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We study the optically induced torques in thin film ferromagnetic layers under excitation by
circularly polarized light. We study cases both with and without Rashba spin-orbit coupling using a
4-band model. In the absence of Rashba spin-orbit coupling, we derive an analytic expression for the
optical torques, revealing the conditions under which the torque is mostly derived from optical spin
transfer torque (i.e. when the torque is along the direction of optical angular momentum), versus
when the torque is derived from the inverse Faraday effect (i.e. when the torque is perpendicular to
the optical angular momentum). We find the optical spin transfer torque dominates provided that
the excitation energy is far away from band edge transitions, and the magnetic exchange splitting
is much greater than the lifetime broadening. For the case with large Rashba spin-orbit coupling
and out-of-plane magnetization, we find the torque is generally perpendicular to the photon angular
momentum and is ascribed to an optical Edelstein effect.

I. INTRODUCTION

The interaction between light and magnetism is of
fundamental and technological interest [1]. There are
several mechanisms underlying optical control of mag-
netism. Among these include a range of thermal and
quantum mechanical effects which lead to ultrafast de-
magnetization [2–5]. Light absorption also modifies the
electron distribution function, which can change the mag-
netic anisotropy and lead to magnetic dynamics [6–8].
Another optical effect is spin transfer torque from ab-
sorption of circularly polarized light. Optical spin trans-
fer torque operates on the same principle as electrical
current-induced spin transfer torque [9–11]: In both cases
conservation of total spin angular momentum implies
that a net flux of angular momentum flow into a fer-
romagnet results in a torque on the magnetization [12–
14]. In this simple picture of optical spin transfer torque,
spin-orbit coupling is neglected so that total spin is con-
served. In instances where spin-orbit coupling is not neg-
ligible, spin conservation no longer applies and an ex-
citation may induce a torque on the magnetization in
which the angular momentum is supplied by the lattice
[15, 16]. The angular momentum transfer is mediated by
spin-orbit coupling, and the resulting torque is known as
spin-orbit torque. Spin-orbit torques have been realized
and extensively studied using DC electrical excitation of
heavy metal-ferromagnet bilayers [17–19], and in indi-
vidual Rahsba ferromagnets [20]. Spin-orbit torque may
have advantages over spin transfer torque in terms of the
efficiency of magnetic switching [21]. Optically excited
spin-orbit torques are so far less well established.

The most well studied system for optical magnetic
torques is GaMnAs, an archetypical ferromagnetic semi-
conductor. To our knowledge, all previous analysis of
GaMnAs consider the bulk response [9, 10, 16, 22]. The
optical response of metallic systems has also recently
been studied theoretically [23, 24]. These previously con-
sidered semiconductor and metallic bulk systems natu-
rally lack Rashba spin-orbit coupling. Rashba spin-orbit

coupling is central to the analysis of Ref. [25], which
computes the optically induced effective magnetic fields
in a thin film Rashba ferromagnet with parallel L and
M.

FIG. 1: (a) shows magnetization (solid dark arrow) and spin
of eigenstates (thin red arrows) for magnetic exchange split-
ting ∆ much greater than Rashba spin-orbit splitting BR. (b)
shows the nonequilibrium spin density induced by light with
circular polarization L incident on the sample at an angle β
with respect to the z-axis. (c) and (d) show the same in the
case ∆ � BR.

Here we consider the optical spin-transfer and spin-
orbit torques which are present in a thin film ferromag-
net, both with and without Rashba spin-orbit coupling.
The geometry is shown in Fig. 1: we study both in-plane
and out-of-plane magnetic configurations, and consider
light with an oblique angle of incidence β. Similar geome-
tries have been employed in recent experiments [26, 27].
The misalignment between L and M is a key distinction
between this work and Ref. [25], and is responsible for
the magnetic torques analyzed here. The torque on the
magnetization is perpendicular to M and can be writ-
ten in terms of the vector components along M× L and
M ×M × L. These torques can be understood arising
from effective magnetic fields: the torque in the M × L
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direction is the result of an effective magnetic field along
L. This field is identified with the inverse Faraday effect
[28, 29], and we note that the associated torque is odd
with both helicity and magnetization. The torque along
the M ×M × L is due to an effective field along the
M× L direction. This torque is identified as the optical
spin transfer torque [9, 24], and is odd in L and even in
M.

The relative magnitude of these two components of
the torque plays an important role in interpreting exper-
iments and determining the underlying mechanisms of
the torque. Ref. [27] measures the relative magnitude
of the optical torques derived from the spin transfer and
inverse Faraday effects for 10 nm thick layers of Ni, Co,
and Fe. They find the torque derived from the inverse
Faraday effect is larger, although the addition of a Pt cap-
ping layer substantially increases the optical spin transfer
torque component. Ref. [24] uses density functional the-
ory and a Keldysh Green’s function approach to compute
the components of the optical torque as a function of life-
time broadening for bulk Co, Fe, and FePt. They find the
torque associated with the inverse Faraday effect is gen-
erally larger than the optical spin transfer torque for Co
and FePt, but that the two components are comparable
for Fe. There is good agreement between the magnitude
between experiment and theory for the inverse Faraday
effect-derived torque for Fe. It’s difficult to rationalize
the relative magnitude of the torque in first principles
calculations due to the complexity of the electronic band
structure.

