
Linear Time Algorithms to Restrict Insider Access using
 
Multi-Policy Access Control Systems
 

Peter Mell1, James Shook1, Richard Harang2, and Serban Gavrila1 

1National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 
1{peter.mell, james.shook, serban.gavrila}@nist.gov 

2U.S. Army Research Laboratory, Adelphi, MD United States 
2rich.harang@gmail.com 

Abstract 

An important way to limit malicious insiders from distributing sensitive information is to as tightly 
as possible limit their access to information. This has always been the goal of access control mech
anisms, but individual approaches have been shown to be inadequate. Ensemble approaches of mul
tiple methods instantiated simultaneously have been shown to more tightly restrict access, but ap
proaches to do so have had limited scalability (resulting in exponential calculations in some cases). 
In this work, we take the Next Generation Access Control (NGAC) approach standardized by the 
American National Standards Institute (ANSI) and demonstrate its scalability. The existing publicly 
available reference implementations all use cubic algorithms and thus NGAC was widely viewed as 
not scalable. The primary NGAC reference implementation took, for example, several minutes to 
simply display the set of files accessible to a user on a moderately sized system. In our approach, 
we take these cubic algorithms and make them linear. We do this by reformulating the set theo
retic approach of the NGAC standard into a graph theoretic approach and then apply standard graph 
algorithms. We thus can answer important access control decision questions (e.g., which files are 
available to a user and which users can access a file) using linear time graph algorithms. We also 
provide a default linear time mechanism to visualize and review user access rights for an ensemble 
of access control mechanisms. Our visualization appears to be a simple file directory hierarchy but 
in reality is an automatically generated structure abstracted from the underlying access control graph 
that works with any set of simultaneously instantiated access control policies. It also provide an 
implicit mechanism for symbolic linking that provides a powerful access capability. Our work thus 
provides the first efficient implementation of NGAC while enabling user privilege review through a 
novel visualization approach. This may help transition from concept to reality the idea of using en
sembles of simultaneously instantiated access control methodologies, thereby limiting insider threat. 

Keywords: ABAC; access control; algorithms; complexity; computer security; graph theory; in
sider; NIST; NGAC; Policy Machine; simultaneous instantiation; XaCML 

1 Introduction 

Most operating systems provide simple access control mechanisms that are focused on enabling users 
to specify which other users have access to their files (i.e., Discretionary Access Control (DAC) [19]). 
However, many other access control approaches exist that provide enhanced features, especially for 
enterprise environments. This includes capabilities relevant to particular paradigms (e.g., Chinese Wall 
for conflict of interest [9] and Mandatory Access Control (MAC) for the handling of classified data 
[28]). Other policies provide greater simplicity in administering access control at scale (e.g., Role Based 
Access Control (RBAC) [1]). However, methods for protecting information with multiple models under 
one mechanism have been lacking, and this can result in enterprises settling for using a single simple 
model (e.g., DAC). 

The result can be restrictions on insider access being defined very loosely; this increases the risk of 
insiders having unnecessary access to sensitive information and sharing that information outside of the 

1
 

mailto:2rich.harang@gmail.com
mailto:serban.gavrila}@nist.gov


Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

organization. To ensure that users do not inappropriately share data, enterprises may then resort to the 
costly and inefficient approaches of separating different data types (e.g., military classification levels) 
into totally distinct and isolated networks or administering multiple independent access control systems 
over the same data sets. They may try to implement multiple independent access control systems on each 
host to enforce multiple policies, but this technique has management and scalability issues (although it 
is used for high security operating systems such as SELinux [16]). Alternately, they may accept the risk 
of data being leaked, which can have disastrous results (e.g., classified documents being made public). 

What is needed then is a single access control mechanism that enables an enterprise to simultane
ously instantiate multiple policies (e.g., DAC and MAC) to limit user access to unneeded resources. 
Furthermore, this mechanism must be able to efficiently provide access control decisions and also enable 
administrators/auditors to review the access privileges on a per user/attribute basis. This ability to both 
make decisions and provide review are necessarily features that must be scalable to accommodate the 
access control policies of large enterprises. 

The American National Standards Institute (ANSI) has addressed this need by standardizing an ac
cess control approach, Next Generation Access Control (NGAC) [2, 3]. The NGAC stems from and is in 
alignment with the Policy Machine (PM) [11], a research effort by the National Institute of Standards and 
Technology (NIST) to develop a general purpose Attribute Based Access Control (ABAC) framework 
[13]. The NGAC is designed to enable simultaneous instantiation of multiple access control policies 
within a single access control mechanism, enabling both unified access control decisions and also re
view of user access capabilities. Examples for how to use NGAC to enforce the DAC, MAC, RBAC, 
and Chinese Wall policies are available from [10]. The NGAC specification describes what constitutes 
a valid implementation using set theoretic notation but does not provide implementation guidance. This 
approach then leaves room for multiple competing approaches and implementations. While appropriate, 
this leaves open the important question as to whether or not NGAC is scalable. In this work, we find 
that the existing reference implementations are inefficient (using cubic algorithms) which indicates that 
NGAC may not be scalable. The primary NGAC reference model version 1.5 [20] could only scale to 
a test model of a couple of hundred nodes, at which point it took several minutes to visualize the set 
of objects available to just one user. Answering this scalability question for NGAC is critical because 
NGAC is the only access control methodology available promising both efficient decision and review for 
simultaneous instantiation of multiple access control policies. 

The only other multi-policy access control methodology available is the current market leader, the 
eXtensible Access Control Markup Language (XACML) standard [21] from OASIS [22]. Other related 
logic-based policy ABAC models (that either have no reference implementation or are not multi-policy) 
include ABACα [13], HGABAC [26], and ABAC for Web Services [29]. XACML has been shown 
empirically to lack scalability in [27] where 3 different XACML implementations all experienced per
formance problems in making access control decisions where the performance decreased as the number 
of policies increased (each policy in XACML contains the access rules for a set of target objects). In 
addition, all of these logic-based policy ABAC models have been shown to be NP-complete with respect 
to simply determining the access attributes needed by a user to access a particular resource [7] (mapping 
to the satisfiability problem). Thus, these methodologies do not meet our stated need for a multi-policy 
system that provides for both efficient decision and review. They are then undesirable for large enterprise 
systems with respect to ensuring the restrictions on insider access to sensitive data to avoid information 
leakage by insiders. 

In this work we prove that NGAC is scalable by providing linear time algorithms for both access 
control decisions and review of user access rights. To provide efficient decision capabilities, we took 
a graph theoretic view to design an efficient algorithm for access control determination. We started by 
transforming the NGAC set theory into a graph representation (this was straightforward as the speci
fications themselves often use graphs to illustrate examples). Unfortunately, the resultant graphs had 

2
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

unusual features and constraints (with five different types of nodes, each with its own semantics). Thus, 
the primary challenge was in how to apply standard graph algorithms to this representation. Our solution 
in general was to use breadth first search (BFS) and depth first search (DFS) variants that perform a type 
of topological sort as primitive operations to allow us to cascade information from one type of node to 
another and percolate that information through the graph until the final answers are determined. The 
amortized cost of the multiple searches can be shown to be linear, resulting in a linear time complexity 
algorithm. Furthermore, it is not linear in relation to the entire access control graph, but only to the 
portion of the graph relevant to a particular user. This can offer even greater speedups, avoiding the need 
to even traverse the entire graph. 

