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We present a method to reconstruct the complete statistical mode structure and optical losses of
multimode conjugated optical fields using an experimentally measured joint photon-number proba-
bility distribution. We demonstrate that this method evaluates classical and non-classical properties
using a single measurement technique and is well-suited for quantum mesoscopic state characteriza-
tion. We obtain a nearly-perfect reconstruction of a field comprised of up to 10 modes based on a
minimal set of assumptions. To show the utility of this method, we use it to reconstruct the mode
structure of an unknown bright parametric down-conversion source.

INTRODUCTION

Macroscopic and mesoscopic quantum phenomena,
processes that exhibit quantum behavior at the large
scale, have attracted the interest of researchers for a
long time both for fundamental and practical applica-
tions [1–3]. The physics of such systems is at the fore-
front of modern physical science and is a subject of in-
terest and research to a broad range of fields and related
disciplines. A recurring theme behind mesoscopic physics
phenomena is that methods successfully used in the mi-
croscopic and macroscopic world fail for this intermediate
regime, calling for a whole new suite of approaches [1].
Mesoscopic quantum systems stand alone, because their
behavior cannot be considered classical and their non-
classical properties are important but typically subtle,
and hard to characterize [4, 5]. Yet, implementation of
large quantum systems remains a difficult task, from the
synthesis and manipulation of quantum states of an ap-
propriate size to the measurement of their components.
Much of this work is done in the optical domain, be-
cause optical states naturally offer low decoherence, and
because nonlinear processes, such as parametric down-
conversion (PDC) [6–10] and four-wave mixing (FWM)
[11], may produce conjugated fields (CFs) [12–14], giving
exactly the same number of photons in two arms, that
are sufficiently scalable. Complete statistical mode struc-
ture characterization would reveal physical properties of
such quantum sources, aiding their development. Un-
fortunately, traditional characterization measurements,
which are well-suited for low photon-number states [15–
17] are of little use for brighter states, as shown in recent
publications [18–20]. Therefore, new tools for studying
mesoscopic systems are of broad interest. Beyond the im-
mediate appeal to quantum optics and scalable quantum
information processing, such methods can be applied to
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complex systems analysis [5], machine learning [21, 22],
Bose-Einstein condensates [4] and other systems in dif-
ferent fields of science.

In the current work, we solved a long-standing prob-
lem of linking the directly observable statistical proper-
ties of quantum states to the physical properties of these
states. To our knowledge, our method is the first char-
acterization method that scales favorably with the state
brightness, works well with mesoscopic states, and can
be used to assess their nonclassicality [23]. Because op-
tical modes contribute to the photon number statistics,
the mode structure of conjugated sources of light can
be reconstructed using a photon-number resolved joint
probability distribution (JPD). It identifies their basic
components, a set of correlated and uncorrelated optical
modes, thus enabling in situ characterization and remote
sensing. We numerically demonstrate the uncertainty re-
duction in the mode reconstruction algorithm with the
source brightness. Additionally, this method identifies
the overall optical losses for conjugated fields, an other-
wise difficult task in many cases where there is loss asso-
ciated with the pair production medium itself [24]. This
method is loss-tolerant and thus is directly applicable to
realistic mesoscopic and macroscopic quantum states of
light. Most notably, for the first time, we demonstrate
how to determine the mode structure of quantum meso-
scopic states in a single measurement and with a mini-
mal set of assumptions, i.e. how to identify the number
and statistical types of the modes from the same dataset.
Photon number resolved detection up to nearly 100 pho-
tons per pulse has been recently demonstrated [14, 25].
It is an excellent tool for a JPD measurement. Using
our method, we identified the mode structure of a bright
PDC source, and demonstrated its nonclassicalty, using
only an experimentally obtained JPD.
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MODE RECONSTRUCTION METHOD