In this work we use time-dependent perturbation the-
ory to derive expressions for the steady state torque.
This approach has the benefit of providing a basis for
understanding the relative magnitude of the torque com-
ponents in terms of single particle wave functions and
energies. We first present analytic expressions for the
optical torques in the absence of Rashba spin-orbit cou-
pling for a simple 4-band model. The simplicity of the
model enables closed form expressions, which provide in-
sight into how system parameters determine the relative
magnitudes of the optical spin transfer torque and the
torque derived from the inverse Faraday effect. We next
compute the optical torque for strong Rashba spin-orbit
coupling. For an out-of-plane magnetization, the torque
is primarily along the M× L direction. In this case, the
torque can be understood in similar terms as the Rashba-
Edelstein derived torque [30, 31]: Absorption of obliquely
incident (β 6= 0) circularly polarized light with angular
momentum L leads to an asymmetry in the electron dis-
tribution function in k-space due to optical selection rules
(see Fig. 2). This asymmetric distribution leads to a DC
charge current via the circular photogalvanic effect [32–
35]. As in the Rashba-Edelstein effect, a nonequilibrium
spin accumulation also results from this distribution [36],
and the nonequilibrium spin exerts a torque on the mag-
netization. Our results show that under certain system
configurations, Rashba spin-orbit coupling can strongly
influence the direction the optical torque.

II. MODEL

A. System description

Our starting point is an effective model for a Rashba
semiconductor with perovskite lattice structure [37].
This is a convenient model for studying optical transi-
tions with Rashba spin-orbit coupling, and describes re-
cently studied mixed halide perovskite semiconductors
which exhibit both exceptional optical absorption and
strong spin-orbit coupling [38]. In these materials the va-
lence band has a predominantly s-like orbital character
and consists of spin S = 1/2 states, while the conduction
band consists of the spin-orbit splitoff J = 1/2 states.
This band ordering is opposite to that of commonly stud-
ied semiconductors such as GaAs (see Appendix A for
more details about the electronic structure). In terms
of real space atomic orbitals |px,y,z〉 and spin | ↑, ↓〉, the
Jz = +1/2 state is given by:

|J+1/2
1/2 〉 = − 1√

3
(|px, ↓〉+ i|py, ↓〉+ |pz, ↑〉) . (1)

Note that the expectation value of the spin is anti-parallel
to J and has a magnitude of 1/6.

FIG. 2: (a) shows the band structure of the perovskite with
∆ = 0.15 eV, BR = 0.5 eV. Gray vertical lines indicate
positions of energetically allowed transitions for h̄ω = 1.9 eV,
while the thicker black vertical line indicates the dominant
transition. u(d) label states aligned (anti-aligned) with the
effective magnetic field, and a is the lattice constant. For
kx > 0, the u state for conduction (valence) band corresponds
to Jy < 0 (Sy < 0), denoted with a dot, while the d state is
denoted with an x. (b) shows the k-resolved steady state
density upon illumination by light with circular polarization
along the y-direction.

Rashba spin-orbit coupling arises from inversion sym-
metry breaking. The spin-orbit coupling acts directly
on the conduction band J states, and indirectly on the
valence band states due to s-p hybridization. To in-
clude ferromagnetism we add a spin-dependent exchange
field of magnitude ∆. Due to the spin character of the
states described above, the exchange field results in a
spin splitting ∆c = ∆ of the S = 1/2 valence band and
∆v = −∆/3 of the J = 1/2 conduction band. The Hamil-
tonian for the system consists of the conduction band Hc,
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the valence band Hv, and the conduction-valence band
coupling Hc−v, given by:

Hc = tck
2 + αcσ · (k× z)− σz (∆/2) + ε0 , (2)

Hv = −tvk2 + αv(k)σ · (k× z) + σz (∆/6) , (3)

Hc−v = iξ (k · σ) + γ1 (4− k+k−)σz. (4)

Here σ is the Pauli spin matrix, tc(v) is the conduction
(valence) intraband hopping parameter, αc(v) is the effec-
tive Rashba parameter for conduction (valence) band, ξ
is the s-p interband hopping parameter, γ1 is the s-p hop-
ping parameter associated with broken inversion symme-
try, ε0 is an energy offset for the conduction band, and k
is the (dimensionless) Bloch wave vector. The spin-orbit
splitting of the valence band αv(k) relies on hybridiza-
tion with the conduction band. For this reason αv(k) is
generally smaller than the spin-orbit splitting of the con-
duction band, and varies non-monotonically with k (see
Appendix A for the full form of αv(k)).

Figure 2(a) shows the model band structure. We label
states parallel (anti-parallel) to the k-dependent effective
magnetic field u(d). Our default parameters lead to the
same sign for the Rashba parameter for conduction and
valence bands [39]. We define BR as the Rashba-derived
splitting at the conduction band minimum.