With respect to review of user privileges, the NGAC standard does not provide any guidance on vi
sualizing access control results. We presume the reason they do not provide this capability is because 
each access control policy may have its own preferred method for administrative review and user interac
tion. However, such a policy oriented approach is not ideal in a system that simultaneously implements 
multiple policies (which is the whole point of NGAC). For example, the current NIST NGAC implemen
tation [20] requires users to choose a particular access control policy first and then navigate just within 
that policy structure to review user access (requiring the administrators and users to be knowledgeable 
about each access control policy and which files are covered by which policies). Because of these prob
lems, there exists a need for a generic approach for user rights visualization that will work for any set 
of policies that can be instantiated within NGAC (without the staff having to understand said policies). 
Furthermore, this default visualization should be efficient and would ideally be automatically generated 
from the existing access control graph to avoid additional and excessive administrative burden. 

To meet this need for review capabilities, we provide the user (or the person reviewing the user’s 
privileges) the visual experience of traversing a typical file directory hierarchy, as used by most major 
operating systems. However, under the hood the user is actually traversing the NGAC access control 
graph. We leverage one of the graph node types (object attributes) to act as file ’directories’ enabling users 
to access their files. The user visually sees a tree but is actually traversing a graph with an exponential 
number of possible paths (where we generate local views on demand to avoid exponential calculations). 
Since the directory tree is automatically generated from the underlying graph, it can thus provide default 
user access to files simultaneously protected by multiple access control policies. An interesting side 
effect of our approach is that there can be multiple ways for a user to access the same file, without the 
need to explicitly create symbolic links. Thus, a document can be both stored under a person’s personal 
directory and under a project directory with no duplication, system inconsistency, or need to explicitly 
create virtual links. Our algorithm for review is based off of our algorithm for decision capabilities and 
thus is of linear time complexity. 

In summary, the contributions of this paper include: 

1. the first ever study demonstrating the scalability of the NGAC multi-policy access control system, 

2. a novel visualization approach to enable review of user object access on NGAC systems, and 

3. linear time algorithms for performing both access control decisions and review of user access 
rights. 

These contributions make great strides towards enabling large scale deployments of NGAC, thus offering 
enterprises a powerful new capability by which to efficiently limit insider access to information (and 
thereby limit information leakage). 

This paper is an extended version of a shorter paper [18] published in the 8th Association for Com
puting Machinery (ACM) Internation Workshop on Managing Insider Security Threats. This workshop 
was held as part of the ACM Conference on Computer and Communications Security in October of 2016 
in Vienna, Austria. This extended version provides the following enhancements: 

3
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

1. a new access control decision algorithm to determine which users have access to particular objects 

2. memory profiling results for the primary access control algorithm as well as for the size of the 
access control graphs themselves 

3. performance results on graphs of up to 2000000 nodes (formerly our graphs were at most 700000 
nodes due to processor and memory limitations) 

4. example NGAC reference implementation visualization with a comparison against our new visu
alization approach 

5. discussion of the complementary nature of popular access control policies 

6. discussion of needed future work and possible research pitfalls 

The remainder of this paper is structured as follows. Section 2 discusses background material while 
3 discusses related work. Section 4 provides an overview of access control graphs within NGAC and 
provides a definition of when a user is allowed to access an object. Section 5 presents our access control 
algorithms and section 6 presents our visualization approach. Section 7 discusses future research ideas 
and their related challenges. Section 8 concludes. 

2 Background 

In this section, we provide a short description of some of the most popular access control policies. We 
focus on demonstrating their different strengths to support our argument that an ensemble of methods 
can most tightly restrict insider access to information. We then discuss the need to simultaneously instan
tiate multiple policies within a single access control system as opposed to having multiple independent 
systems running simultaneously. 

2.1 Common Access Control Policies 

Begining with Butler Lampson’s protection access matrix in 1969 [14, 15] basic research in access con
trol models began to build steam. Researchers Bell, Lapuda and Biba’s pioneering work can be found in 
[4, 6]. Since then many access control models were created and examined [24, 25]. Each model was de
signed to either improve existing models or tailored to a specific use case. Some well know examples of 
access control models are The Chinese Wall, Discretionary Access Control, Mandatory Access Control, 
and Role-Based Access Control. We briefly present some of them below. 

Rule based access control is one of the basic types. Simply, there is a list of rules that are checked 
when deciding if a user has access. For instance a firewall contains a list of rules that an incoming data 
packet would be checked against. 

Often when someone says they own an object it is interpreted that they have discretionary access to 
an object [19]. Discretionary Access Control says that a user with certain access rights to an object can 
grant that access to others. Although this model is convenient, it unfortunately can result in leakage of 
access. For example, if Bob gives Todd read access to an object then Todd may allow Rob to read the 
object. 

One remediation to access leakage within DAC models is to introduce mandatory controls. Within 
a Mandatory Access Control model every user and object receives a label. Those labels form a partial 
order that sets mandatory access rights. Assignment of these labels are mandatory and ordinary users 
cannot change them. 

4
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

An example of a model that can implement both DAC and MAC policies (but not at the same time) 
is the Bell-Lapadula model [4]. It focused on confidentiality and does not let lower labels “read-up” and 
higher levels “write-down.” This model was designed for defense systems that try to balance the need of 
confidentiality with accessibility. 

The Chinese Wall was designed to address conflict-of-interest issues with respect to information flow. 
For example, an investment firm with two competing companies as clients should not let their analysts 
work with both clients. 

Many of access control models mentioned in this section could be called lattice based [25]. This is 
where every user and object has a security label such that those labels are assigned a partial-order that 
indicates allowed information flow. Clearly, MAC and The Chinese wall are examples of this, and there 
are many others. Due to the relationship based nature of NGAC, it can be shown that most latticed based 
models can be efficiently modeled using NGAC. For instance, with the aid of prohibitions, MAC can be 
modeled within NGAC. Furthermore, it was highlighted within the NGAC standard [3] that The Chinese 
Wall can be implemented with NGAC. 

In the mid 1990s Role Based Access Control started to gain steam. RBAC became one the most 
widely used models since MAC and DAC. In RBAC users take or are assigned roles. The users then 
inherit from those roles privileges. RBAC allows role definitions to be easily modified. Thus, policies 
become easier to manage. RBAC has all the advantages of MAC and DAC since those models can 
be implemented within RBAC. After quickly becoming a well supported standard, RBAC has saved 
corporations and other institions large sums of money. A study in 2002 [23] showed that RBAC could 
save U.S. organizations millions of dollars per year. 

Content based access control (CBAC) is a more recent model that focuses on the content of objects to 
make access decisions. Introduced in [30], CBAC is expected to be deployed on top of RBAC or ABAC 
as a complement to traditional access control models. CBAC could potentially be used to address online 
privacy concerns as well. For example, it is possible to use natural language processing to scan a social 
media posts for private data such as phone numbers and location to prevent public postings. It can also 
be used for more advanced scanning such as notifying the people in posted photos. However, this type of 
CBAC implementation does not prohibit disallowed behavior and should not be used this way if strong 
security is needed. 

One of the many advantages of ABAC, in particular NGAC, is that they can handle multiple access 
control policies. That is RBAC, rule based models, lattice based models, parts of content based models, 
and other access control models can be simultaneously implemented within a NGAC instantiation. As 
just discussed, each access control model has different strengths. Thus we argue that an ensemble of 
approaches is best to most tightly restrict user access. 

2.2 The Need for Simultaneous Instantiation 

Unfortunately, no efficient mechanisms has existed to simultaneously instantiate multiple policies. Such 
a system would create an ensemble approach that takes advantage of each policies unique contribution. 
As a result, organizations typically use just a single access control policy (usually DAC). 

Some more secure operating systems such as SELinux [16] enable both DAC and MAC simultane
ously. Inside of the SELinux operating system their can be two independent access control mechanisms 
operating at the same time. This not only consumes excess resources on the local machine but requires 
administrators to maintain two separate sets of access control rules. What is desired is to enable admin
istrators to administer a single set of rules that cover all instantiated policies simultaneously. 

