on robot motion is satisfied ∀pi

j ∈ s j . Fig.
2(b) and (c) demonstrates two candidate setups to clean P .

Fig. 2. (a) Representation of an initial setup, i.e., the object’s coordinate frame
aligned with world coordinate frame. (wx , wy, wz) and (bx , by , bz) represent
the world coordinate frame and the bowl’s coordinate frame, respectively. The
red region (P) is the target region to clean. (b) and (c) Two sample candidate
setups. The setup configurations (b) and (c) are achieved by applying +90°
and −90° rotation about wz axis to the initial setup.

Each setup s j corresponds to a distinct pose �(� j). The
maximum number of passes to cover s j is given by Nmax

j =
max

|s j |
i=1 Ni

j , where Ni
j is the number of passes to clean pi

j . Let
t i

j be the time required for the i th cleaning pass for setup s j .

Let, t j be the time to clean setup s j , i.e., time to complete

Nmax
j cleaning passes for setup s j . Then, t j =∑Nmax

j
i=1 t i

j .

Let, ts
j be the setup time, defined as the time to change the

pose of the object from setup s j to setup s j+1. Let, ai
j be

the surface area of the patch pi
j in setup s j . We define the

cleaning rate for setup s j as R j = (
∑|s j |

i=1 ai
j)/(t j + ts

j).
We can generate different ordered setup sequences by

permuting si ∈ S. We define a valid setup plan S =
(s1, s2, . . . , sq), where q ≤ |S|, as an ordered sequence of
setups that cleans the entire region. The path planner generates
a trajectory τ j for each s j ∈ S. The trajectory τ j comprises
Nmax

j cleaning passes. The robot may need to reposition the
tool to cover the disjointed patches in a setup. Both the
cleaning motions and the repositioning motions are captured
by τ j . The sampling based method for generating S and the
algorithm to find setup sequence solutions are described in
Sections IV and V-A, respectively. Our method to generate
trajectories is described in Section VI. The method to select
optimal operation parameters (e.g., tool speed, applied force)
is described in Section VIII.

For each setup, s j , there is an execution time te(τ j) =
tc(τ j) + tr (τ j), where tc(τ j) = t j is the cleaning time when
the tool is in contact with P , while following τ j and tr (τ j) is
the repositioning time when the cleaning robot moves between
disjoint patches. We define the total cleaning time for a valid
setup plan S as

T(S) =
|S|∑

j=1

(te(τ j)+ ts
j). (1)

The problem is formally stated as follows: Find a setup plan
S
∗ = (s∗1 , s∗2 , . . . , s∗k), k ≤ |S|, where s∗1 , s∗2 , . . . , s∗k ∈ S, such

that P is completely clean and T(S∗) is minimized.

IV. GENERATING CANDIDATE SETUPS

A sampling based approach is used to generate the initial set
of candidate setups. For each candidate setup si , we determine

KABIR et al.: AUTOMATED PLANNING FOR ROBOTIC CLEANING USING MULTIPLE SETUPS AND OSCILLATORY TOOL MOTIONS 1367

the number of stain patches that the robot can reach in the
desired orientation. This is achieved by solving the inverse
kinematics of the manipulator for all the vertices of each patch
pi ∈ P . We consider a stain patch to be reachable when all
three vertices of that patch are reachable by the robot. We then
assign that patch to the candidate setup si under consideration.
While triangulating the surface we pose the constraint that
surface area of the patch needs to be smaller than the surface
area of the cleaning tool tip.

Our sampling starts with a coarse resolution over a wide
range of configuration space parameters. We find a narrower
feasible sampling range by eliminating setups that do not cover
any patch. We experimented with the following three sampling
approaches in the narrower sampling range of configuration
parameters: 1) fine resolution uniform sampling; (2) hierarchi-
cal uniform sampling with gradient descent; and (3) random
sampling with gradient descent. These sampling approaches
are described in Sections IV-A1–IV-A3, respectively. The
notion of nondominated setups has been used to describe these
approaches. We consider a setup s to be dominated if there
exists another setup s′ that contains all the patches covered by
s.

A. Sampling Approaches

1) Fine Resolution Uniform Sampling:
i Initialize an empty set ψ of setups.

ii Set a fine resolution for each axis of the configuration
space to perform uniform sampling over the narrower
sampling range of configuration parameters.

iii Generate setup samples using the resolution from Step
i i and add them to ψ .

iv Eliminate all dominated setups in ψ .
v Send nondominated setups as input to setup planner.

2) Hierarchical Uniform Sampling With
Gradient Descent:

i Initialize an empty set ψ of setups.
ii Set a coarse resolution for each axis of the configuration

space to perform uniform sampling over the narrower
sampling range of configuration parameters.

iii Generate samples of setups using above resolution.
iv Pick setups in the generated set which do not belong to
ψ and refine them by using gradient descent over the
configuration parameters to optimize the area covered
by each setup. Add the refined setups to ψ .

v Eliminate all dominated setups in ψ .
vi If the nondominated setups in ψ do not cover all pi ∈ P ,

then refine sampling resolution and go to Step (iii).
vii If the nondominated setups cover all the patches in P ,

then send them as input to the setup planner.
3) Random Sampling:

i Initialize an empty set ψ of setups.
ii Generate a random setup sample from the narrower

sampling range of configuration parameters.
iii Refine this setup by using gradient descent to optimize

the area covered by this setup.
iv If refined setup does not belong to ψ , then add it to ψ .
v Repeat steps ii–iv until setups in ψ cover all pi ∈ P .

TABLE I

GRADIENT DESCENT VARIANTS EXPLORED TO IMPROVE AREA COVERED
BY A SETUP. SCORING METHODS: TYPE I—CONSERVATIVE;
TYPE II—TWO ROUNDS (ROUND 1 IS CONSERVATIVE AND

ROUND 2 IS ABSOLUTE)

vi Eliminate all dominated configurations in ψ .
vii Send nondominated setups in ψ as input to the planner.

B. Scoring Scheme for Gradient Descent to
Improve Area Coverage

We use gradient descent in the configuration space to
optimize the area covered by a setup. Let P1 ∈ P be the
set of patches that were reachable by the robot for a starting
configuration. We define |P1| as the score for the starting
configuration. Suppose one step was taken by gradient descent
and it is at a new setup configuration. Let P2 ∈ P be the
set of patches that are reachable by the robot for this new
configuration. We use two score evaluation schemes:

Conservative Scoring: In this scheme, we enforce a con-
straint to ensure that the improved configuration is able to
cover all the patches that were present in the starting con-
figuration. Therefore, if P1 ⊆ P2, then the score of the new
configuration is |P2|. Else, it is |P1 ∩ P2|.