Consider a JPD for two CFs in the general case. The
two arms are denoted ‘signal’ (s) and ‘idler’ (i), respec-
tively. They are comprised of one or more optical modes.
There are perfectly conjugated modes that are generated
as photons in pairs with a particular statistical distribu-
tion and independent losses for each mode in each arm.
There are also uncorrelated fields in each arm. We write
the total JPD P (ns, ni) in terms of underlying distribu-
tions. Here ns, ni are the number of photons detected
in the signal, idler arms respectively, and the underlying
modes have probability distributions pµ(n) for mean pho-
ton numbers µ. Ln,k(η) = ηn(1−η)k−nk!/((k−n)!n!) are
loss probability factors (LPF)s that compute a probabil-
ity that n ≤ k photons are measured given transmittance
η and k initial photons. This loss model enables recon-
struction of light sources comprised of modes with any
statistics (see Appendix A). For all optical mesoscopic
sources demonstrated to date, losses in an uncorrelated
mode will only affect the mean photon number in that
mode while leaving the statistics unaltered. Using this
fact, we write the uncorrelated part of the JPD with loss-
adjusted µ̃j = µjηj , thereby significantly simplifying the
evaluation of probabilities, see Appendix A for details.
Then the JPD P (ns, ni) can be calculated as:
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∞
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(1)

where Pc and Pu are correlated and uncorrelated parts
of the JPD.
We consider three photon number probability distri-

butions that cover a broad range of conjugated sources,
including those based on PDC and FWM. These are
thermal modes governed by Bose-Einstein statistics:
pTherm
µ (k) = µk/(1+µ)k+1, Poissonian modes: pPoisµ (k) =

exp(−µ)µk/k!, and single-photon modes governed by bi-
nomial statistics: pSPµ (0) = (1 − µ); pSPµ (1) = µ; and

pSPµ (k > 1) = 0. Therefore, a pair of CFs can be de-

scribed by the parameter set: S = {{typej, µj , η
s
j , η

i
j}c;

{typej , µjη
s
j}s; {typej , µjη

i
j}i} for all the modes that

may be present in the system. Here, type indicates a
mode (‘Therm’, ‘Pois’, and ‘SP’ for thermal, Poissonian
and single photon modes respectively) and subscripts re-
fer to field occupancy (‘s’ for signal only, ‘i’ for idler only
and ‘c’ for conjugated). For each mode, losses do not
change the statistics, only the mean photon number µ.

Note that in general, different modes may experience dif-
ferent losses due, for instance, to imperfect spatial over-
lap between emitted and collected light. We are inter-
ested in finding the full set of mode parameters based on
an experimental measurement. Ordinarily, a nonlinear
parametric fit could be employed on a measured JPD, to

minimize
∑

[

(
√
xj −

√

fj)/σj

]2
, a typical scoring func-

tion, where xj is the original vector, fj the fit vector, and
σj the uncertainties vector. In general, a large number
of free parameters results in ambiguous fits.
A very important observation is that each of the two

CFs can be assessed separately. Remarkably, no addi-
tional measurements are required for this analysis. One
dimensional reduced probability distributions (RPDs) for
each field can be obtained from a JPD by a simple sum-
mation over rows and columns. Clearly, 1D RPDs fully
describe modes that are present in each of the two con-
jugated fields. In addition, because the accuracy of a
measured probability distribution is dominated by statis-
tical uncertainty, summing over rows or columns of the
2D JPD means the 1D RPD has much lower statistical
uncertainty.
Reconstruction of RPD is based on photon number dis-

tribution given by Pu(M) from (1). The modes that are
identified through an RPD analysis unambiguously define
a mode structure of the overall CFs to within transmit-
tance losses. In addition, modes cannot be designated as
correlated or uncorrelated through an RPD reconstruc-
tion. Thus, an RPD reconstruction provides the two pa-
rameter sets {typej , µjη

s
j}, {typej, µjη

i
j}. These pa-

rameter sets significantly simplify the reconstruction of
a JPD. First, the number and types of modes are fixed.
Second, the overall number of fitting parameters for a 2D
fit is reduced. Thus, we establish a two-step reconstruc-
tion method particularly suitable for the experimental
use, i.e. when the number and types of modes are un-
known. Note that alternative approach based on Glauber
coherence functions was considered in [26] for the mode
reconstruction of a single light field. However, while the
two approaches are equivalent for dim states, they dif-
fer significantly for mesoscopic and bright states. For
bright states, Glauber functions of non-classical states
become practically indistinguishable from classical states
with similar brightness. Thus, in our work, we use the
advantage of statistical mode analysis based on a proba-
bility distribution.