Furthermore, there is a desire for a single such ensemble system to work at the network level, con
trolling resources at an enterprise scale. Maintaining multiple separate system, like with SELinux, would 
be even more difficult to maintain at an enterprise scale thus furthering the argument for a single system 

5
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

to maintain multiple access control policies. 
Finally, to our knowledge it is extremely uncommon for an organization to simultaneously enforce 

multiple access control policies (even in military settings). This provides further evidence that such 
approaches are too costly to maintain. However, recent major U.S. based leaks have demonstrated the 
need to more tightly limit insider access. 

3 Related Work 

Of the two existing multi-policy access control methodologies, XACML is the oldest with the first version 
having been published in 2003. Compared to the relatively young NGAC standard (published in 2013), 
there exist many more implementations and it has achieved much greater adoption. Perhaps this is 
because XACML was available first and, up to this point, there has been a lack of compelling evidence to 
convince the community to use NGAC. In addition, there has been the unanswered but critical question 
of whether or not NGAC can scale. 

Likely for these reasons, there exist only two publicly available NGAC/PM reference implementa
tions; both are available on GitHub [12]. NIST provides a reference implementation in Java that was the 
primary reference used in the development of the NGAC [20]. The company Medidata provides an im
plementation in Ruby that they use for their software products in the medical field [17]. A third GitHub 
policy machine implementation is available from Colorado State University, but we will not reference it 
further as it focuses on using the NIST PM implementation to manage application-level operating system 
resources in Linux environments [5]. 

For the NIST implementation, we evaluated version 1.5. Their code related to determining which 
resources are available to a particular user is cubic, which explains the slow execution time even on small 
test sets. We provided our linear time algorithms to NIST PM development team and they upgraded to 
using our PReview access control algorithm in their version 1.6 (released on Github in November of 
2016). They also implemented our visualization approach in this version as well. 

For the Medidata code base version 1.1.0, we evaluated their default implementation1 in the file 
‘\lib\policy machine.rm’. In this, they have a method ‘accessible objects’ that determines which files 
a user can access. Our analysis shows this algorithm to have an O(nm2) cubic execution time. Their 
method ‘is privilege’, to determine if a user has a specific privilege for a particular object, is also 
quadratic. Our algorithm is linear for both these operations. We provided them our algorithm and they 
plan to use it to improve their default implementation. 

It appears that both implementations are inefficient due to a direct translation of the set theoretic 
NGAC notation into computer code. 

4 Access Control Graph Overview 

Using the NGAC specification [3] set theoretic definitions, we can form access control graphs as follows. 
There are 5 types of nodes to be created: user (u), object (o), user attribute (ua), object attribute (oa), 
and policy class (pc). All edges are directed. Per specification all object nodes are object attribute nodes, 
but there could be an object attribute that is not an object. Object attribute nodes may have edges to oa 
and pc nodes. However, no object attribute node may point to object nodes. User nodes are sources with 
edges to ua nodes. User attribute nodes may have edges to ua, oa or pc nodes 2. Policy class nodes are 
sinks. Cycles and self-loops are prohibited. User attribute to Object attributes edges are labeled with a 

1They have other implementations that make calls out to various databases.
 
2In the NGAC specification, ua to pc edges are allowed but are not used for access control decisions.
 

6
 

http:machine.rm


Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

Figure 1: Diagram showing allowed edge relationships between the five different sets of NGAC node 
types. 

set of one or more allowed operations (ops) (e.g., read or write). All other edges are unlabeled. All nodes 
must have a path to at least one pc node (without using any ua→oa edges). For complexity evaluation 
purposes, the number of u, o, ua, and oa nodes are unbounded. However, the number of pc nodes and the 
cardinality of the ops set are assumed to be small constants. 

These connectivity restrictions result in several features that we can leverage. The overall graph is 
a directed acyclic graph (DAG) that can be divided into two DAGs: a user DAG (with u and ua nodes) 
and an object DAG (with o and oa nodes). The set of u nodes act as sources for the user DAG and the 
set of o nodes act as sources for the object DAG. The set of ua to oa edges bridge the two DAGs and this 
bridge is the only place where edges are labeled, with operations (ops). We refer to the set of nodes on 
either side of these bridging edges as border nodes. The set of pc nodes act as sinks for both DAGs. The 
resulting overall graph is weakly connected. 

An arbitrary access control graph can now be represented as shown in Figure 1. Arrows within a set 
represent that nodes of that type can have edges to other nodes of that type, with no cycles allowed. This 
means that there are no edges between nodes within the set of pc nodes (the same is true for the set of u 
nodes and the set of o nodes). The arrows from the set of ua nodes to the oa nodes nodes represent the 
bridge edges (they contain the ops labels and connect the user and object DAGs). The bridge edges are 
the focal point in determining user privileges (see Definition 1 below). 

We now discuss how to determine user privileges. The ANSI NGAC standard provides set theoretic 
notation to enable computation of privileges abstracted away from any particular implementation. In this 
work, we describe the methodology using a graph oriented approach. Our graph theoretic derivation of 
the ANSI NGAC set theoretic definition of how to calculate access control is as follows3: 

Definition 1. For a user, u1, to perform an operation, op1, on some object, o1, there must exist a set of ua 
to oa edges with label op1 such that the tail of each edge is reachable from u1 and the head of each edge 
is reachable from o1 and where the set of pc nodes reachable from the set of head nodes is a superset of 
the set of pc nodes reachable from o1. 

This definition has three data collection components: 

1. Identify the ‘active’ ua to oa bridge edges. This is the set of bridge edges that have label op1 and 
where the tail is reachable from u1 and the head is reachable from o1. These active edges are the 
ones that enable u1 to possibly have privilege op1 on on o1. 

3We do not include the NGAC definitions here because they use completely different set theoretic notation that would 
require extensive explanation and that is available in the NGAC standard. 

7
 



Linear Time Algorithms to Restrict Insider Access	 Mell,Shook,Harang and Serban
 

2. Determine the set of pc nodes reachable from the head of each active bridge edge. The union of 
such pc nodes is the set of ‘covered’ policy classes for op1. 

3. Determine the set of pc nodes reachable from o1. These are the policy classes that are ‘required’ 
to be covered. 

For u1 to perform op1 on o1, the set of covered policy classes must be a, not necessarily proper, superset 
of the set of required policy classes. 

Figure 2 shows an example NGAC access control graph which we will evaluate using Definition 14. 
Note that the dashed edges represent the bridge edges that connect the user DAG to the object DAG. The 
edge label ‘r’ represents read access. In this figure, user u1 can read o1 and o2 but not o3. We now discuss 
this in detail: 

•	 o1 requires pc2 because there is a path connecting the two. This requirement is covered by the 
edge ua1 → oa1 providing ‘read’ access (because ua1 is reachable from u1, oa1 is reachable from 
o1, and pc2 is reachable from oa1). Thus by Definition 1, u1 can read o1. 

•	 o2 requires pc1 and pc2 because there is a path connecting o2 with both pc nodes. This requirement 
is covered by a combination of the edges ua2 →oa4 (which covers the pc1 requirement) and ua1 → 
oa1 (which covers the pc2 requirement). Note that these two bridge edges would not have fulfilled 
the requirements had they different labels. Thus by Definition 1, u1 can read o2. 

•	 o3 requires pc1 and pc2 because there is a path connecting o3 with both pc nodes. Edge ua2 →oa4 
covers the pc1 requirement for o3. However, there does not exist a ua to oa edge that will satisfy 
o3’s requirement to cover pc2. Edge ua1 → oa1 does not work because oa1 is not reachable from 
o3 (which is required in Definition 1). Thus by Definition 1, u1 cannot read o3. 