Absolute Scoring: We do not enforce any constraint. The
score for the new configuration is evaluated as |P2|.

We explore different gradient descent vairants by perform-
ing the search over the entire configuration space, over the
subspaces by batch covering the entire configuration space,
with conservative scoring scheme, and with both conservative
and absolute scoring schemes (refer to Table I).

V. SETUP PLANNING

The sampling based method described in Section IV leads
to a set of refined setups. The setup planner finds a setup plan
from this set of candidate setups S.

A. Setup Planner

Our algorithm uses a depth-first branch-and-bound
(DFBnB) search with computational time bound Tmax to
generate setup plans. DFBnB [22] is an efficient search
algorithm. We have adopted this algorithm to solve our setup
planning problem. Let si

j ∈ S represent a setup, where j is
the node index in the i th solution (not necessarily a sequence
of setups that completes cleaning the part). Therefore, the
i th solution is given by S

i = (si
1, si

2, . . . , si
k), k ≤ |S|.

The planner implementation consists of the main routine
FindSetupPlan(P,S) (Algorithm 1) that calls the routine
AddSetUp(Pr ,Su,Scurr) (Algorithm 2). Cleaning rate is
used as a branch-guiding heuristic. At the first instance of a

1368 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 3, JULY 2017

Algorithm 1: FindSetupPlan (P,S)
1: Initialize S

∗ = ∅
2: Initialize T

∗ = ∞
3: Call AddSetUp (P,S,∅)
4: Return S

∗

Algorithm 2: AddSetUp(Pr ,Su,Scurr)

1: If computation time exceeds Tmax then abort search.
2: If Pr = ∅ and T(Scurr) > T

∗ then Return
3: If Pr = ∅ and T(Scurr) ≤ T

∗, then
update S

∗ = Scurr, T
∗ = T(Scurr) and Return

4: If T(Scurr) + T
lb(Pr) ≥ T

∗, then Return
5: Otherwise,

If ∃p ∈ Pr associated with only one s ∈ Su , then
Find P(s) by patches that are present in s
Call AddSetUp (Pr−P(s), Su−s, Scurr

⋃
s)

Otherwise,
Sort Su by highest to lowest cleaning rate.
For every s in Su in decreasing order of
cleaning rate

Find P(s) by patches that are present in s
Call AddSetUp (Pr−P(s),Su−s,Scurr

⋃
s)

call to Algorithm 2, we compute the cleaning rate (defined
in Section III) for all the setups and select the setup s0

1 ∈ S,
which has the maximum cleaning rate. This results in the
remaining stain area Pr = P−{pi ∈ s0

1 } to be covered and
the set of un-used setups Su = S−s0

1 . Then, in the second
instance, we recompute the cleaning rate for all setups in Su ,
and select the setup s0

2 ∈ Su , which has the maximum
cleaning rate. This cycle repeats by making recursive calls to
Algorithm 2 to find other setups s0

j , one at a time, until all the
stain area is covered (Pr = ∅). Once the initial solution S

0 is
found, we set the best solution S

∗ = S
0 and the cleaning time

for the best solution T
∗ = T(S0), which is the sum of the

setup and execution times for all the setups in the solution
sequence. Then, we keep branching to find better solutions
until Tmax is exceeded.

We use the following branch-pruning heuristic for faster
convergence. Let Scurr represent the set of setups in the current
partial solution. We consider T(Scurr) as the cost of the current
partial solution. Next, a lower bound on future cost is defined
as the lower bound on the execution and setup time for the
remaining stain region Pr

T
lb(Pr) = min

j
(ts

j + te(τ j)) (2)

where si
j ∈ S−Scurr. If T(Scurr) + T

lb(Pr) ≥ T
∗, then we

prune that branch from the search tree since it is suboptimal.

B. Setup Planner Using Initial Estimate on Setup Size

In Section III, we defined setup time as the time taken
to change setups. Note that no cleaning happens during this
time. Therefore, a solution with a large number of setups will
lead to low cleaning rate. This implies that the initial solution

Algorithm 3: FindSetupPlan (P,S)
1: Initialize S

∗ = ∅
2: Initialize T

∗ = ∞
3: IESS ← InitialEstimateOfSetupSize(P,S)
4: Call AddSetUp (P,S,∅)
5: Return S

∗

Algorithm 4: AddSetUp(Pr ,Su,Scurr)

1: If computation time exceeds Tmax then abort search.
2: If |Scurr| > IESS then Return
3: If Pr = ∅ and T(Scurr) > T

∗ then Return
4: If Pr = ∅ and T(Scurr) ≤ T

∗, then
update S

∗ = Scurr, T
∗ = T(Scurr) and Return

5: If T(Scurr) + T
b(Pr) + Tdecay ≥ T

∗, then Return
6: Otherwise, If ∃p ∈ Pr associated with only one

s ∈ Su , then
Find P(s) by patches that are present in s
Call AddSetUp (Pr−P(s), Su−s, Scurr

⋃
s)

Otherwise,
Sort Su by highest to lowest cleaning rate.
For every s in Su in decreasing order of
cleaning rate

Find P(s) by patches that are present in s
Call AddSetUp (Pr−P(s),Su−s,Scurr

⋃
s)

produced by the setup planner may be suboptimal. The number
of setups in the optimal solution may be much lower than that
in the initial solution. Since the algorithm considers the total
time of this suboptimal solution as an initial bound and keep
updating when a better solution is found, it will take a long
time to converge. However, the convergence will be faster if
we could use a better initial bound. If we can estimate the
setup size in the optimal solution (i.e., the number of setups
in the optimal solution or the size of the minimum set cover)1

before running the AddSetUp algorithm, then we could use it
as a branch-pruning heuristic to converge faster towards the
optimal solution.

For this purpose, we modified Algorithms 1 and 2
as Algorithms 3 and 4, respectively. Algorithm 3 calls
InitialEstimateOfSetupSize(P,S) (Algorithm 5) in step 3,
which gives us an initial estimate of the setup size (IESS)
of the optimal solution. step 2 of Algorithm 4 prunes the
branches in the search tree when the solution size exceeds the
initial estimate (IESS). Therefore, it makes the search converge
faster towards the solution compared to Algorithm 2.