Appendix A gives the more general form of the 4 × 4
Hamiltonian in terms of basic tight binding hopping pa-
rameters, together with the default values of the parame-
ters used in this work. Eqs. 2-4 are a good approximation
in the limit where the band gap is greater than other en-
ergy scales. This system represents a minimal model in
which to study optical torques, and is amenable to closed
form results which elucidate the physics. We pay a price
for this simplicity: some conclusions derived with this
model are not directly applicable to materials with more
complex electronic structure. However our analysis pro-
vides a framework with which to rationalize the behavior
of more realistic systems. We discuss this more fully in
Sec. IV.

We note that spin-orbit coupling enters the model ex-
plicitly through Hc−v, and implicitly via the assumption
that the J = 1/2 band is split-off from the J = 3/2
bands. The spin-orbit coupling, together with the re-
striction of k to the 2-d plane results in a small magnetic
anisotropy in the system, so that an out-of-plane orienta-
tion is inequivalent to an in-plane orientation. Finally, in
this study we consider hole-doped system, with Fermi en-
ergy EF sufficiently small so that there are no interband
transitions between valence bands. However we do not
self-consistently determine the magnetic exchange split-
ting ∆ in terms of EF ; we take ∆ to be a free parameter.

B. Formalism

In Appendix B, we derive the formula for the steady
state density matrix under monotonic optical excitation
E cos(ωt). The j, k component of the steady state hole

density matrix ρhjk is:

ρhjk(k) =
1

ε+ i
(
Evj − Evk

) ∑
`∈c

i

4

(
vj`v

∗
k`

h̄ω −
(
Ec` − Evj

)
− iε

−
v∗j`vk`

h̄ω − (Ec` − Evk) + iε

)
, (5)

where the subscripts j, k refer to the u, d valence
bands, the sum ` is over conduction band states, ε is
the k-independent broadening associated with the fi-

nite lifetime of carriers, and E
c(v)
j is the (k depen-

dent) j-th energy eigenvalue of conduction (valence)
band. The dipole transition matrix element vjk is

vjk = i〈j|v ·E|k〉/
(
Evj − Eck

)
, where v = ∂H

∂k . The
dipole transition matrix is determined by the conduction-
valence band coupling of Eq. 4. In the limit where of
small k [45], the velocity operator is given by:

vjk ≈ −iξ
〈j|σ ·E|k〉
Evj − Eck

. (6)

We use this approximation in the analytic results of the
next section.

Performing the sum over crystal momentum and the
trace over the diagonal components of ρh gives the steady
state, nonthermalized photoexcited hole-density n:

n =
∑
k

(
ρhuu(k) + ρhdd(k)

)
. (7)

We find it’s useful to present results in terms of the gen-
eration rate density ṅ, which is given by:

ṅ =
ε

h̄
n. (8)

The above equation follows from identifying h̄/ε as the
carrier lifetime τ , and noting that in steady state, n = ṅτ .

The spin density for holes and electrons is given by:

sh = +
1

2
Tr
[
ρhσ

]
, (9)

se = −1

6
Tr [ρeσ] . (10)

The relative sign and magnitude of electron and hole spin
are derived from the spin of the J = 1/2 state, as dis-
cussed earlier. The torque on the magnetization is deter-
mined by the spin component transverse to the magneti-
zation [40, 41]:

Γ =
∆

h̄

(
se − sh

)
× M̂ . (11)

For the numerical results, we consider a 2-dimensional
system so that the sum over k in Eq. 7 is restricted to
(kx, ky).
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III. RESULTS

We present analytic results using the Bloch equations
with Eqs. 2-4, and 6, and also present numerical results
using the full 4× 4 Hamiltonian given in Eq. A1.

A. ∆ � BR: Optical spin-transfer torque and
inverse Faraday effect

When Rashba spin-orbit coupling is negligible, we find
the semiclassical analysis for the optical spin transfer
torque is accurate under certain conditions [9, 11]. In
Appendix B, we present the general analytical solution
for the optical torque. In the limit where h̄ω � Eg + ∆
(so that optical transitions involve states which are far
from band edges), the hole spin takes on a particularly
simple form in terms of the optical angular momentum L
and magnetization direction (assumed in the z-direction):

sh =
n

2

(
(L · z) z +

(z× L× z) + (∆v/ε) (L× z)

1 + (∆v/ε)
2

)
.(12)

The derivation in Appendix B shows that the spin density
transverse to the magnetization direction in Eq. 12 arises
from interband coherence. A similar relation holds for
electron spin, with the replacement ∆v → ∆c. Given the
electron and hole spin, Eq. 11 immediately yields the
torque per absorption rate ṅ:

Γx
ṅ

=
(∆/ε)

2

(
1

1 + (∆/ε)
2 −

3

9 + (∆/ε)
2

)
, (13)

Γy
ṅ

=
(∆/ε)

2

2

(
1

1 + (∆/ε)
2 +

1

9 + (∆/ε)
2

)
. (14)

FIG. 3: (a) x and y components of the torque per absorp-
tion rate as a function of ∆/ε for BR = 0. System parame-
ters ε = 0.001 eV, the photon energy is 1.9 eV, ∆ is varied
between 10−5 eV to 10−1 eV. Solid lines are numerically
computed values, and dashed lines are Eqs. 13-14. (b) x, y
components of torque, and absorption rate dn/dt versus op-
tical excitation energy. Solid lines are numerically computed
values, and dashed lines are derived from Eqs. B15-B16 for
the torque, and Eq. B12 for absorption.