RECONSTRUCTION OF SIMULATED JPDs

To test this method, we calculate JPDs for typical mul-
timode CF sources with known parameters, Ssimulated.
Then we find Srecovered using our two-step reconstruc-
tion method and compare it to the initial parameter set,
Ssimulated.
We obtain perfect fits for fields with up to 10 modes

using a simulated JPD both with no losses and with real-
istic transmittance losses. Such a perfect reconstruction
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example is shown in Fig. 1(a). This is satisfying, but not
surprising, because the probabilities in the JPD are com-
puted exactly, using Eqs. (1). For the general case of un-
known losses, which can be different for different modes,
the use of a two-step method with RPD reconstructions
followed by a JPD reconstruction is essential, because
scoring functions based on 2D JPDs in the most general
case may suffer from multiple local minima. The advan-
tage of defining number and types of modes with RPD
fits is illustrated in Fig. 1(b). In this simulation, two con-
jugated modes with two independent losses (each mode
suffers different losses) in both signal and idler arms can-
not be reconstructed without an initial RPD step. With
this step we are able to reproduce not only the mean
photon numbers in the correlated modes, but also the
four independent loss coefficients. This is an important
feature for using this method to optimize mode-matched
collection from a multimode photon pair source [27].
This method is limited mainly by the maximum photon

number detected and the total amount of data accumu-
lated. The total amount of data accumulated sets a shot
noise level for that data, which directly affects the accu-
racy of any reconstruction. The highest resolved photon-
number state limits the number of modes that can be re-
constructed. This is particularly important for determin-
ing the presence of a Poissonian mode rather than sev-
eral similar thermal modes. Naturally, the source bright-
ness improves both the reconstruction accuracy and the
maximum possible number of reconstructed modes. In
the Appendixes B and C, we demonstrate this improve-
ment based on hundreds of reconstructions for a range of
brightnesses and number of modes. Thus, our method is
scalable with the source brightness.

RECONSTRUCTION OF AN UNKNOWN

SOURCE

We use our method to reconstruct mode structure of a
mesoscopic parametric down-conversion source, recently
reported in [14]. Bright conjugated beams generated by
this source are characterized with TES detectors. The
previous work on this source involved using the photon
statistics to determine the effective mode number K [28].
However, the nonclassicality characterization based on
heralded g(2)(0) quickly saturates with the source bright-
ness. For the dataset analyzed here this criteria provides
an inconclusive result. By performing a full JPD analy-
sis, one can affirm the nonclassicality of this bright state
and obtain additional information about the types of un-
derlying modes. For a source like the one here, the goal
is to engineer a source with a single conjugated mode
(with minimal noise), and the information gleaned from
the mode reconstruction helps in diagnosing the potential
sources of deviation from the ideal case. For applications
in which a multimode source is desired, the true number
of modes and their brightness (and not just the effective
mode number) are required.

FIG. 1: A comparison of a simulated original and a
reconstructed mode distributions for a typical

conjugated source. (a) A source with 4 correlated and 6
uncorrelated thermal (Th), Poisson (P) and single
photon (SP) modes (3 per channel signal/idler),

showing an exact reconstruction. (b) A source with 2
correlated thermal modes and unknown independent

losses reconstructed using unconstrained and
constrained JPD fits. An unconstrained fit converges to
a local minimum, while a two-step fit presents an exact

reconstruction (see text).

In this reconstruction we use an experimentally found
JPD truncated at 40 photons. In the first step, we calcu-
late RPDs and identify the relevant modes. The number
and the type of modes is defined with no prior informa-
tion. We check for the presence of different mode types
using unknown mode analysis (see Appendixes B), sup-
plemented with uncertainty analysis (see Appendixes C).
According to this analysis, we reject all the modes whose
population is below 1% of the total mean photon num-
ber. Thus, the relevant model contains 2 thermal modes
and 1 Poissonian mode per each arm, resulting in two re-
duced parameter sets {Thermal1, µ1ηs = 8.2; Thermal2,
µ2ηs = 0.37; Poissons, µsηs = 0.1}, {Thermal1, µ1ηi =
10.1; Thermal2, µ2ηi = 0.43; Poissons, µiηi = 0.25}.
In a second step we identify the conjugated modes and

losses. Best fitting results are obtained when both ther-
mal modes are considered as conjugated and both Pois-
son modes as a background, where quality of a fit is as-
sessed using the P-values of Pearson’s chi-squared tests.
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FIG. 2: An experimentally obtained JPD (left), a reconstructed JPD (center) and an initial JPD of a generated
light state in the absence of losses. Fit parameters are: {Thermal1, µ1 = 18.98; Thermal2,