Algorithms 2 and 4 are depth-first branch-and-bound search
algorithms. They are constructed in a recursive manner. Their
computational complexity is exponential in time with order
of |S|, where S is the set of candidate setups. The expo-
nent is the number of nodes in the first solution branch.
In Algorithm 5, Nrepeat is the number of times the random
sampling process is repeated. Algorithm 5 is constructed as
two nested loops. The outer loop runs Nrepeat times. The inner
loop picks one setup from the set of candidate setups (S) in

1Subcollection of the setups which will cover all stain patches.

KABIR et al.: AUTOMATED PLANNING FOR ROBOTIC CLEANING USING MULTIPLE SETUPS AND OSCILLATORY TOOL MOTIONS 1369

Algorithm 5: InitialEstimateOfSetupSize(P,S)
1: Initialize ψ = ∅
2: Initialize N = []
3: For i in range(Nrepeat)
4: Initialize P = P
5: While(|P| > 0)
6: Randomly pick s ∈ S − ψ
7: ψ ← ψ ∪ s
8: Find P(s) by patches that are present in s
9: P← P− P(s)

10: N.append(|ψ|)
11: Return min(N)

each iteration until |P| is empty. Therefore the inner loop runs
|S| times or lower. However, as explained in Section IX-B,
Nrepeat needs to be significantly larger than |S|. Therefore,
the computational complexity of Algorithm 5 is linear in time
with Nrepeat.

1) Initial Estimate on Setup Size: Algorithm 5 generates the
initial estimate on number of setups by finding the set cover
through random sampling. It repeats this process for Nrepeat
times. The probability of finding the minimum set cover at
least once in Nrepeat trials can be be analytically derived as
follows.

Let Sc = {S i
c ⊆ S} represent the set of all set-covers. The

minimum set-cover S∗c ∈ Sc is given by

S∗c = {s∗1 , . . . , s∗q ∈ S |
q⋃

i=1

P(s∗i) = P} (3)

where

q = arg min |Si |, Si ∈ Sc. (4)

Note that if |S∗c | = |S|, then the size of minimum set-cover
can be found using Algorithm 5 with probability one.

Next, assume that the size of the minimum set-cover q =
|S∗c | < |S| and that S∗c is unique. The probability of finding
this unique set cover is given by the following theorem.

Theorem: If there is a unique minimum set cover S∗c ⊂ S
such that q = |S∗c | < m = |S|, then the probability of finding
S∗c using Algorithm 5 is given by

1−
(

1− q! × (m − q)!
m!

)Nrepeat

. (5)

Proof: Algorithm 5 (steps 5−9) finds a set cover by ran-
domly sampling one setup at a time from S.
Since q < m, the probability of finding the minimum set-cover
in one trial is given by

p =
(q

m

)(
q − 1

m − 1

)

. . .

(
q − (q − 1)

m − (q − 1)

)

= q! × (m − q)!
m! . (6)

Hence, the probability of not finding the minimum set cover
in one trial is (1 − p). This implies that the probability of
not finding the minimum set cover by repeating the random
sampling process for Nrepeat times is (1− p)Nrepeat .

Therefore, the probability of finding minimum set cover at-
least once in Nrepeat trials is given by

1− (1− p)Nrepeat = 1−
(

1− q! × (m − q)!
m!

)Nrepeat

.

The above theorem considered the case when the minimum
set-cover is unique. However, there could be multiple mini-
mum set-covers of the same size. In these cases, the probability
will be much higher, and (5) gives us a lower bound on the
probability of finding a minimum set cover using Algorithm 5.
Note that, we cannot predict q beforehand. We can numerically
evaluate the probability given by (5) for q = 1, 2, . . . ,m − 1
with different Nrepeat. This can guide us to select the best
Nrepeat for different m. In Section IX-B, we discuss how to
choose Nrepeat such that Algorithm 5 can guarantee the size
of optimal solution with high probability.

The heuristic based on IESS does not prune branches with
optimal solution if the setup size of the true optimal solution
size is lower than IESS. This is because it only prunes branches
with solution size higher than IESS. Suppose the size of the
optimal solution is IESS. There might be multiple solutions of
the same size but with different cleaning rates. Since branches
with solution size ≤ IESS are not pruned, the search will still
yield a solution with optimal cleaning rate.

The effectiveness of the branch-pruning heuristic in step 4
of Algorithm 2 depends on the setup time. It may generate a
solution with a large number of setups if the setup time is too
low. The initial estimate on the setup bound heuristic makes
Algorithm 4 robust against variations in setup time. It will
guarantee a minimum setup size with a good probability even
if it fails to guarantee a solution with true optimal cleaning
rate.

2) Different Bounds on Future Cost: Step 4 of Algorithm 2
and step 5 of Algorithm 4 are branch-pruning heuristics that
prune branches based on future cost of covering remaining
patches. In Section V-A, the lower bound on future cost was
given by (2). If we can guarantee with high enough probability
that Algorithm 5 can estimate the solution size of the minimum
set cover, then we can modify (2) as follows:

T
b(Pr) = max

i

(
ts
i + te(τi)

)
where si /∈ Scurr. (7)

This will enable the search to converge faster. However, this
will guarantee an optimal solution with a probability ≤ 1.0.

The algorithm may find the least setup-size solution very
fast (might not be optimal in cleaning rate). However, it may
still take a long time to prune all the remaining branches when
the number of nondominated setups or setup time is high. In
step 5 of Algorithm 4, the term Tdecay on the left side of
the inequality, can be an exponential function of the number
of nodes expanded in the search tree. This will accelerate
convergence (similar to simulated annealing Algorithm) for
practical purposes, when the true optimal solution might not
be absolutely desired. In our experiments, we set Tdecay = 0
and consider the setup time to be fixed for all setups.

VI. TRAJECTORY PLANNING

A cleaning trajectory is generated for each pass of each
setup by creating a spline through the connected triangles

1370 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 3, JULY 2017

in the setup. Therefore, the cleaning trajectory consists of
multiple splines for a single setup. A setup s∗j ∈ S

∗ may
require Nmax

j passes to complete cleaning. Correspondingly,
there are a total Nmax

j number of trajectories generated for the

setup s∗j . For example, if s j = {p j
1, p j

2 , p j
3} and the number of

passes required for p j
1 , p j

2 and p j
3 are 1, 2, and 3, respectively,

then the first trajectory will pass through all the patches
p j

1 , p j
2 , and p j

3 . The second trajectory will pass through p j
2

and p j
3 , and the third trajectory will cover p j

3 alone. This
strategy utilizes the advantage of continuous motion and saves
cleaning time. We find most stains to be locally continuous in
reality. Therefore, all the stain patches in a locally continuous
stain region may require the same number of cleaning passes.
It will take more time if the robot stops at each stain patch
to complete all the required cleaning passes for it and then
moves to the next patch.