Throughout this paper, we will use Figure 2 as an example where an accountant, Bob, is working 
on the defense systems finances for a deathstar. In this context, we interpret the nodes as shown next 
to Figure 2. Note how the user attribute nodes represent ‘teams’ to which Bob belongs (his own team5 

and the death star personnel team). The object attribute nodes provide a kind of hierarchy for different 

u1 = ‘Bob’ 
ua1 = ‘Bob Privileges’ 
ua2 = ‘Death Star Personnel’ 
o1 = ‘Tatooine Vacation’ 
o2 = ‘Defense Systems Finances’ 
o3 = ‘Energy Shield’ 

oa1 = ‘Bob Personal’
 
oa2 = ‘Bob Deathstar Files’
 
oa3 = ‘Technical Designs’
 
oa4 = ‘Deathstar Project’
 
oa5 = ‘Defense Systems’
 
pc1 = ‘Access Control System 1’
 
pc2 = ‘Access Control System 2’
 

4The edge ua2 → pc1 fulfills the requirement in the specification that all u and ua nodes have a path to a pc node (without 
using bridge edges). However, the edge is not used for determining user privileges and will not be discussed further. 

5We had to create ua1 to represent Bob’s access rights because the NGAC specification does not allow creation of u to oa 
edges. 

Figure 2: Example NGAC access control graph.
 

8
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

projects. In this example Bob has access to his own data (oa1, oa2, and o1) as well as the overall project 
and financial material (oa4, oa5, and o2). However, Bob does not have access to any of the technical 
designs (oa3 and o3). 

5 Access Control Algorithms 

We now provide a linear time complexity graph algorithm to answer two of the most common types of 
access control requests: 

1. Is user, u1, allowed to perform operation, op1, on object, o1? 

2. What is the set of accessible objects for a user, u1, and what operations can u1 perform on each 
object? 

3. What is the set of users that can access an object, o1, and what operations can those users perform 
on o1? 

The first two determinations can be made through a slight variation on the same algorithm, which we 
refer to as PReview. Furthermore, PReview forms a basis for performing policy review in general and, to 
be discussed later, for our visualization approach. This generalization enables us, for the third determina
tion, to write an algorithm similiar to PReview but that flows information in the opposite direction (from 
the object DAG to the user DAG). With the ‘backwards’ PReview algorithm we can identify all users 
that can access a given object using a particular operation in linear time complexity (discussed further 
below). 

5.1 The PReview Algorithm 

The PReview algorithm first isolates the problem to just the object DAG through labeling each border oa 
node reachable from u1 with a set of operations (from the ops labels on the bridge edges from reachable 
border ua nodes). Then, the set of objects of ‘interest’ are found by performing a reverse BFS from 
the set of reachable border oa nodes (without traversing any bridge edges). If we are simply trying to 
determine if u1 can access a particular object, we intersect this object with the set of objects of interest 
(forming a new set of objects of interest with cardinality 0 or 1). 

The core of the algorithm is then to iterate over each object of interest and use the object DAG to 
determine which are accessible and what ops are available to the user. Each time we process an object, 
we will perform a topological sort DFS to collect data for the object. However, we will reuse information 
such that the amortized cost of all the DFSs is linear. Each DFS from an object of interest determines 
three data sets for that object: 1) a set of candidate ops, 2) the set of ‘covered’ policy classes for each 
distinct op, and 3) the set of ‘required’ policy classes for the object. With these three sets, Definition 1 
can be applied to determine which of the candidate ops can be used by the user on the object. In short, 
an op is available to the user on the object if the set of covered policy classes for that op is a superset of 
the set of required policy classes for that object. 

In more detail, the algorithm is as follows: 

1. BFS from u1 to identify the set of reachable ua border nodes (do not traverse the oa nodes). For 
this set of ua border nodes, let the set of ‘active’ edges be the ua to oa outedges. 

2. For each ‘active’ edge, label the oa head node with the ops edge label (eliminating duplicates). At 
this point, each reachable border oa node is labeled with a set of operations. 

9
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

3. Create a temporary node that is a successor of each reachable border oa node. 

4. Perform a backwards BFS from the temporary node (traversing edges in reverse) to find the set of 
objects of ‘interest’. Do not traverse any bridge edges. Once done, delete the temporary node. 

5. If the goal is to determine if u1 can access a specific object, then intersect this object with the set 
of objects of interest to form a new set of objects of interest (this set will contain either a single 
node or be the empty set). 

6. For each object of interest, perform a recursive topological sort DFS to find the reachable pc nodes. 
However, when performing each DFS, label all processed nodes with the information found (the set 
of reachable pc nodes) such that subsequent DFSs can take advantage of the previously computed 
information. Each object of interest then is labeled with its set of reachable pc nodes. These 
represent the ‘required’ pc nodes for each object. 

7. While performing the DFSs from the previous step, perform an additional data propagation. When 
a reachable border oa node is labeled with its reachable pc nodes, associate those pc nodes with 
the operation labels from step 2. For example, use a dictionary where the key is the op and the 
value is the set of reachable pc nodes. Then use the normal functionality of the DFS to propagate 
these dictionaries up to the root of the tree (one of the objects of interest). When a node is being 
processed where multiple of its successors have these dictionaries, then union the dictionaries by 
taking the union of all keys; for the values take the union of the values for each key6. 

8. For each object of interest, compare the set of required policy classes against the covered policy 
classed for each key from the dictionary propagated to the object in the preceding step. If for some 
op1, the set of covered policy classes is a superset of the set of required policy classes for that 
object, then the user can use privilege op1 on the object. 

We now look at the algorithm complexity. Steps 1 and 2 can be implemented to at most perform a 
single traversal of each ua node, edge in the user DAG, and each bridge edge. Steps 3 and 4 traverse 
each object DAG edge at most once. Step 5 takes constant processes each o node at most once. In steps 
6 and 7 we store DFS results at each processed node such that the information can be reused by other 
DFSs. As a result, the set of executed DFSs is guaranteed to traverse each edge in the object DAG at 
most twice (and touch each oa node at most three times). In summation, each nod and edge in the graph 
is then guaranteed to be touched/traversed at most 3 times (most much less and some not at all). This 
makes the algorithm linear with respect to the number of edges, O(n + m). 

5.2 Empirical Algorithm Results 

In this section, we evaluate the scalability of our PReview algorithm versus the two available reference 
implementations (NIST PM and Medidata). For our experimental platform we used an Oracle VirtualBox 
Ubuntu virtual machine with two cores and 10GB of memory running on a commodity laptop. For 
software to encode the algorithms, we used Python 2.7 and NetworkX (a graph algorithms library). 
Faster execution times can be achieved through use of more efficient programming languages (e.g., C) 
but our goal was to evaluate relative performance of the algorithms. These results then are an upper bound 
on what can be achieved relative to execution time. With respect to memory, none of the algorithms used 
even a majority of the available memory and thus we do not report memory usage statistics. 

6For example, if one successor has key/value pair op1 → (pc1) and another successor has key/value pairs op1 → (pc2) and 
op2 → (pc3), then the union of the dictionaries would be key/value pairs op1 → (pc1,pc2) and op2 → (pc3). 

10
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

For our empirical scalability study, we used the PReview variant that computes the set of accessible 
objects for a particular user and the set of operations available for each accessible object. For comparitive 
purposes, we coded up the analogous algorithms from both NGAC reference implementations (the NIST 
PM [20] and Medidata [17]) using the same language and libraries. These implementations are discussed 
in section 3. The Medidata algorithm was perfectly analogous (identical inputs and outputs), however the 
NIST PM algorithm performed additional work not required to obtain our desired output. For example, 
the NIST PM algorithm outputs the oa nodes accessible to a user, not just the o nodes. To avoid unfairly 
penalizing the NIST PM algorithm, we included in our implementation only those parts relevant to 
obtaining the desired output. 