µ2 = 0.93; ηs = 0.44; ηi = 0.53; Poissons, µs = 0.07; Poissoni, µi = 0.21}, quality of the fit is characterized by
P-value obtained for Pearson’s chi-squared test and equals to 0.999999.

For this source, the 2D model (1) turns into:

p(ns, ni) =
∑
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Using this model, we perform a second stage of mode re-
construction. The experimental JPD, its best fit and a re-
constructed JPD that is produced by this source are pre-
sented in Fig. 2. Notice a high quality of this fit, as rep-
resented by P-value of 0.999999. We point out that loss
figures that are reconstructed through this model with
no prior assumptions closely match measured losses in
the experiment, and the number and brightness of modes
identified here matches the effective number of modes
obtained through Schmidt parameter in [14]. Our recon-
struction shows that this source is nearly a single-mode
source, and that it has an unprecedented brightness.
The reconstructed detection efficiency is in good agree-
ment with the independent experimental calibration.
The nonclassicality is confirmed through Hillery criterion

(
∑

∞

k=1

∑2k
n=0 P (n, 2k−n) ≤ ∑

∞

k=0

∑2k+1
n=0 P (n, 2k+1−n)

for classical states), [23], on a reconstructed JPD and
gives 0.65(4) � 0.34(2), i.e. nearly 7 standard deviations
[29]. The application of the same criterion on a measured
dataset gives 0.4775(5) ≤ 0.4924(5), i.e. the nonclassical-
ity of the original state cannot be directly assessed, in this
case due to limited detection efficiency.

CONCLUSIONS

In conclusion, we have presented a method for recon-
struction of a mode structure from joint photon number
statistics of a conjugated source and shown that it scales
favorably with the source brightness. This method is
built upon a model that includes all physically plausi-
ble mode statistics applicable to a given physical system,
here thermal, Poissonian, and single-photon modes. Be-
yond the model, this method requires no prior assump-
tions. In the first step, an experimentally measured JPD
for a conjugated source is reduced to two RPDs, each de-
scribing the mode structure of one arm of a conjugated
field, and a mode structure analysis is performed for each
arm separately. In the second step, a mode model of a
conjugated field is refined using the results of the first
step. A fit to this model determines correlated modes
and losses. We applied our method to experimental JPD
data obtained in characterizing an extremely bright para-
metric down-conversion source, proven its nonclassicality
and identified its mode structure, reconstructing all sig-
nificant modes occupation and type. This is a power-
ful method, because the only limitation here is that we
truncate the mode structure at ≈ 1% in power - which
matches with the expected accuracy of reconstruction
due to the experimentally introduced shot noise. Even
though a model is needed for a reconstruction, we have
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shown that our method can build such a model with no
prior assumptions. To our knowledge, this is the only
method for characterization of mesoscopic nonclassical
light.

APPENDIX A: JOINT PROBABILITY

DISTRIBUTION OF A MULTIMODE LIGHT

SOURCE

Consider a lossless case first. The probability to gener-
ate k photons in a mode pµ(k) is governed by that mode’s
statistics and its mean photon number µ. Because num-
bers of photons that occur in each mode are independent,
the probability to simultaneously generate kj photons in
each of the mode j is given by a probability multiplica-
tion rule:

P (k1, ...kj ...) =
∏

j

pµj
(kj).

We are interested in finding a probability of generating
a total of M photons. The additive rule of probability of
mutually exclusive events gives:

P (M) =
∑

∑
kj=M

∏

j

pµj
(kj).

The conjugated fields “s” (signal) and “i” (idler) are com-
prised of correlated “c” and uncorrelated “u” modes. For
the probability to generateM photons in all uncorrelated
modes one writes:

Pus,i
(M) =

∑

∑
kj=M

∏

j

pµj
(kj).