The target surface is intersected with equally spaced par-
allel planes to generate the continuous trajectory [23], [24].
We sample the curves resulting from the intersections to get
waypoints. From the waypoints, we create spline curves as
nominal trajectories to be followed by the cleaning tool.

An example of a cleaning trajectory is illustrated
in Fig. 3(a). If the robot fails to travel through all the desired
points on a single spline, we segment the trajectory into
multiple, small, splines. The robot arm then repositions itself
suitably at the starting point of each small spline such that it
can follow the entire trajectory. The arm is also repositioned
to avoid traveling through stain-free regions that may lie
between remaining stain regions. Repositioning is equivalent
to jumps as the arm comes out of contact with P during these
moves, hence incurring repositioning time. The repositioning
trajectory is generated as a spline that connects the current
pose of the tool, an intermediate pose where tool is not in
contact with P , and the starting pose of the tool for the next
cleaning spline.

We overlay a force oscillation on top of the nominal trajec-
tory to expedite cleaning. This is described in Section VIII.
Fig. 3(b) illustrates an example of a trajectory with overlaid
force oscillation. In our implementation, we used the spline
motion primitive of the KUKA Robotics Application Program-
ming Interface. It creates smooth spline curves for the cleaning
tool by taking a set of reachable waypoints as input. We denote
the trajectory for the setup s j by τ j = {τ cl

j , τ
repo
j }, where τ repo

j

is the repositioning trajectory and τ cl
j is the cleaning trajectory.

VII. PERCEPTION

We need object and stain detection methods to automate
the robotic cleaning process. We used the iterative clos-
est point (ICP) algorithm [25] to match the computer-aided
design (CAD) model of the object to its point cloud captured
by an RGB-D camera. We recognize the stain on the object
by using image processing. The required number of cleaning
passes for each triangulated stain patch is estimated at the
beginning. The cleaning performance is evaluated after each
cleaning pass based on how much stain is removed. After
completing all the cleaning passes, we evaluate the cleaning
rate.

Fig. 3. (a) Example of a trajectory generated by parallel plane slicing for
a setup. (b) Overlay pattern generated by an example set of parameters.
The values for the parameters used in this example are fx = 6 Hz, κx ,
κy =5000 N/m, Ax , Ay = 30 N, v = 0.3, and fn = 10 N.

Fig. 4. Clockwise from top-left: before cleaning (original), after cleaning
(original), after cleaning (binary), and before cleaning (binary).

K-means clustering was used to classify the stain and
background color of the object from the red-green-blue (RGB)
image. This vector quantization method considers the color of
each pixel as a vector in 3-D space of RGB colors. We set the
clustering algorithm to classify the pixels in two colors (binary
representation). Two examples of stain detection are illustrated
in Fig. 4. White and black colors represent the cleaned area
and remaining stains, respectively.

Let N−p and N+p be the number of black pixels in the binary
image of the target surface before and after a cleaning pass,
respectively. Let Ih and Iw be the height and width of the
target region in pixels. We define cleaning performance for a
single pass as Cp = (N−p −N+p)/(Ih × Iw).

Our setup planner needs to know the number of cleaning
passes required to clean each triangulated stain patch. With
the K-means algorithm, we can classify the pixel colors of the
stain image into Nc number of color clusters. If we have a rich
database of stain images, then we can use supervised learning
methods to determine Nc . In our current implementation,

KABIR et al.: AUTOMATED PLANNING FOR ROBOTIC CLEANING USING MULTIPLE SETUPS AND OSCILLATORY TOOL MOTIONS 1371

Fig. 5. Pixelwise vector quantization of stain image.

Nc is user defined. The norm of the RGB color value of the
clusters is used to determine the number of cleaning passes
required for that particular color. An example for Nc = 4 is
illustrated in Fig. 5. The RGB color value with the largest
norm represents zero cleaning pass and the color with the
lowest norm represents three cleaning passes. This convention
will flip if the stain color is relatively light with respect to
the background color. Suitable multiplication factors may also
be applicable to the number of cleaning passes determined by
this approach.

VIII. OPERATION PARAMETER SELECTION

Mechanical scrubbing is necessary in many practical appli-
cations to remove hard stains from a surface. The scrubbing
action can be characterized as an oscillation on the cleaning
tool. The nominal tool trajectory was defined as splines in
our method. In our preliminary experiments, we observed
that oscillations along and normal to the direction of tool
frame gives better cleaning compared to oscillation in only
one direction. Therefore, the Lissajous pattern was selected
for overlaid force oscillation on top of the nominal trajectory
to expedite cleaning. The force oscillation was overlaid on the
XY -plane of the tool frame, whereas the cleaning force was
applied to the part surface along the z-axis of the tool frame.
The frequency (fx) and amplitude (Ax) of the force oscillation
were controlled along the x-axis of the tool frame. Along the
y-axis of the tool frame, the frequency and amplitude were
fy = 0.4 × fx and Ay = Ax . The phase offset between the
x- and y-axes was 1/2× π .

In our physical experiments, we explored the effect of the
following robot motion parameters on the cleaning perfor-
mance: 1) robot tool speed v; 2) force fn applied by the
tool in the orthogonal direction to the surface; (3) stiffnesses
κx and κy in the x- and y-directions of the tool reference
frame; (4) frequency fx (or fy) of the forced oscillation in the
x- (or y)-direction with respect to the tool reference frame;
and (5) amplitude of overlaid force Ax (or Ay) for Lissajous
force oscillation mode.

It is difficult to represent cleaning performance as a
closed-form function of these parameters. We adapted the
Gaussian process regression (GPR)-based semi-supervised
learning method developed in our previous work [12] to
estimate the optimal values for these parameters to achieve
the desired performance.