To test the scalability of the algorithms, we generated access control graphs that varied in size from 
1000 to 2000000 nodes. We used the number of nodes, n, as the independent variable and then scaled 
all other graph features relative to n. For each node type (u, ua o, ou, and pc) we use the following node 
proportions. 

Number of user nodes = .1 × n
 
Number of user attribute nodes = .1 × n
 
Number of object nodes = .5 × n
 
Number of object attribute nodes =.3 × n
 
Number of pc nodes = 3
 

For edges, we calculated an Erdos-Renyi edge probability, p, used to create random graphs [8] such that 
the mean number of edges per node would be no more than 5. Then, for each candidate edge allowed by 
the NGAC specification, we used p to determine whether or not to place the candidate edge in the graph. 
The only exception is that we limited the length of the u to pc paths in the user DAG and o to pc paths 
in the object DAG to be at most 5. We did this for the user DAG by dividing the ua nodes into 4 groups 
labeled with consecutive integers. Edges leaving a node were only allowed to go to nodes in groups with 
higher numbered labels (edges within a group were not allowed). A similar operation was performed for 
the object DAG. 

There does not exist any references that one can leverage for creating random NGAC graphs. Thus, 
we assigned the above parameters according to qualitative expert domain knowledge to create as realistic 
NGAC graphs as possible. To make sure that any particular parameter choice did not unfairly hamper one 
of the algorithms, we ran numerous experiments (not shown) where for a graph size of 2000 nodes, we 
varied the following parameters: proportion of nodes of a particular type (u, ua, o, oa, and pc), number of 
layers for the user and object DAG (to include turning off this feature), and the mean number of edges per 
node. We chose graphs of 2000 nodes for this experiment because that was the maximum size at which 
all three algorithms had a less than 20s execution time. Some of these parameter changes produced no 
significant effect on execution time (e.g., number of pc nodes) while others produced significant changes 
(e.g., those related to the number of edges in the graph). The number of edges in the graph was affected 
by two factors: the number of candidate edges and the p variable. The number of candidate edges was 
changed by varying the proportion of ua and oa nodes and the number of layers. The p variable, used 
to calculate whether or not to instantiate a candidate edge, was changed by varying the target parameter 
for the mean number of edges per node. While we were able to change the execution times through 
parameter manipulation, the relative execution times between the three algorithms remained the same. 

In the figures, we refer to our algorithm as PReview and the other two as ‘Medidata’ and ‘NIST 
PM’. We also provide results for an algorithm ‘PReview-nonrc’ which is simply a non-recursive version 
of PReview. For each data point, we took the mean of 300 trials. We limited each algorithm to taking 
no more than 60s, at which point we terminated further use of that algorithm. In an actual NGAC 
deployment, the required response time to show a user their accessible objects is more likely to be less 
than 2s. 

11
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

Figure 3: Execution time on graphs up to 10000 
nodes. 

0 500000 1000000 1500000 2000000

Number of Nodes

0.2

0.4

0.6

0.8

M
e
a
n
 T

im
e
 (

se
co

n
d
s)

Fastg Fastg-nonrc

Figure 4: Execution time on graphs up to 
2000000 nodes. 

Figure 3 shows the timing for all three primary algorithms for graphs up to 10000 nodes. At 10000, 
the PReview algorithm took a mean of 0.077s to retrieve the set of objects available to a particular user. 
The NIST PM algorithm was 285 times slower, taking 22s. The Medidata algorithm exceeded the 60s 
limit at just 4000 nodes. Given that the required response time in an actual deployment is likely just a 
couple of seconds, the Medidata and NIST PM algorithms are limited to being used on graphs with less 
2000 (that conform to our parameters). 

Figure 4 shows the performance of the PReview-nonrc and PReview algorithms on graphs up to 
2000000 nodes. The PReview algorithm takes on average 0.373s at 2000000 nodes and appears to have 
sub-linear curve. The non-recursive version takes 0.929s at 2000000 nodes which is 2.5 times longer. 
This difference may simply be due to the fact that we found better code optimization for the recursive 
code (theoretically the two should have similar runtimes). The non-recursive version can be used in 
situations where recursion is not desired or for graphs where the recursion depth might be an issue (some 
programming language limit recursion depth). 

Given our assumed operation requirements of less than 2s, this makes PReview scalable up to the 
largest graphs that we produced (that conform to our parameters). We did not generate larger graphs due 
to execution time and memory limitations on our code used to produce the NGAC graphs. 

Note, great care must be taken in interpreting these results. Our intention was to create as realistic 
graphs as possible and then show that the relative performance of PReview greatly outperformed that of 
the Medidata and NIST PM solutions. In this work, we have done that both theoretically and, in this sec
tion, empirically. However, NGAC graphs from operational deployments may have different parameter 
values or properties not modeled by our graph simulator. Such differences can greatly affect the absolute 
timing values (as we saw in our experiments on graph of 2000 nodes in changing the parameter values). 
Thus, we caution the reader to avoid using this work to calculate a precise upper bound on the size of 
graph that can be processed by any of the three algorithms. That said, the linear nature of PReview 
should make it suitable for use on any realistic NGAC graph. 

5.3 Algorithm to Determine Which Users Can Access a Particular Object 

We now discuss how to modify the PReview algorithm to execute in ‘reverse’, although the actual al
gorithm is more complicated than a clean inverse. It is more accurate to say that this new algorithm 
recomposes and slightly modifies pieces of the PReview algorithm. This additional algorithm enables us 
to answer our third determination from section 5: ‘What is the set of users that can access an object, o1, 
and what operations can those users perform on o1?’. 

12
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

To perform PReview in reverse we start at an object, o1 and label it our ‘object of interest’. We 
perform a topological sort DFS from o1 to find the set of required pc nodes. At the same time, we 
identify the set of reachable oa border nodes. Each reachable oa border node is labeled with the pc nodes 
reachable from that node. This is very similar to steps 6 and 7 of the PReview algorithm. However, our 
goal this time is to label all oa border nodes (in linear time). 

We now know the set of required pc nodes for o1. What we need to determine is, for each user, the 
set of ops the have on o1 paired with the covered pc nodes for those ops. With that information, we 
can use the same logic in PReview step 8 to determine if the user can access o1 and with what ops. To 
determine the set of ops paired with the covered pc nodes, we could simply BFS from each user to find 
the reachable oa border nodes that have been labeled with this information. However, that would create 
a quadratic algorithm. Thus, we once again use a topological sort DFS starting from the user nodes to 
propagate up this information from the oa border nodes. During execution of each topological sort DFS, 
all visited ua nodes are labeled with this information so that it can be reused in subsequent topological 
sort DFSs starting at different users (similiar to step 7 of PReview). Note that since we label ua nodes 
only once and then reuse that information between topological sort DFSs (one per user), the amortized 
cost for the time complexity is linear as with the PReview algorithm. 

In more detail, the algorithm is as follows: 

1. Perform a topological sort DFS from o1 to identify all oa border nodes (those with a back edge to 
at least one ua node) and label them with the pc nodes reachable from the labeled node. 

2. Using the same topological sort DFS from the previous step, find the set of required pc nodes for 
o1 (the pc nodes reachable from o1). 

3. For each user, perform a recursive topological sort DFS to find the reachable oa border nodes. 
However, when performing each DFS, label all processed ua nodes with the information found. 
However, we need to discuss how to create the information that is then propagated through the 
graph. When traversing an ops edge (those from a ua to oa node) they will be labeled with a set of 
ops. The associated oa node will be labeled (from our previous steps) with a set of reachable pc 
nodes. Together this forms a privilege pairing where each operation in ops is ‘covered’ by the set 
of pc nodes from the label on the oa node. 

4. Each user node is now labeled with a set of operations and the covered policy classes for each 
operation. Since we know the from step 2 the required pc nodes for o1, we can use PReview step 
8 individually for each user to determine the privileges each user has on o1. 