Photons in correlated modes are generated in pairs: the
same number in both “s” and “i” fields: Ns = Ni. Simi-
larly,

Pc(Ns, Ni) =
∑

∑
kj=Ns=Ni

∏

j

pµj
(kj).

Then, the joint probability distribution is given by ap-
plying probability multiplication and additive rules:

P (ns, ni) =
∑

Ns+Ms=ns

Ni+Mi=ni

Pc(Ns, Ni)Pus
(Ms)Pui

(Mi). (3)

This result can be generalized for the case of losses. A
typical procedure to include loss in quantum optics is
to act on a state with a beam splitter [30]. Loss fac-
tors L can be written in form of binomial coefficients
Ln,k(η) = ηn(1 − η)k−nk!/((k − n)!n!), where η is effi-
ciency (beam splitter transmittance), k is the number of
impinging photons and n is the number of photons at the
output of this beam splitter.

Pus,i
(M) =

∞
∑

k=M

∑

Σkj=k

Σmj=M

∏

j

pµj
(kj)Lmj ,kj

(ηj). (4)

It can be shown [30] that losses applied to photon states
represented by Poissonian, Binomial and Bose-Einstein
statistics do not change their statistics, only affecting the
mean photon number in that mode. This allows to in-
troduce adjusted mean photon numbers for uncorrelated
modes, significantly simplifying the master equation set:

Pus,i
(M) =

∑

∑
kj=M

∏

j

pµ̃j
(kj), (5)

where µ̃j = µjηj is an effective mean photon number per
mode, and ηj denotes losses in each mode. For corre-
lated modes, losses in each arm should be independently
considered, therefore introducing effective mean photon
numbers is no longer possible:

Pc(Ns, Ni) =

∞
∑

k=
Max

(Ns,Ni)

∑

Σkj=k

Σns

j
=Ns

Σni

j=Ni

∏

j

pµj
(kj)Lns

j
,kj

(ηsj)Lni

j
,kj

(ηij).

(6)
Equation 3 is not affected by the losses. Generally speak-
ing, Eqs. (3), (4), (6) describe a mode mixing with all
types of modes, i.e with any underlying statistical dis-
tribution. Because all mesoscopic optical states demon-
strated to date are comprised of the modes with Poisso-
nian, Binomial and Bose-Einstein statistics only, we take
advantage of the simplification outlined above. Thus, (3),
(5), and (6) give Eq. (1) in the main manuscript.

APPENDIX B: UNKNOWN SOURCE TYPES

It was established [26] that a 1D reconstruction
through photon-number statistics works well when num-
ber of modes and their types are known beforehand. Fur-
thermore, adding unoccupied modes to the reconstruc-
tion only requires expanding experimental data sets to
achieve the same accuracy, but otherwise does not nega-
tively affect the reconstruction. However, not including
all modes present in a reconstruction leads to significant
errors in the entire set of recovered parameters. In the
most general case, it is useful to establish a method to
identify an a priori unknown mode structure based on a
series of reconstructions, a situation typical for the ex-
perimental data.
Here we present the details of how to reconstruct such

mode structure. To aid this task we use recovered sets
of fitting parameters Srecovered together with their cor-
responding absolute fitting errors,

√
∑

(xj − fj)2, where
xj represents the simulated probability distribution and
fj represents the recovered probability distribution.
In most cases, it is important to determine if a Poisson

mode is present, or a distribution can be well-described
by a finite number of thermal modes. To show this, we
generate a Poisson probability distribution and fit it mul-
tiple times, with an increasing number of thermal modes.
The results are presented in Table I. We see that all the
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TABLE I: Poisson mode with 〈n〉 = 5 fitting with

multiple thermal modes

Number of modes Photons per mode 〈n〉 Error
√

∑

(xj − fj)2

1 1.82 1.82 0.47

2 1.3 2.6 0.33

3 1.03 3.03 0.26

4 0.85 3.4 0.22

10 0.42 4.2 0.11

20 0.23 4.6 0.06

40 0.12 4.8 0.03

80 0.061 4.88 0.017

fits yield equal population of all available thermal modes.
In hindsight, it is not surprising, because a maximally
uncorrelated state with N thermal modes occurs when
all the modes are equally populated [30]. Therefore, if
reconstructions yield mode populations that depend on
the number of thermal modes allowed, the number of
thermal modes in the reconstruction should be increased
(and a Poissonian mode allowed) until the reconstruc-
tion no longer depends on the number of modes allowed.
The size of the experimental data set, including both the
maximum photon number detected and the amount of
data, will ultimately limit the number of modes that can
be included in an accurate reconstruction.