We started by defining the task performance target.
We wanted the cleaning performance to meet or exceed a

certain given threshold (Cth
p). Our objective function was a

known function designed to maximize tool speed and mini-
mize applied force. However, the model of cleaning perfor-
mance is not known, therefore we considered the cleaning
performance to be a black-box inequality constraint. We then
defined the operation parameter limits. The minimum and
maximum values of the operation parameters were selected
based on the safety considerations and the robot capabili-
ties. We uniformly sampled the parameter space at a coarse
resolution to conduct initial exploratory experiments. These
experimental data were used to fit a surrogate (Gaussian
Process) model for the cleaning performance. Our parameter
selection algorithm identifies candidate points from which the
next point for experiment is to be selected. The algorithm eval-
uates the objective function at these candidate points. It also
estimates the probability of the points to meet the cleaning
performance constraint using GPR. The algorithm identifies
the points that meet the probability threshold (Pth) for meet-
ing cleaning performance constraint. From these points, the
algorithm returns the point, which minimizes the objective
function to conduct a new physical experiment. We call this
an exploitation experiment. The surrogate model is updated
at each iteration with new experimental data. The iterative
algorithm repeats exploitation experiments until it converges
to a solution.

IX. RESULTS

A. Synthetic Test Cases

We conducted experiments in simulation with a Puma
560 robot to evaluate our setup planner. We considered four
synthetic test objects, as illustrated in Fig. 6. They are rep-
resented as triangulated meshes. The area of each triangular
face is less than 1.5 cm2. The red regions represent the stain
and consist of about 4000 to 5000 stain patches on each
object. Stain intensity was user defined such that not more
than three cleaning passes would be required. In our exper-
iments we restricted ourselves to a 3-D configuration space
(x , y, and α, where α is the rotation about z) for the objects’
pose (i.e., we did not consider roll, pitch, and translation about
z-axis). The narrowed down sampling region in this space
was [0, 1 m] × [0, 1 m] × [0, 2π].

1) Baseline Results: We conducted fine resolution sampling
on the configuration space, removed dominated setups, and
ran the setup planner on the nondominated setups to find
the number of lowest possible setups for each synthetic test
object. We did not use gradient descent in these baseline
experiments. We found that the largest sampling resolution
corresponding to the solution with minimum number of setups
was 50 mm × 50 mm × 10° for all the test cases. This
leads to 16 317 setup configurations to start with. Table II
summarizes the baseline results. We have a reachability test
function that solves the inverse kinematics of the robot for each
stain patch for a given setup. Each instance of this function
takes a significant amount of computational time. Let nrfc be
the number of calls made to the reachability test function. For
example, let us assume there are 5000 stain patches on a target
surface. For each pose of the object, we need to test if the robot
can reach all the three vertices of each of the stain patches.

1372 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 3, JULY 2017

Fig. 6. Four curved surfaces used as synthetic test objects. (a) Sine function (1600 mm × 1600 mm × 500 mm). (b) Schwefel function (600 mm × 600 mm
× 350 mm). (c) Concave bowl (1200 mm × 1200 mm × 530 mm). (d) Hyperboloid of one sheet (1200 mm × 1200 mm × 412 mm).

TABLE II

BASELINE RESULTS FOR THE FOUR TEST CASES IN SIMULATION

For each pose of the object, this will involve finding the inverse
kinematics solution of the robot for 15 000 times. If there
are 12 candidate setups, then we will need to solve inverse
kinematics for 180 000 times. Therefore, we use the number
of calls to the reachability test function (nrfc) as a performance
metric of the algorithms. Lower nrfc with optimal setup plan
indicates better performance of the algorithm. For all the cases
in Table II, nrfc = 16,317.

2) Comparison Between Uniform and Random Sampling
Approaches With and Without Gradient Descent: As men-
tioned in Sections IV-A2 and IV-A3, we experimented
with hierarchical uniform sampling and random sampling
approaches. Different gradient descent variants (Section IV)
were added on top of these sampling schemes and their per-
formance was evaluated. Different sampling resolutions were
used at different hierarchy levels for the hierarchical sampling
approach. Sampling resolution was scaled by half along one
axis at a time at the different hierarchies. Table III summarizes
the results of hierarchical uniform sampling. Optimal setup
solution was found for all four cases by refining the set of
candidate setups with the C A_XY variant of gradient descent
(refer to Table I).

We evaluated the random sampling approach by repeating
the experiment 100 times for each test case with each type of
gradient descent. Table IV shows the likelihood of finding the
optimal solution for the synthetic objects. The C A_XY variant
worked reasonably well for all four test cases. The number of
function calls for the Sine-object, Schwefel-object, Concave
bowl, and Hyperboloid-object is illustrated in Fig. 7. We can
see that sampling without gradient descent, and sampling
with C_XY and C A_XY gradient descent have relatively low
variation in nrfc.

From the experiments on synthetic cases, we found that hier-
archical uniform sampling with the C A_XY gradient descent
variant guarantees optimal solution. The random sampling
based approach has significant reduction in nrfc. However, it
guarantees an optimal solution with a probability less than 0.5.

TABLE III

RESULTS OF HIERARCHICAL UNIFORM SAMPLING FOR

FOUR SYNTHETIC OBJECTS

TABLE IV

LIKELIHOOD OF FINDING OPTIMAL SOLUTION BY RANDOM SAMPLING

Fig. 8 represents the landscape of area coverage by absolute
scoring on a uniformly sampled grid on the x − y plane
for a fixed α. For any (x, y) location of the object, the
z − axis corresponds to the number of triangles reachable
by the robot. The sampling resolution was 50 mm in both the
x- and y-directions. The black-star represents the randomly
selected initial seed (x, y configuration) and number of tri-
angles covered by this configuration. The green-star and the
red-star represent points indicating the number of triangles
covered by the configurations, after running a gradient descent
using conservative and absolute scoring schemes, respec-
tively. We can see that both scoring schemes give significant

KABIR et al.: AUTOMATED PLANNING FOR ROBOTIC CLEANING USING MULTIPLE SETUPS AND OSCILLATORY TOOL MOTIONS 1373

Fig. 7. Variation in nrfc for different kinds of gradient descent in the random
sampling-based approach.

improvement in area coverage for gradient descent on the x−y
plane keeping α fixed.

3) Performance of C A_XY Type Gradient Descent:
Intuitively, we can understand that changing orientation can
make abrupt change in the number of reachable stain patches.
Whereas, changing position makes gradual change in the num-
ber of reachable stain patches. This phenomenon is reflected
in the landscapes in Fig. 8, which explains why C A_XY type
gradient descent performed well for both hierarchical uniform
sampling and random sampling approaches.