5.4 Memory Analysis of the PReview Algorithm 

We now evaluate the memory usage of the core PReview algorithm. This is necessary as in algorithm de
sign, it is often possible to lower execution time through ‘tricks’ that consume large amounts of memory. 
At an extreme, an algorithm that achieved a linear execution time through using exponential amounts of 
memory would not be useful. Below we provide results showing that PReview uses a modest amount 
of memory. We also show that access control graphs on which PReview was executed also consume 
a modest amount of memory (although much more than the PReview algorithm). Figure 5 shows the 
memory usage of the PReview algorithm as the number of nodes in the generated access control graph 
varied from 25000 to 2000000. The growth rate empirically appears to be almost sub-linear. 

Figure 6 shows the maximum memory usage out of the 50 trials for each data point for the same 
experiment. A linear trend is observable here although the algorithm will randomly use far less memory 
for certain data points, creating the periodic deep troughs. This is reflective of the fact that some users 
had simpler relevant subgraphs enabling the PReview algorithm to use less memory. 

13
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

0

10

20

30

40

50

60

70

80

0 500000 1000000 1500000 2000000

M
ea

n
 M

em
o

ry
 U

sa
ge

 (
M

eg
ab

yt
es

)

Number of Nodes

Figure 5: Mean memory usage of the PReview algorithm on graphs up to 2000000 nodes with 50 trials 
per data point. 

Lastly, we show the memory consumed by the access control graphs themselves in Figure 7. Note that 
the graphs themselves consume much more memory than the PReview algorithm run on those graphs. At 
25000 nodes, the graphs use 88% of the total memory consumed by PReview operating on the graphs. 
At 700000 nodes, the graphs use 98% of the total memory consumed. This indicates that as the graph 
size grows, the relative consumption of memory by PReview becomes negligible, which is remarkable 
given that PReview is also a linear execution time algorithm. 

The modest linear growth rate of the memory consumption of the access control graphs means that a 
commodity laptop with 16GB of memory could handle graphs up to around 6.7 × 106 nodes. PReview is 
more likely to be run on large servers with much more memory and thus could handle appreciably larger 
graphs. 

6 Access Control Visualization 

These graph algorithms enable access control decisions to be made while simultaneously instantiating 
multiple access control policies. However, a major question remaining is how to effectively communicate 
this set of privileges to the users and enable administrator review of a user’s privileges. To this end we 
have designed an access control visualization approach that meets the following goals: 

0

20

40

60

80

100

120

140

160

180

0 500000 1000000 1500000 2000000

M
ax

im
u

m
 M

em
o

ry
 U

sa
ge

 (
M

eg
ab

yt
es

)

Number of Nodes

Figure 6: Maximum memory usage of the PRe
view algorithm on graphs up to 2000000 nodes 
with 50 trials per data point. 

0

200

400

600

800

1000

1200

1400

1600

1800

0 100000 200000 300000 400000 500000 600000 700000

M
ea

n
 M

em
o

ry
 U

sa
ge

 (
M

eg
ab

yt
es

)

Number of Nodes

Figure 7: Mean memory consumed by the gen
erated access control graphs up to 700000 nodes 
with 50 trials per data point. 

14 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

Figure 8: Example hierarchical visualization of a user access rights directed acyclic graph. 

1. Leverage the access control graph to create a default visualization method for review of user file 
access (this avoids administrators having to separately maintain some sort of file hierarchy). 

2. Abstract away the access control policy details such that the users (or administrators) do not need 
to understand the policies nor need to know which of the files are covered by which policies. 

A visualization approach meeting these goals will provides a default mechanism to enable efficient re
view of user privileges. 

The NIST PM implementation, version 1.5, meets the first goal by leveraging the access control 
graph. This approach uses the PM itself as a root node in a file hierarchy and then the instantiated access 
control policies as the second level folders. Clicking on the access control policies enables the user 
to traverse the object DAG backwards (displaying only oa nodes pertaining to the chosen policy) until 
reaching the desired files. Unfortunately, this approach does not meet our second goal because their 
system requires one to navigate to the user’s files by knowing which files are covered by which policies. 

Our solution is to use the user’s name as the root in a hierarchical file structure. The second level 
‘folders’ are the labels for the border oa nodes reachable from the user’s u node. Given the importance of 
the border edges in the NGAC access control Definition 1, it is natural to use the border oa nodes as the 
first layer of file organization for the user. When a user clicks on an oa node name, the next level folders 
that appear are the oa node predecessors in the object DAG for which the user has some privilege. This 
graph traversal stops when the user reaches object nodes. 

In our approach, we abstract away the complexity of the access control graph to make it appear to 
the user as if they are traversing the usual hierarchical directory structure used by default in all major 
operating system. In reality, the user is traversing possibly overlapping paths of the graph. The number 
of such paths is exponential and so we perform calculations only on the path actually being traversed by 
the user. Furthermore, there may be multiple ways for a user to access a particular file. This enables built 
in flexibility that previously had to be provided explicitly with artifacts such as symbolic links. 

15
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

Figure 8 provides an example view of a user’s accessible objects taken from one of our testing 
datasets covering a medical scenario. While it appears to be a typical file hierarchy, note how there are 
multiple paths by which to traverse to particular files (demonstrating that we are actually traversing a 
graph). For example, file ‘mrec1’ is available via three different paths in the graph: root → T S, root → 
MedRecords, and root → alicehome → AliceMedRecords. In fact, all files shown in this visualization 
depict this multi-path behavior except for the files ‘DAC uattrs rep’ and ‘alice home rep’. 

6.1 Predecessor Node Visualization Algorithm 

We now provide an efficient algorithm to determine what files and folders to show when a user clicks 
on some ‘folder’. Initially, this will be one of the labels for the border oa nodes reachable from the user 
node, u1 (which the user can always view by definition). The algorithm is as follows: 

1. Let the ‘folder’ on which the user clicks correspond to an oa node, x (note that this algorithm 
assumes that x is a node that u1 has the ability to view). 

2. Execute a variant of PReview where in step 4, the algorithm stores all visited nodes instead of just 
objects when performing the backwards BFS. Thus, we have identified a set of nodes of ‘interest’ 
that includes both o and oa nodes. 

3. In step 5 of the PReview algorithm, use the set of predecessors of x as the input nodes and intersect 
this set with the set of nodes of interest (from the previous step in PReview) to create a new set of 
nodes of interest. This is analogous to what already occurs in step 4 except that instead of using a 
single object as input we are using x’s set of predecessor nodes. 

4. PReview will return whether or not each predecessor of x is visible to u1. Display those predeces
sors that are visible. 

This algorithm is a simple variant on PReview and thus is linear, O(n + m) (assuming as usual that 
the number of distinct access right types and policy classes are a small constant). 

6.2 Visualization Examples 

We now return to our example of the accountant Bob who is working on the defense systems finances for 
a deathstar. We will use our visualization approach to show the files available to Bob in Figure 2 using 
the corresponding node labels. 

The fully available hierarchical tree for user Bob is shown in Figure 9. This assumes that Bob has 
clicked on the ‘Bob Personal’ folder followed by a click on the ‘Bob Deathstar Files’ subfolder. It 
also assumes that Bob has clicked on the ‘Deathstar Project’ folder followed by a click on the ‘Defense 
Systems’ folder. These four clicks expand out visually all of Bob’s available folders and files as shown 
in Figure 9. Note that the ‘Technical Designs’ folder and the ‘Energy Shield’ file are not visible because 
they are not accessible to user Bob. 

A feature of this approach is that user Bob has access to the ‘Deathstar Finances’ file through both 
his own documents folder as well as the ‘Deathstar Project’ folder (logically this is because Bob is the 
owner/maintainer of that file). This again demonstrates the power of the approach where the user visually 
sees a hierarchy but can access the same files through multiple paths (without the need to explicitly create 
such linkages). 