In the limit ∆/ε� 1 we obtain Γy = ṅ. In this case the
angular momentum of every absorbed photon is entirely

transferred to the magnetization. In the opposite limit
∆/ε� 1, we find that the torque is aligned primarily in
the x-direction, and is given by Γx = ∆/ (3ε) ṅ. In this
case the absorbed angular momentum is mostly lost to
the lattice. The same result was obtained semi-classically
in Ref. [11]. Fig. 3 shows a comparison of the torques
given by Eq. 13-14 (given in dashed lines) and the nu-
merical results obtained with the full Hamiltonian (given
by solid lines). We find excellent agreement between the
numerical and analytical results. The discrepancies are
due to the approximation of the velocity matrix element.

Fig. 3(b) shows the optical torque as a function of
excitation energy. Γy is approximately equal to ṅ, as dis-
cussed previously, while Γx exhibits peaks at specific en-
ergies. The full expression for Γx versus energy is given
in Eq. B16, which shows that Γx is peaked at photon
energies corresponding to transitions between near band
edge states. In our model, there are 4 band edge transi-
tions, potentially leading to 4 peaks in Γx. However two
of these peaks in Γx are suppressed due to cancellation
between electron and hole contributions, hence only two
peaks are observed. This torque is derived from the in-
verse Faraday effect, and we identify its origin as that
described in Ref. [16], namely a spin-dependent optical
stark shift which enables angular momentum to flow be-
tween the magnetization and lattice.

B. ∆ � BR: Optical spin-orbit torque

When the spin-orbit splitting is greater than the mag-
netic exchange splitting, the spinors of conduction and
valence bands are aligned to the k-dependent effective
magnetic field, which is directed along k × z. Letting
k = k (cos (θ) , sin (θ) , 0), the spinors take the following
form:

ψu =
1√
2

(
1
−ieiθ

)
ψd =

1√
2

(
1
ieiθ

)
(15)

For light with angle of incidence β with respect to the
surface normal, the dipole matrix elements are:

vud,du ∝ ±i (cosβ cos θ − sin θ)

vuu,dd ∝ ∓i
(
e−iθ/2 sin

(
β

2

)
± eiθ/2 cos

(
β

2

))2

(16)

In the previous case with negligible Rashba spin-orbit
coupling, the transverse spin density results from inter-
band coherence (i.e. the off-diagonal components of the
density matrix). However in this case the transverse spin
density is the result of the misalignment of the eigen-
state spin with the magnetization. For this reason, the
net transverse spin density is determined by the diagonal
elements of the density matrix. Using Eqs. 6 and 16,
we find the diagonal elements of ρh in terms of θ (the
direction of k) and β (the direction of L):

ρhuu (θ) ∝ 1 + sinβ cos θ (17)

ρhdd (θ) ∝ 1− sinβ cos θ (18)
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The θ-dependence of ρh leads to an asymmetric distribu-
tion in k-space, as shown in Fig. 2(b), which results in a
net spin in the y-direction.

We next use the diagonal components of the density
matrix (Eqs. 17-18) to estimate the transverse spin den-
sity in terms of the nonequilibrium charge density. To
evaluate the spin density, the sum over k for the density
matrix is transformed to an integral over k and θ. Due
to the spin texture of the Rashba model, the net spin po-
larization is determined by the θ integral. The θ integral
for the hole density is [42]:

n ∝ 1/ε

∫
dθ
(
ρhuu (θ) + ρhdd (θ)

)
= 8π/ε. (19)

The θ integral for Shy is:

Shy ∝
1

2ε

∫
dθ cos (θ)

(
ρhuu (θ)− ρhdd (θ)

)
= (2π/ε) sinβ. (20)

We identify the nonzero spin density of Eq. 20 as an
optical Edelstein effect: an asymmetric-in-k distribution
function leads to a nonzero spin density. Note that this
spin density vanishes for normal angle of incidence. Eqs.
19-20 yield the spin polarization due to absorption of
circularly polarized light is given by:

⇒
Shy
n

=
sinβ

4
. (21)

A similar analysis for electrons reveals that Sey/n = 1/12.
The resulting torque on the magnetization is along the
x-direction with magnitude:

Γx = n∆

(
1

4
− 1

12

)
sinβ

⇒ Γx
ṅ

=
(∆/ε)

6
sinβ . (22)

There are qualitative differences between the optical
torque for the large Rashba case (Eq. 22) and the pre-
vious case without Rashba spin-orbit coupling (Eqs. 13-
14). The first difference is the direction of the torque: for
large Rashba spin-orbit, the torque is aligned along the x-
direction for almost all values of system parameters (e.g.
ε and h̄ω), while for the case without Rashba, the direc-
tion of the torque varies with system parameters. The
second difference is the scaling of the torque with ∆/ε:
for large Rashba spin-orbit coupling, the torque scales as
∆/ε times the absorption rate, while for the case without
Rashba, the torque generally does not exceed the absorp-
tion rate [46]. In the presence of strong Rashba spin-orbit
coupling, the optical excitation enables angular momen-
tum to flow between the lattice and magnetization, and
the magnitude of angular momentum flow exceeds the
angular momentum absorption rate if (∆/ε) > 6 for this
model.