4) Comparison of Heuristics for Setup Planner: We used
a branch-guiding heuristic and a branch-pruning heuristic in
our depth-first-branch-and-bound-search. The branch-guiding
heuristic is based on cleaning rate. In step 5 of Algorithm 2
and step 6 of Algorithm 4, the candidate setups are sorted
based on cleaning rate. The setup with relatively high cleaning
rate is chosen as a potential optimal solution branch. The
branch-pruning heuristic is based on bound on future cost
(future cleaning time). Step 4 in Algorithm 2 and step 5
in Algorithm 4 prune branches based on the estimated bound
on future cost.

We experimented by keeping either of these heuristics
ON or OFF to see their impact on convergence rate of the
search. Table V summarizes the results for three synthetic
objects. In these experiments, there were 36 candidate setups.
They were uniformly sampled without refinement using gra-
dient descent. There were 7, 12, and 13 nondominated setups
for Hyperboloid, Sine, and Concave bowl objects, respectively.
The number of setups in the optimal solution were 5, 5, and 7
for Hyperboloid, Sine, and Concave bowl objects, respectively
(established using the method described in Section IX-A1).

Fig. 8. Eight examples of gradient descent along x & y keeping α fixed
(C A_XY type gradient descent) for the convex bowl used in physical test.
In these figures, the x- and y-axes represent the (x,y) configuration of the
part. The z-axis represents number of reachable stain patches on the part
by the robot, at the corresponding (x, y) location of the part. Therefore, the
mesh is representing the landscape of the number of reachable stain patches
for different (x, y) configuration of the part. The number of stain patches
reachable by the robot at the initial (x, y) location of part is represented with
black-star. The green-star and red-star represent the number of stain patches
reachable by the robot at the new (x, y) location after applying gradient
descent using conservative and absolute scoring, respectively.

TABLE V

COMPARISON OF HEURISTICS FOR SETUP PLANNER

The branch pruning heuristic leads to faster computation time
by terminating infeasible branches in the search tree. The
impact of the branch pruning heuristic can be seen in Table V.
It significantly reduced the number of node expansions in the
search tree. On the other hand, the branch guiding heuristic is
crafted to help the search algorithm find setups with higher
cleaning rates first. This helps to find a feasible branch
faster. Keeping both the heuristics active leads to quickest
convergence in search.

1374 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 3, JULY 2017

TABLE VI

COMPARISON OF ALGORITHMS 2 AND 4 WITH TWO DIFFERENT BOUNDS ON FUTURE COST

B. Comparison of Algorithm 2 and Algorithm 4 With Two
Different Bounds on Future Cost

Table VI summarizes the performances of Algorithms 2
and 4 under different setup times with two different bounds
on future costs. In these experiments, candidate setups were
generated using uniform sampling without gradient descent.
The computation was performed on a single core of a machine
with an Intel Xeon E3-1241 3.50 GHz processor and 8GB
RAM. We see that larger setup time leads to higher node
expansions, hence slower convergence. This is because when
setup time is much greater than the execution time, then
the future cost based branch-pruning heuristic becomes less
effective. As described in Section V-B1, we also see that the
performance of Algorithm 2 varies with setup time. We see
that it is more likely to get suboptimal solutions with lower
setup time. Also, setting T

b(Pr) using (7) leads to faster
convergence over using (2). This can guarantee optimality with
probability ≤ 1.0 for proper choice of Nrepeat . We can see
that the combination of Algorithm 4 and (7) can lead us to
an optimal solution with a good probability at a much faster
rate.

Fig. 9 guides us in selecting Nrepeat such that Algorithm 5
guarantees optimality with probability ≥ 0.90. Since we do
not know the size of minimum set cover q beforehand, we
need to compute the probability for different q for different
Nrepeat . If the cardinality of the set of candidate setups
m = |S|, then we need to numerically test the probability
for q = 1, 2, . . . ,m − 1 for different values of Nrepeat.

Suppose we want Algorithm 5 to give us a correct estimate
with probability 0.90. Then, for each m and q , we can evaluate
the probability using (5) by gradually increasing Nrepeat and
stopping when probability ≥0.90 is reached. We should pick
the highest Nrepeat that we found among different q for a fixed
m. From Fig. 9(a)–(d), we can see that Nrepeat vs q forms a
bell curve and Nrepeat is highest for q close to m/2. From
Fig. 9(e)–(h), we can see for what values of Nrepeat
the probability converges to 1.0. The fastest rising curves
in Fig. 9(e)–(h) are for q = 1 and m − 1, and the slowest

Fig. 9. (a)–(d) (Y1) vs q, where Y1 = Nrepeat to find minimum set cover size
with probability 0.90. (e)–(h) (Y _2) versus Nrepeat , where Y2 = probability of
finding minimum set cover size. m = |S| =cardinality of the set of candidate
setups, for q = possible minimum set cover size = 1, 2, . . . ,m−1. In (e)–(h),
each curve represents different q.

rising curves are for q = m/2. Therefore, for a given m we can
evaluate (5) for q = �m/2 by gradually increasing Nrepeat and
stopping when our desired probability threshold is reached.

KABIR et al.: AUTOMATED PLANNING FOR ROBOTIC CLEANING USING MULTIPLE SETUPS AND OSCILLATORY TOOL MOTIONS 1375

Fig. 10. Bowl surface (a) before cleaning and (b) after cleaning. Images
taken from two different angles.

Fig. 11. Snapshots from a video showing execution of cleaning on the plastic
bowl according to the setup plan comprising five setups. The part’s surface
is mostly convex.

C. Physical Testing Results

We conducted robotic cleaning experiments with two
KUKA iiwa 7 manipulators. One robot immobilized or held
the part and the other robot manipulated a cleaning tool.
We used a plastic bowl and a 3-D printed model of ship hull as
curved surfaces. The bowl had convex surface. The ship hull
model had convex, concave, and flat regions on the surface.
A human operator performed the setup changes manually for
the bowl. The ship hull model was mounted on one robot
arm to perform setup change automatically. We applied acrylic
paint and mud on them as a surrogate for stains as shown in
Figs. 10 and 12, respectively. We applied different layers of
stain on different regions to obtain nonuniform stain intensity.
The bowl and hull surfaces were represented as a mesh of
15,644 and 22,764 triangles. The stain region consisted of
1000 and 5709 triangles. Each triangle had a surface area
of less than 10 mm2. The dimensions of the bowl were
21.5 mm × 21.5 mm × 9.5mm. The dimensions of the hull
model were 20.1 mm×18.0 mm×14.0mm. For the bowl, we

TABLE VII

RESULTS FROM PHYSICAL EXPERIMENTS

Fig. 12. 3-D printed ship hull model surface: (a) before cleaning and
(b) after cleaning.