Note that while Bob has access to the ‘Deathstar Project’ folder, he is unable to see anything regarding 
the ‘Technical Designs’ folder including the ‘Energy Shield’ file. For Bob to be able to access the 
‘Technical Designs’ sub-folder and ‘Energy Shield’ file, there would have to exist an edge oa5 → oa2, 

16
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

Figure 9: Example File Hierarchy for Access Con
trol Graph in Figure 2. 

Figure 10: NIST PM File Hierarchy for Access 
Control Graph in Figure 2. 

oa3 → oa2, oa5 → oa1, or oa3 → oa1 (see Figure 2). Alternately, the existence of an edge o3 → oa1 or 
o3 → oa2 would be sufficient to allow Bob access to the ‘Energy Shield’ file per Definition 1. However, 
for this our visualization approach would not allow Bob to use the ‘Technical Designs’ folder because 
it would still not be accessible to Bob. In this case, Bob could access the ‘Energy Shield’ file through 
the folder ‘Bob Personal’. Thus, when a user cannot get to one of their files through some particular oa 
node, there generally exists another oa node that will permit access through the visualization approach. 

Figure 10 shows how the same example appears using the NIST PM visualization interface. The 
NIST PM also creates a hierarchical tree structure for the user to access their files or for an administrator 
to perform a policy review (shown in Figure /refbob-old). However, they root each user’s tree at a node 
called “PM”. The second layer of the hierarchy is the set of policy classes available as represented by the 
set of pc nodes. Then the subsequent “folders” are the oa nodes reachable from each respective pc node 
found through performing a backwards BFS. The leaf nodes then are the objects. 

This approach has the same implicit symbolic link type advantages as our approach. Thus, we cannot 
claim to have invented this feature but, to our knowledge, this is the first time it has been identified as a 
useful feature. However, it a distinct disadvantages relative to our approach. The user must have some 
knowledge of the access control policies being implemented and must know which of their files are 
covered by which access control policies. Otherwise, the user might search down the hierarchical tree of 
one access control policy only to discover that the file is only reachable through a different hierarchy. 

Furthermore, the implementation of the NIST PM approach version 1.5 used cubic algorithms and 
pre-computed the entire tree from the PM root not as opposed to our on demand approach. They did not 
computer whether or not the user can access a particular oa node, only the final leaf nodes (the files). 
This can cause the user to explore paths in their tree that would not lead to the files they are allowed 
to access. The resulting implementation takes excessive execution times on only small example graphs 
(e.g., several minutes). 

Because of this, the NIST PM implementation team has adopted our approach in version 1.6 of 
their reference implementation. The example hierarchy of our visualization approach in Figure 9 was 
generated from a development version of the revised NIST PM version 1.6. Since this code was still 

17
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

Figure 11: Minimal Access Control Graph Containing an Orphaned File. 

under development by the implementation team, this explains why the root node in Figure 9 is still 
labeled “PM” when according to our approach it should be labeled “Bob”. 

6.3 Orphan Files 

One issue that we must discuss is that there does exist the possibility that a user may not be able to 
traverse the our visualization to reach a file that by Definition 1 is accessible. We call such files ‘orphan’ 
objects. None of the examples in the NGAC or the PM specification will generate orphans. Likewise, in 
our own test data sets we have never experienced an orphan file. Nevertheless, the possibility exists and 
so we discuss approaches to address this eventuality. 

For an orphan file to exist for a particular user, there must be an object node that is accessible but 
each path from the object to the set of reachable border oa nodes has a node that is not accessible. This 
happens when for each path, there exists an intermediate node that ‘requires’ a policy class not provided 
by the path’s border oa node (or any other path from that node to a reachable border oa node). Note 
that an intermediate oa node requires a policy class when it has a path to the corresponding pc node 
(see Definition 1). While the intermediate nodes on each path are not accessible, each path still provides 
the user privileges to the object such that the union of the received privileges enables the object to be 
accessible. 

Figure 11 shows the simplest possible access control graph with an orphan file. o1 is accessible 
because it receives pc1 read privileges from oa2 and pc2 read privileges from oa1. However, oa3 is not 
accessible because it requires pc1 privileges but only receives pc2 privileges from oa1. Likewise, oa4 is 
not accessible because it requires pc2 privileges but only receives pc1 privileges from oa2. 

We have identified three different approaches to handling the possibility of orphan files such that the 
user can still find and access them: 

1. Enable the user to perform a search through all accessible files as a method to have access to any 
orphaned files. Our PReview algorithm from section 5.1 can provides a list of all accessible files, 
both orphaned and available through the visualization approach. The user can simply perform a 
regular expression search on that list. 

2. In the user’s visualization of their file hierarchy, provide a folder at the second tier (alongside the 
reachable border oa node labels) that is labeled ‘Orphan Files’. The orphan files can be detected 
when first launching the visualization and then listed in that directory. Our linear time algorithm 
for finding orphan files is provided below. 

3. Show the user orphaned files while they are traversing their hierarchical file structure. Whenever 
a non-accessible folder is encountered, perform a search for orphaned nodes only above the non-
accessible folder. If orphans are encountered then show them in the current directory with a special 

18
 



Linear Time Algorithms to Restrict Insider Access Mell,Shook,Harang and Serban
 

designation to indicate that they are orphans. This can be accomplished through using our linear 
time algorithm to find orphans (below) in combination with a reverse BFS from the non-accessible 
folder. 

Each of these three approaches can be used independently or together simultaneously. 

6.4 Orphan Node Detection Algorithm 

This algorithm, based on PReview, enables one to detect orphan nodes for a user node u1 in linear time. 
The algorithm is as follows: 

1. Execute a variant of PReview where in step 4, the algorithm stores all visited nodes instead of just 
objects when performing the backwards BFS. Thus, we have identified a set of nodes of ‘interest’ 
(including both o and oa nodes). 

2. PReview will return the o and oa nodes that are accessible. 

3. Analogous to steps 1-4 in the PReview algorithm, perform a backwards BFS from the set of reach
able border oa nodes. However, this time only visit a node if it is accessible (determined in the 
previous step). Record this set of visible nodes. 

4. The set of accessible nodes (from step 3) that are not visible (from step 4) is the set of orphan 
nodes. 

7 Future Work and Challenges 

One major challenge to NGAC is to keep the size of the graph manageable. There could be a large 
number of attributes assigned to many different users, and without adequate checks it is possible for 
local decisions to create attributes that are equivalent, but semantically the same. Thus, causing a node 
or attribute “blow-up.” For instance, one administrator could create a formal attribute for a project name 
while the other could use an abbreviation or alias. Equally likely the NGAC graph could have an edge 
“blow-up.” There could be both a directed path ua1 → ua2 → ua3 and the assignment ua1 → ua3 within 
the graph. However, the assignment ua1 → ua3 is redundant and can be safely removed. With good 
design and clever logical reductions, our initial research indicates that the size of a NGAC graph can be 
kept minimal. 

One of the advantages of ABAC is that it allows denial or prohibition of a privilege. Currently, in 
existing NGAC implementations a proposed privilege is checked against a list of prohibitions before a 
decision is made. Although not immediately clear it is possible to model prohibitions within NGAC in 
an efficient manner so that a list of prohibitions is not needed. For instance, user Smith, an IRS auditor, 
maybe able to alter tax returns however he should be prohibited from altering his own tax return. We 
will explore how to efficiently implement prohibitions with NGAC in future work. 

Even if the size of the graph becomes large, we presented work in this paper that some basic policy 
review can be done in linear time. In its current form, PReview focuses on what objects a user has access 
to or what users have access to an object. However, a fully implemented NGAC model has more complex 
policy review needs. Such as incorporating prohibitions in the access decisions. With careful NGAC 
design we can adapt PReview, without increasing algorithmic complexity, to consider prohibitions along 
with other complex policy review. 