Figure 4(a) shows the crossover between regimes ∆�
BR and ∆ � BR computed numerically, for the case of

FIG. 4: (a) Torque per absorption rate as a function of BR/∆.
For these results, ε = 0.005 eV, ∆ = 0.1 eV, and γ2 is varied
between 0 eV and -0.3 eV (corresponding to varying αc be-
tween (0 − 0.11) eV · nm), and γ1 = 1.25γ2. (b) Torque per
absorption rate as a function of excitation energy for default
parameters and ∆ = 0.1 eV, ε = 0.008 eV. The (c) and (d)
labels on the curve indicate the excitation energies of subplots
(c) and (d) of this figure. (c) Γx per absorption rate versus
1/ε, for excitation energy h̄ω − Eg = 0.34 eV. Solid red line
is numerical result, dashed black line is Eq. 22. (d) same as
(c), with h̄ω − Eg = 2 eV.

β = π/2 (corresponding to light polarized along the y-
direction). For small BR/∆ and large ∆/ε, the torque is
along the y-direction and equals the absorption rate ṅ, as
discussed in the previous section. For larger BR/∆, the
torque is along the x-direction and its magnitude exceeds
the angular momentum absorption rate.

Figure 4(b) shows Γx versus excitation energy for large
Rashba spin-orbit coupling. Γx varies strongly with exci-
tation energy, because the torque is predominantly from
high spin holes, and the sign and magnitude of the ef-
fective Rashba parameter of the valence bands αv(k)
depends non-monotonically on k (see discussion in Ap-
pendix A), and therefore non-monotonically on excita-
tion energy. Fig. 4(c) shows Γx as a function of inverse
broadening 1/ε (note h̄/ε corresponds to the carrier life-
time) for h̄ω − Eg = 0.34 eV. At this excitation energy
the assumptions leading to Eq. 22 are satisfied (namely,
the sign and large magnitude of BR/∆ for the valence
band), and there is good agreement between Eq. 22
and numerical results. Fig. 4(d) shows Γx versus 1/ε
for h̄ω − Eg = 2 eV, an energy for which the previous
analysis doesn’t fully apply. For both values of excita-
tion energy, however, the torque per absorption rate is
proportional to 1/ε. The torque is not bounded by the
absorption rate, but rather by the carrier lifetime.

Finally we present the dependence of the optical
torques on the optical and magnetic orientations. Fig.
5 shows the numerically computed torque versus angle
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FIG. 5: (a) Torque per absorption rate as a function of incom-
ing angle of incidence β, for no Rashba spin-orbit coupling,
and out-of-plane magnetization. (b) the same data with in-
plane magnetization. (c) Torque per absorption rate versus β
with Rashba spin-orbit coupling and out-of-plane magnetiza-
tion. (d) the same data with in-plane magnetization. In all
cases h̄ω − Eg = 1.4 eV. In all cases default parameters are
used, with ∆ = 1 eV, ε = 0.01 eV.

of incidence β for both in-plane and out-of-plane magne-
tization orientation, with strong and weak Rashba spin-
orbit coupling. For out-of-plane magnetization (panels
(a) and (c)), the direction of the optical torque changes
with the additional of Rashba spin-orbit, as previously
discussed. For in-plane magnetization (panels (b) and
(d)), the torque is aligned along Γz (the M ×M × L
direction), both in the presence and absence of Rashba
spin-orbit coupling. In this case, the Rashba spin-orbit
coupling does not change the direction of the torque be-
cause the spin of associated with the optical Edelstein ef-
fect is aligned to M, and therefore doesn’t exert a torque.
The torque results instead from the transverse spin den-
sity generated from interband coherence.

IV. DISCUSSION

We first comment on the generality of our results, first
considering the case of no Rashba spin-orbit coupling.
The generality of our conclusions are limited due to the
model system’s simple band structure. With only a sin-
gle pair of spin-split conduction and valence bands, the
magnitude of the band splitting is fixed by the magnetic
exchange splitting ∆. The interband coherence is then
determined by a single parameter, ∆/ε. The transverse
spin density and optical torque are in turn expressed

with this single parameter. For realistic band structures,
there are multiple spin-opposite pairs of conduction (or
valence) bands. Each pair has its own energy splitting,
so the interband coherence and ensuing transverse spin
density and torque are not described by a single parame-
ter. Nevertheless, the size and direction of the transverse
spin are set by the spin off-diagonal elements for the den-
sity matrix (Eq. (5)). The factors entering this quantity
can all be understood in terms of the properties of the
band structure and wave functions at a given k-point.

We next consider the generality of the analysis for the
case of strong Rashba spin-orbit coupling and out-of-
plane magnetization. A primary conclusion is that for
out-of-plane magnetization and large Rashba splitting
(compared to magnetic exchange splitting), the torque
is predominantly along the M × L direction and is due
to an optical Edelstein effect. This is a more robust con-
clusion because it does not rely on specifics of our model
system. The torque arises from the misalignment of the
eigenstate spin with the magnetization and general opti-
cal selection rules. Unlike the case without Rashba spin-
orbit coupling, the torque does not depend on interband
coherence and details of the electronic structure.