APPENDIX C: THE EFFECT OF UNCERTAINTY

IN A JPD MEASUREMENT

Shot noise must always be considered in analyzing the
accuracy of a method for characterization based on opti-
cal detection. Additionally, truncating detection at some
photon number limits the accuracy of the extracted pho-
ton number probabilities. We see that this method, with
detection of photon numbers larger than the number of
modes present, is robust against shot noise over a range
of total mean photon number. Typically, the uncertainty
for p(ns, ni) where ns, ni photons are detected in the
idler, signal arms respectively can be estimated from the
shot-noise limit under the assumption that trials are in-
dependent. If N(ns, ni) is the number of observed events,

then the uncertainty is given by
√

N(ns, ni). Then,
for each element of JPD p(ns, ni) the absolute uncer-

tainty is
√

p(ns, ni)/Ntot, where Ntot =
∑

ns,ni

N(ns, ni)

is the total number of trials. Using numerical simula-
tions, we investigate the effect of experimental uncer-
tainty on reconstruction quality. We simulate experi-
mentally obtained JPDs by computing an exact JPD
and adding random shot noise corresponding to a dif-
ferent number of trials Ntot. Then we calculated a rela-
tive reconstruction error (averaged over 60 independently
seeded, random shot noise sets) as a deviation of re-
constructed mode brightness from those known exactly,
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FIG. 3: Relative fitting error vs. number of
experimental trials. Bright 4-mode field reconstruction

with {Thermal1, µ1 = 19; Thermal2,
µ2 = 1; ηs = 0.43; ηi = 0.52; Poissons,

µs = 0.1; Poissoni, µi = 0.2} (blue triangles); Bright
10-mode field reconstruction with {Thermalc1,
µc
1 = 4; Thermalc2, µ

c
2 = 3; Single Photonc3,

µc
3 = 0.6; Poissonc4,

µc
4 = 1; ηs = 0.5; ηi = 0.6; Thermals1,

µs
1 = 1.5; Thermals1, µ

s
2 = 1; Single Photons3,

µs
3 = 0.8; Thermals1, µ

i
1 = 2; Thermali1, µ

i
2 = 0.4; Single

Photoni3, µ
i
3 = 0.7} (purple squares). Faint light sources

have 10-fold lower photon numbers of corresponding
bright sources (blue diamonds: 4-mode field; purple
circles: 10-mode field). Lines are guides to an eye.

〈∆µ/µ〉60 = 〈
∑

∣

∣µrec
j − µsim

j

∣

∣〉60/
∑

µsim
j . Typical de-

pendencies of the relative reconstruction error on number
of trials for a 4-mode and a 10-mode fields of different
brightness are shown in Fig. 3. Note that field parame-
ters of the 4-mode bright field in this figure are similar to
what we expect in our experimental data, see below; a 10-
mode bright field reconstruction is simulated for a field
comprised of the same modes and with the same losses as
that considered in Fig. 1 of the manuscript. Next, Fig. 3
demonstrates that the accuracy of our method improves
with the field brightness, i.e. that our method is scal-
able to macroscopic states of light. Both faint and bright
reconstructions of 4- and 10- mode fields have compa-
rable mean photon number and losses pairwise, thereby
the demonstrated difference in accuracy is primarily due
to the number of fit parameters. As expected, uncer-
tainty decrease monotonically with the number of trials.
This uncertainty analysis plays an important role in es-
tablishing a number of trials required to reach a desired
accuracy of reconstruction. This analysis also sets a limit
on the number of modes in a reconstruction model, be-
cause unoccupied modes will be populated to within the
reconstruction accuracy and should be excluded from a
model.
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