In future work we will discuss NGAC graph management, a treatment of prohibitions, and a more 
general PReview algorithm. 

19
 



Linear Time Algorithms to Restrict Insider Access	 Mell,Shook,Harang and Serban
 

8 Conclusion 

It is vital to limit insider access to only the data necessary to perform their work in order to limit possible 
leakage of sensitive data to outside entities. To best constrain this access, we need a scalable access 
control methodology that supports protection of objects under the simultaneous instantiation of multiple 
access control policies (e.g., DAC and MAC). 

The NGAC provides a solution to this important problem by enabling the instantiation of multiple 
security policies within a single access control system. It quite appropriately provides requirements 
without specifying implementation details, allowing for competing approaches. However, the existing 
reference implementations use cubic algorithms, which raised the serious question as to whether or not 
NGAC is scalable. Furthermore, NGAC did not provide guidance on how to visualize the results of the 
systems, making it unclear how perform review of user access privileges. 

This work addresses both of these issues. In [7] the authors pointed out that performing policy 
review on ABAC models, such as NGAC, is polynomial time. We provide the first implementation 
of NGAC using an efficient linear time algorithm (bounded to the parts of the graph relevant to the 
user). With minimal modifications the methods used in PReview can be adapted for other types of 
policy review as well, such as identifying the users that can access an object. Furthermore, we provide a 
novel visualization approach that works by default with multiple access control policies and that enables 
efficient linear time review of user access rights. Given that the only other multi-policy approach with 
available reference implementations has been shown to not be scalable, our work thus enables for the 
first time a scalable methodology for limiting user access through simultaneous instantiation of multiple 
policies. 

9 Acknowledgments 

The authors would like to thank Aaron Zinger from Medidata for his help in understanding their im
plementation. We would also like to thank David Ferraiolo from NIST for his expert advice on how to 
construct realistic access control graphs, guidance on learning the nuances of the NGAC standard, and 
the associated NIST Policy Machine implementation. Lastly, we would like to thank Wayne Jansen from 
the NGAC ANSI committee for his help in understanding the standard. 

References 

[1] ANSI. American national standard for information technology, role-based access control (RBAC), 2004. 
[2] ANSI. American national standard for information technology - next generation access control - functional 

architecture (NGAC-FA), 2013. 
[3] ANSI. American National Standard for Information Technology - Next Generation Access Control - Generic 

Operations And Data Structures (NGAC-GOADS), 2016. 
[4] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations. Technical report, DTIC 

Document, 1973. 
[5] K. Belyaev. tinyPM Prototype. www.github.com/kirillbelyaev/tinypm, 2015. 
[6] K. J. Biba. Integrity considerations for secure computer systems. Technical report, DTIC Document, 1977. 
[7] P. Biswas, R. Sandhu, and R. Krishnan.	 Label-based access control: An ABAC model with enumerated 

authorization policy. In Proceedings of the 2016 ACM International Workshop on Attribute Based Access 
Control, ABAC ’16, pages 1–12, New York, NY, USA, 2016. ACM. 

[8] B. Bollobas.	 Random graphs. Cambridge studies in advanced mathematics. Cambridge university press, 
Cambridge, New York (N. Y.), Melbourne, 2001. 

20
 

www.github.com/kirillbelyaev/tinypm


Linear Time Algorithms to Restrict Insider Access	 Mell,Shook,Harang and Serban 

[9] D. F. Brewer and M. J. Nash. The chinese wall security policy. In Security and Privacy, 1989. Proceedings., 
1989 IEEE Symposium on, pages 206–214. IEEE, 1989. 

[10] D. Ferraiolo, V. Atluri, and S. Gavrila. The policy machine: A novel architecture and framework for access 
control policy specification and enforcement. Journal of Systems Architecture, 57(4):412–424, 2011. 

[11] D. Ferraiolo, S. Gavrila, and W. Jansen. Policy machine: Features, architecture, and specification. Technical 
Report NISTIR 7987 Revision 1, National Institute of Standards and Technology, Oct. 2015. 

[12] GitHub. Github code repository. www.github.com. 
[13] X. Jin, R. Krishnan, and R. Sandhu.	 A Unified Attribute-Based Access Control Model Covering DAC, MAC 

and RBAC, pages 41–55. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. 
[14] B. W. Lampson. Dynamic protection structures.	 In Proceedings of the November 18-20, 1969, Fall Joint 

Computer Conference, AFIPS ’69 (Fall), pages 27–38, New York, NY, USA, 1969. ACM. 
[15] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, Jan. 1974. 
[16] F. Mayer, D. Caplan, and K. MacMillan.	 SELinux by example: using security enhanced Linux. Pearson 

Education, 2006. 
[17] Medidata	 Solutions Worldwide. Medidata Policy Machine code on github, version 1.1.0. 

www.github.com/mdsol/the policy machine, 2016. 
[18] P. Mell, J. M. Shook, and S. Gavrila. Restricting insider access through efficient implementation of multi-

policy access control systems. In Proceedings of the 2016 International Workshop on Managing Insider 
Security Threats, pages 13–22. ACM, 2016. 

[19] NCSC. A Guide to Understanding Discretionary Access Control in Trusted Systems. Number NCSC-TG-003. 
National Computer Security Center, Fort George G. Meade, Maryland, USA, 1 edition, Sept. 1987. 

[20] NIST. NIST Policy Machine code on github, version 1.5. www.github.com/PM-Master/PM, 2016. 
[21] OASIS. eXtensible access control markup language (XACML) Version 3.0., OASIS Standard, Jan. 2013. 
[22] OASIS.	 Organization for the advancement of structured information standards (OASIS). www.oasis

open.org, 2016. 
[23] A. C. O’Connor and R. J. Loomis. 2010 Economic Analysis of Role-Based Access Control. Technical report, 

2010. 
[24] E. Sahafizadeh and S. Parsa.	 Survey on access control models. In 2010 2nd International Conference on 

Future Computer and Communication, 2010. 
[25] R. S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19, 1993. 
[26] D. Servos and S. L. Osborn.	 HGABAC: Towards a Formal Model of Hierarchical Attribute-Based Access 

Control, pages 187–204. Springer International Publishing, Cham, 2015. 
[27] F. Turkmen and B. Crispo. Performance evaluation of XACML PDP implementations. In Proceedings of the 

2008 ACM Workshop on Secure Web Services, SWS ’08, pages 37–44, New York, NY, USA, 2008. ACM. 
[28] U.S. Department of Defense. Trusted computer system evaluation criteria DoD 5200.28-STD, 1985. 
[29] E. Yuan and J. Tong.	 Attributed based access control (ABAC) for web services. In IEEE International 

Conference on Web Services (ICWS’05), page 569, July 2005. 
[30] W. Zeng, Y. Yang, and B. Luo. Content-based access control: Use data content to assist access control for 

large-scale content-centric databases. In Big Data (Big Data), 2014 IEEE International Conference on, pages 
701–710, Oct 2014. 

Author Biography 

21
 

http:open.org
www.oasis
www.github.com/PM-Master/PM
www.github.com/mdsol/the
http:www.github.com

	Introduction
	Background
	Common Access Control Policies
	The Need for Simultaneous Instantiation

	Related Work
	Access Control Graph Overview
	Access Control Algorithms
	The PReview Algorithm
	Empirical Algorithm Results
	Algorithm to Determine Which Users Can Access a Particular Object
	Memory Analysis of the PReview Algorithm

	Access Control Visualization
	Predecessor Node Visualization Algorithm
	Visualization Examples
	Orphan Files
	Orphan Node Detection Algorithm

	Future Work and Challenges
	Conclusion
	Acknowledgments