Fig. 13. Snapshots from a video showing execution of cleaning on the 3-D
printed model of ship hull. This part has convex, concave, and flat regions on
the surface. The setup planner generated a two-setup solution. (a) Ongoing
cleaning on setup 1. (b) Setup 1 after cleaning by scrubbing. (c) Setup 2
before cleaning. (d) Setup 2 after cleaning by scrubbing. (e) Robot wiping
off the dust from the surface. (f) Cleaned surface.

used the following values for the robot motion parameters:
1) fx = 7 Hz; 2) κx , κy = 5000 N/m; 3) Ax , Ay = 30 N;
4) v = 0.3 (where maximum joint velocity vmax = 1); and
5) fn = 10 N. For the hull, we used the following values
for the robot motion parameters: 1) fx = 6 Hz; 2) κx , κy =
5000 N/m; 3) Ax , Ay = 35 N; 4) v = 0.1 (where maximum
joint velocity vmax =1); and 5) fn = 20 N. These parameters
were found to be optimal by using the method described in
Section VIII. In the learning method, we used Cth

p = 0.60 and
Pth = 0.10 for the bowl. For the ship hull model, we used
Cth

p = 0.90 and Pth = 0.30. For the ship hull, we considered a
two pass cleaning, the first pass for dry cleaning by scrubbing;
the second pass with a wet sponge to remove the dust particles.

The candidate setups were generated by uniformly sampling
the 3-D configuration space (x, y, α, where α is the angle

1376 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 3, JULY 2017

Fig. 14. Robotic cleaning of a rusty surface. (a) Before cleaning. (b) Ongoing
cleaning pass. (c) After seven cleaning passes.

about z axis). We used C A_XY type gradient descent on top
of hierarchical uniform sampling as they performed well in
the synthetic tests. We used our setup planner described in
Algorithm 2 to generate a solution. Table VII summarizes
computational data of the setup planner from the physical
experiments. For the bowl, it took three and two cleaning
passes for setup 1 and all other setups, respectively. For the
hull, it took a single cleaning pass for all the setups.

Figs. 10 and 12 illustrate the before-and-after cleaning
states of the bowl and hull, respectively. Figs. 11 and 13
illustrate snapshots from a video of execution of the cleaning
experiments. We also tested our system on cleaning rust on a
metal block. The target region to be cleaned was user defined
in this experiment. Fig. 14 illustrates the cleaning performance
on a setup. The metal piece started to shine after seven
cleaning passes. Our approaches for stain detection, cleaning
performance evaluation, and estimation of the required number
of cleaning passes are described in Section VII. The operation
parameter selection method, described in Section VIII, ensures
the selection of the right set of operation parameters to
achieve the desired cleaning performance for each cleaning
pass. In this paper, we referred to the required number of
cleaning passes as Nc . In our current implementation Nc is
user defined. If the estimation of Nc is correct, then there
will be no residue stain. If the estimation of Nc is lower
than what is needed, then there will be stain residue. The
perception system tells the robots to stop cleaning when there
is no more stain residue, even if Nc was over-estimated
initially. As described in Section VII, a supervised learning
method can be applied to estimate Nc accurately from the
experimental data. However, in our current implementation
we evaluate the cleaning performance on the entire part once
the robot completes cleaning the part. If there is an error in
estimating Nc , then we correct for it and run our setup planner
again for the stain residues and iterate the cleaning process
until there is no more stain left.

X. DISCUSSION

We have conducted physical experiments on objects with
constant curvatures. Therefore the operation parameter selec-
tion method produced results for fixed curvature. The right
set of parameters may vary with curvature for the same
surface and stain profile. Our parameter optimization method is
general enough to add an arbitrary number of input parameters.
Curvature of the surface can be added as an input parameter in
the algorithm and then it will be able to determine the optimal
set of parameters for different curvatures on the same surface.

In our experiments, we have considered a fixed pose of the
robot with respect to the global frame of reference. The pose

of the object is different with respect to the global frame for
each setup. Therefore, the pose of the object is different with
respect to the robot for each setup. The setup change time is
the time taken to change the object’s pose from one setup to
another. Our setup planner is general enough to be used for
objects too large compared to the dimensions of the robot.
In that case the object can be stationary with respect to the
global frame of reference. The setups will then correspond to
different poses of the robot’s base with respect to the global
frame. The setup time will be the time to change pose of the
robot’s base with respect to the fixed object frame or global
frame.

XI. CONCLUSION

We presented algorithms to automate robotic cleaning of
curved surfaces with hard stains. The approach is applicable
to tasks like polishing and paint stripping. Involvement of
multiple repositioning and reorienting makes the method well
suited for practical cleaning tasks. We presented heuristics
that enable the algorithm to provide solutions in real time.
Semi-supervised learning of optimal cleaning task parameters
makes the method robust against change in surface and stain
profile. We demonstrated experimental results where the robot
removed stains that are tedious and difficult for humans to
remove. In our physical experiment with a bowl, we con-
sidered fixture free operation. In our current implementation,
a human operator changes the setups for fixture free operation.
We plan to develop planning algorithms for a combination of
prehensile and nonprehensile manipulations to automate the
setup change in our future work.

REFERENCES

[1] A. M. Kabir et al., “Planning algorithms for multi-setup multi-pass
robotic cleaning with oscillatory moving tools,” in Proc. IEEE Int. Conf.
Autom. Sci. Eng. (CASE), Aug. 2016, pp. 751–757.

[2] R. Bormann, F. Weisshardt, G. Arbeiter, and J. Fischer, “Autonomous
dirt detection for cleaning in office environments,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2013, pp. 1260–1267.

[3] F. Sato, T. Nishii, J. Takahashi, Y. Yoshida, M. Mitsuhashi, and
D. Nenchev, “Experimental evaluation of a trajectory/force track-
ing controller for a humanoid robot cleaning a vertical surface,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2011,
pp. 3179–3184.

[4] C.-H. King, T. L. Chen, A. Jain, and C. C. Kemp, “Towards an assistive
robot that autonomously performs bed baths for patient hygiene,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), vol. 1, Oct. 2010,
pp. 319–324.