To provide a feel for the magnitude of the optical
torques we compute, we estimate the required photon
flux and fluence necessary to induce magnetic switching
of a thin film ferromagnet with strong Rashba spin-orbit
coupling. The optically induced spin transfer torque
competes with the intrinsic damping torque of the mag-
netic layer. For a layer of thickness t, out-of-plane
anisotropy field B, and magnetization Ms, the damping
rate is αdγBtMs/µB . Here αd is the magnetic damping,
γ is the gyromagnetic ratio, and µB is is the Bohr mag-
neton. Setting the optical spin-orbit torque equal to the
damping torque and solving for Φ results in:

Φ = αdγBt
Ms

µB

6h̄

(∆/ε)

1

Wα
. (23)

Here W is the thickness of the absorbing layer, α is
the absorption coefficient, and we assume Wα � 1.
For parameter values of αd = 0.01, Ms = 105 A/m,
B = 0.1 T, ∆ = 0.5 eV, ε = 65 meV, W = 5 nm,
t = W , α = (100 nm)−1, we obtain a value of Φ =
1.5 × 1029 m−2 · s−1. Choosing an optical pulse length
of 1 ns and a photon energy of h̄ω = 1.5 eV, the cor-
responding fluence is 3.5 mJ/cm2. This can be com-
pared to a maximum fluence of 1 mJ/cm2 used in Refs.
[26, 27, 43]. This indicates that the influence of Rashba
spin-orbit coupling is non-negligible under reasonable as-
sumptions. A rough estimate for the temperature in-
crease ∆T from optical absorption is provided via the
relation: ∆T = ∆E/Cv, where ∆E is the fluence, and
Cv is the heat capacity per area of the thin layer (given
by the bulk heat capacity multiplied by layer thickness).
For Cv = 1.9×10−2 J/

(
K ·m2

)
, we obtain ∆T = 190 K.

This large temperature increase underscores the impor-
tance of thermal effects in interpreting experimental re-
sults.
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There are important extensions of this model which
will be considered in future work, such as the inclusion
of time-dependence and nonlinear effects [10]. Experi-
mentally, optical excitation takes the form of the short
(< 1 ps), high intensity (≈ 1 J/m2 fluence) pulses, so that
these effects may be dominant. Nevertheless the present
work provides some basis for intuitively understanding
should assist in forming an understanding of more com-
plex conditions.
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APPENDIX A: TIGHT-BINDING FORM OF
HAMILTONIAN

Here we discuss the specific form of the Hamiltonian
describing the class of perovsite materials. Taking the
example of the mixed halide perovskite CH3NH3PbI3,
its cubic form has direct band gap at R point

[2π/a, 2π/a, 2π/a], where a is the lattice constant. The
near-gap conduction band states are composed of the p
orbitals of Pb while the valence bands states are derived
from the Pb s orbital and I p orbitals. The energy states
near Fermi level can be described by a 8×8 tight-binding
Hamiltonian including only s and p orbitals of Pb occup-
ing the cubic lattice sites. We consider four types of inter-
and intra-orbital hopping parameters, such as tσss, t

σ
pp,

tπpp and tσsp. The effect of I p orbitals is implicitly taken
into account through tuning the magnitude of hopping
parameters. The spin-orbit coupling splits degenerate
conduction band states (L = 1) into lower J = 1/2 and
upper J = 3/2 bands, leading to a J = 1/2 conduction
band and S = 1/2 valence band. In this study, we focus
on the optical transition between valence and conduction
bands so that we can truncate the 8× 8 Hamiltonian to
a 4 × 4 minimal continuum model to describe the near-
gap optical transition. With the basis {|S, ↑〉, |S, ↓〉, |J =
1/2, jz = +1/2〉, |J = 1/2, jz = −1/2〉}, the effective con-
tinuum Hamiltonian near the R point up to second order
in k is given by

H =


tσssk

2 −∆/2 0 iξkz − 1√
3
γzsp (k+k− − 4) iξk−

0 tσssk
2 + ∆/2 iξk+ −iξkz + 1√

3
γzsp (k+k− − 4)

−iξkz − 1√
3
γzsp (k+k− − 4) −iξk− ε0 + tck

2 + ∆/6 i 43γ
z
ppk−

−iξk+ iξkz + 1√
3
γzsp (k+k− − 4) −i 43γ

z
ppk+ ε0 + tck

2 −∆/6



where k± = kx ± iky, ξ = 2tσsp/
√

3, γ2 = 4γzpp/3, ε0 =

(εp − εs)− 2
(
tσpp + 2tπpp

)
− λ+ 6tσss, tc =

(
2tπpp + tσpp

)
/3.

∆ is the exchange interaction and we assume the mag-
netization is along the z-direction. λ is the spin-orbit
coupling parameter responsible for splitting the J = 1/2
and J = 3/2 bands. γ1 and γ2 parameterize the spin-
dependent hopping terms induced by inversion symme-
try breaking along z direction. The tv parameter of the
Hamiltonian given in the main text (Eqs. 2-4) are re-
lated to tight-binding parameters as: tv = tσss, αv =
4
3γ

z
pp, γ1 = γzsp/

√
3.

When the band gap energy is larger than all other
energy scales, Eq. A1 can be projected on to separate
2 × 2 dimensional Hamiltonians for conduction and va-
lence band, as given in Eqs. 2-4 of the main text. The
parameters entering these projected Hamiltonians are re-
lated to the hopping parameters given here as: αc = γ2,
while αv takes the more complex form:

αv =
1

k

((
kξ + γ1

(
k2 − 4

))2
tk2 + ε0 − |k|γ2

+

(
kξ − γ1

(
k2 − 4

))2
tk2 + ε0 + |k|γ2

)
.

(A1)

Parameter Default value [eV] Parameter Default value [eV]

tσss -0.25 tσpp 0.9

tσsp 0.4 tπpp 0.15

γzpp -0.2 (0) γzsp -0.25 (0)

εp 4.0 εs -1.5

ε0 1.5 λ 0.1

TABLE I: Default tight-binding parameter values. γ1,2 take
on the values listed when Rashba spin-orbit coupling is in-
cluded, and equal 0 for vanishing Rashba spin-orbit coupling.
The default parameters lead to an effective Rashba parameter
for the conduction band αc = 0.1 eV · nm and BR = 0.55 eV,
and a band gap value of Eg = 1.5 eV (for the case of vanishing
∆). The magnetic exchange field ∆ and lifetime broadening
ε are varied, and are specified in individual figure captions.

In the limit of small k, Eq. A1 simplifies to:

αv =
16γ1
ε20

(2γ1γ2 − ξε0) . (A2)
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APPENDIX B: DERIVATION OF STEADY
STATE DENSITY MATRIX

Here we review the derivation of the optical Bloch
equations [44]. In the eigenstate-basis of the ground state
and considering only valence-conduction interband tran-
sitions, the Hamiltonian for the system including the op-
tical excitation is:

H(k) =


Evu 0 0 0

0 Evd 0 0

0 0 Ecu 0

0 0 0 Ecd

+


0 0 vuu vud
0 0 vdu vdd
v∗uu v∗du 0 0

v∗ud v∗dd 0 0


Here Evu,d (Ecu,d) is the k-dependent valence (conduction)

band energy for the u, d state. The (u, d) label corre-
sponds to the spin direction of the eigenstate, which is
parallel (u) or anti-parallel (d) to the k-dependent effec-
tive magnetic field. vjk denotes the optical field-induced
coupling between state j of the valence band and state k
of the conduction band.

For the density matrix ρ, we denote the valence (con-
duction) band density matrix as ρv (ρc), and P to denote
electron-hole density matrix elements. The structure of
ρ is:

ρ =


ρvuu ρvud Puu Pud
ρvdu ρvdd Pdu Pdd
P ∗uu P ∗du ρcuu ρcud
P ∗ud P ∗dd ρcdu ρcdd

 . (B1)

In our analysis, we switch from the conduction-valence
representation of the density matrix to a electron-hole
picture, where the electron density matrix is ρe = ρc,
and the hole density matrix is ρh = 1− ρv.

The equation of motion for the density matrix ρ is
given by:

∂ρ

∂t
=

1

ih̄
([ρ,H]− iε (ρ− ρeq)) . (B2)

Equation B2 leads to the semiconductor Bloch equations.
Writing these perturbatively in E, and assuming that at
t = 0, ρvuu = ρvdd = 1 while other elements of the density
matrix are 0 leads to the following equation for Pjk:

(
∂t +

i

h̄

(
Evj − Eck

)
+

1

τ

)
Pjk(t) = −ivjk(t) . (B3)

We assume the time dependence of the excitation is given
by cos (ωt) = (exp (iωt) + exp (−iωt)) /2. Equation B3
is solved by Fourier transform techniques, and yields the
following expression for the dipole density matrix ele-
ment:

Pjk(t) = −vjk
2

(
exp (iωt)

h̄ω +
(
Eck − Evj

)
− iε

+

exp (−iωt)
−h̄ω +

(
Eck − Evj

)
− iε

)
, (B4)

where τ is the carrier scattering time, and the dipole
matrix element v is given by:

vjk = i
〈j|v ·E|k〉
Evj − Eck

, (B5)

where the velocity operator is v = ∂H
∂k .

Near a resonance condition h̄ω ≈ Eck − Evj for a pair
of valence/conduction bands. In this case, the term with
denominator h̄ω−

(
Eck − Evj

)
has the maximal contribu-

tion. The equation of motion for hole-hole density matrix
is, to lowest order in v:

∂

∂t
ρhjk(t) = i

∑
`∈c

(vj`P
∗
k` − v∗k`Pj`)

−
(
i
(
Evj − Evk

)
− 1

τ

)
ρhjk(t).

The sum ` is over conduction band states, while the
indices j and k correspond to valence bands. Letting
∂ρh/∂t = 0 and only including terms with denominators
of the form h̄ω −

(
Eck − Evj

)
yields the following expres-

sion for the steady state ρhjk:

ρhjk =
1

ε+ i
(
Evj − Evk

) ∑
`∈c

i

4

(
vj`v

∗
k`

h̄ω −
(
Ec` − Evj

)
− iε

− v∗k`vj`
h̄ω − (Ec` − Evk) + iε

)
. (B6)

Eq. B6 is the general form for the hole density matrix
under optical excitation. The electron density matrix
has a similar form. The factor of 1/4 is derived from
expressing cos (ωt) in terms of exponentials.