[5] F. Nagata, T. Hase, Z. Haga, M. Omoto, and K. Watan-
abe, “CAD/CAM-based position/force controller for a mold pol-
ishing robot,” Mechatronics, vol. 17, nos. 4–5, pp. 207–216,
May/Jun. 2007.

[6] D. J. Buckmaster, W. S. Newman, and S. D. Somes, “Compli-
ant motion control for robust robotic surface finishing,” in Proc.
7th World Congr. Intell. Control Autom. (WCICA), Jun. 2008,
pp. 559–564.

[7] J. Hess, G. D. Tipaldi, and W. Burgard, “Null space optimization
for effective coverage of 3D surfaces using redundant manipulators,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2012,
pp. 1923–1928.

[8] C. Eppner, J. Sturm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Imitation learning with generalized task descriptions,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2009, pp. 3968–3974.

[9] A. Gams, M. Do, A. Ude, T. Asfour, and R. Dillmann, “On-line periodic
movement and force-profile learning for adaptation to new surfaces,”
in Proc. 10th IEEE-RAS Int. Conf. Humanoid Robots (Humanoids),
Dec. 2010, pp. 560–565.

KABIR et al.: AUTOMATED PLANNING FOR ROBOTIC CLEANING USING MULTIPLE SETUPS AND OSCILLATORY TOOL MOTIONS 1377

[10] B. Nemec and A. Ude, “Action sequencing using dynamic movement
primitives,” Robotica, vol. 30, pp. 837–846, Sep. 2012.

[11] D. Martínez, G. Alenyá, and C. Torras, “Planning robot manipulation
to clean planar surfaces,” Eng. Appl. Artif. Intell., vol. 39, pp. 23–32,
Mar. 2015.

[12] A. M. Kabir, J. D. Langsfeld, C. Zhuang, K. N. Kaipa, and S. K. Gupta,
“Automated learning of operation parameters for robotic cleaning by
mechanical scrubbing,” in Proc. ASME 11th Int. Manuf. Sci. Eng. Conf.,
Jun. 2016, p. V002T04A001.

[13] J. D. Langsfeld, A. M. Kabir, K. N. Kaipa, and S. K. Gupta, “Robotic
bimanual cleaning of deformable objects with online learning of part
and tool models,” in Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE),
Aug. 2016, pp. 626–632.

[14] J. D. Langsfeld, A. M. Kabir, K. N. Kaipa, and S. K. Gupta, “Online
learning of part deformation models in robotic cleaning of compliant
objects,” in Proc. ASME 11th Int. Manuf. Sci. Eng. Conf., Jun. 2016,
p. V002T04A003.

[15] W. X. Ng, H. K. Chan, W. K. Teo, and I. M. Chen, “Programming a
robot for conformance grinding of complex shapes by capturing the tacit
knowledge of a skilled operator,” IEEE Trans. Autom. Sci. Eng., to be
published, doi: 10.1109/TASE.2015.2474708.

[16] Y. Zhao, J. Zhao, L. Zhang, L. Qi, and Q. Tang, “Path planning for
automatic robotic blade grinding,” in Proc. Int. Conf. Mechatronics
Autom. (ICMA), Aug. 2009, pp. 1556–1560.

[17] Y. T. Wang and Y. J. Jan, “Path planning for robot-assisted grinding
processes,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 1,
May 2001, pp. 331–336.

[18] W. Sheng, H. Chen, N. Xi, and Y. Chen, “Tool path
planning for compound surfaces in spray forming processes,”
IEEE Trans. Autom. Sci. Eng., vol. 2, no. 3, pp. 240–249,
Jul. 2005.

[19] D. C. Conner, A. Greenfield, P. N. Atkar, A. A. Rizzi, and H. Choset,
“Paint deposition modeling for trajectory planning on automotive sur-
faces,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 4, pp. 381–392,
Oct. 2005.

[20] K. P. Hawkins, C.-H. King, T. L. Chen, and C. C. Kemp, “Inform-
ing assistive robots with models of contact forces from able-bodied
face wiping and shaving,” in Proc. IEEE RO-MAN, Sep. 2012,
pp. 251–258.

[21] Y. K. Liu and Y. M. Zhang, “Supervised learning of human welder
behaviors for intelligent robotic welding,” IEEE Trans. Autom. Sci. Eng.,
to be published, doi: 10.1109/TASE.2015.2453351.

[22] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
J. Comput., vol. 1, no. 2, pp. 146–160, 1972.

[23] G. Hermann, “Algorithms for real-time tool path generation,” in Geo-
metric Modeling for CAD Applications. Amsterdam, The Netherlands:
North-Holland, May 1988, pp. 295–305.

[24] Y. D. Chen, J. Ni, and S. M. Wu, “Real-time CNC tool path generation
for machining IGES surfaces,” J. Manuf. Sci. Eng., vol. 115, no. 4,
pp. 480–486, 1993.

[25] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” in Proc. 3rd Int. Conf. 3-D Digit. Imag. Modeling, Jan. 2001,
pp. 145–152.

Ariyan M. Kabir is currently pursuing the Ph.D.
degree with the Department of Aerospace and
Mechanical Engineering, University of Southern
California, Los Angeles, CA, USA.

His current research interests include planning,
learning, control, and perception algorithms for
bi-manual manipulation to automate non-repetitive
tasks.

Krishnanand N. Kaipa is currently an Assistant
Professor with the Department of Mechanical and
Aerospace Engineering and the Director of Collab-
orative Robotics and Adaptive Machines Laboratory
with Old Dominion University, Norfolk, VA, USA.
His current research interests include biologically
inspired robotics, collaborative robotics, cognitive
robotics, and swarm intelligence.

Jeremy A. Marvel (M’10) is currently a Computer
Scientist and Project Leader with the Intelligent
Systems Division of the U.S. National Institute of
Standards and Technology, Gaithersburg, MD, USA.
His current research interests include intelligent and
adaptive solutions for robot applications, with par-
ticular attention paid to human-robot and robot-
robot collaborations, industrial robot safety, machine
learning, perception, and automated parameter opti-
mization.

Satyandra K. Gupta is Smith International Pro-
fessor with the Aerospace and Mechanical Engi-
neering Department and the Director of the Center
for Advanced Manufacturing with the University of
Southern California, Los Angeles, CA, USA. His
current research interests include computer aided
design, manufacturing automation, and robotics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