Here we give the explicit form for the density matrix
in the limit of small Rashba spin-orbit coupling. The va-
lence and conduction band eigenstates are spinors along
the z-direction;

ψu =

(
1

0

)
ψd =

(
0

1

)
(B7)

The velocity interband matrix elements are given as:

vuu,dd =
∓iξ sin (β)

Euu,dd

vud,du =
−ξ (1± cos (β))

Eud,du
, (B8)

where Eσσ′ = δσσ′ + tk2 and δσσ′ is the difference in
energy between the σ valence band edge and the σ′ con-
duction band edge.

The explicit form for Eq. B6 is then give below:
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ρhuu(dd) =
iξ2 (1± cosβ)

4ε

(
1− cosβ

E2
uu(dd)

(
h̄ω − Euu(du) − iε

) +
1 + cosβ

E2
ud(dd)

(
h̄ω − Eud(dd) − iε

)
− 1− cosβ

E2
uu(du)

(
h̄ω − Euu(du) + iε

) − 1 + cosβ

E2
ud(dd)

(
h̄ω − Eud(dd) + iε

)), (B9)

ρhud =
iξ2 sinβ

4 (iε+ ∆)

(
1− cosβ

EduEuu (h̄ω − Euu − iε)
+

1 + cosβ

EddEud (h̄ω − Eud − iε)

− 1− cosβ

EduEuu (h̄ω − Edu + iε)
− 1 + cosβ

EddEud (h̄ω − Edd + iε)

)
, (B10)

Integrating Eqs. B9-B10 over k yields the final density matrix. These k integrals are of the general form:

∫ ∞
0

dk
k

(c1 + tk2) (c2 + tk2) (ω± − c1 − tk2)
=

1

2tω± (c1 − c2 − ω±)

[
ω± ln (c1/c2)

c1 − c2
− ln

(
ω± − c1
c1

)]
,

(B11)

where ω± = ω ± iε, t = tσss + tc. The constants c1,2 correspond to band splittings δσσ′ .
We first present the resulting expressions for n and sz, which involve the diagonal elements of ρh.

n =

(
πξ2E2

4tεω2

)(
sin2 β (Duu +Ddd) + (1 + cosβ)

2
Dud + (1− cosβ)

2
Ddu

)
, (B12)

shz =

(
πξ2E2

4tεω2

)(
sin2 β (Duu −Ddd) + (1 + cosβ)

2
Dud − (1− cosβ)

2
Ddu

)
, (B13)

Dσσ′ is proportional to the joint density of states of the σ valence band and the σ′ conduction band. For the 2-d
system considered here:

Dσσ′ = π + 2 Re

[
tan−1

(
h̄ω − δσσ′

ε

)]
(B14)

δσσ′ is the band gap splitting between valence band σ and conduction band σ′, and D varies between 0 and 2π.
The transverse spin density shx,y is determined by the off-diagonal element of the density matrix:

shx =

(
πξ2E2

4tεω2

)
sinβ

1 + (∆v/ε)
2

[
(∆v/ε)A+ ωB

]
(B15)

shy =

(
πξ2E2

4tεω2

)
sinβ

1 + (∆v/ε)
2

[
A+ (∆v/ε)ωB

]
(B16)

The A term has the same mathematical origin as the imaginary part of the dielectric function (e.g. the imaginary
part of the retarded green’s function), and is associated with absorption:

A = (1− cosβ) (Duu +Ddu) + (1 + cosβ) (Dud +Ddd) (B17)

The B term is peaked at photon energies which correspond to band edge transitions:

B = (1 + cosβ)

 (ω + δud − δdd) ln
(

(δdd−ω)2+ε2
δ2
ud

)
(ω + δud − δdd)2 + ε2

−
(ω + δdd − δud) ln

(
(δud−ω)2+ε2

δ2
dd

)
(ω + δdd − δud)2 + ε2

+

(1− cosβ)

 (ω + δuu − δdu) ln
(

(δdu−ω)2+ε2
δ2uu

)
(ω + δuu − δdu)

2
+ ε2

−
(ω + δdu − δuu) ln

(
(δuu−ω)2+ε2

δ2
du

)
(ω + δdu − δuu)

2
+ ε2

 (B18)

In the limit where the excitation energy exceeds all band splittings h̄ω � δσσ′ , Dσσ′ = 2π for all σ, σ′, and
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the B is negligible. In this case, the hole spin density is
related to the charge density via:

sh =
n

2

(
(L · z) z +

(z× L× z) + (∆v/ε) (L× z)

1 + (∆v/ε)
2

)
(B19)

where z is the magnetization direction. A similar anal-

ysis and result holds for electrons: the expressions given
above are the same except for the replacement ∆v → ∆c.
The forms of these expressions depend on the system di-
mensionality. We’ve presented the 2-dimensional forms
here, the 3-dimensional forms can be derived similarly.


