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Neurons in the brain behave as non-linear oscillators, which develop rhythmic activity and interact 

to process information1. Taking inspiration from this behavior to realize high density, low power 

neuromorphic computing will require huge numbers of nanoscale non-linear oscillators. Indeed, a 

simple estimation indicates that, in order to fit a hundred million oscillators organized in a two-

dimensional array inside a chip the size of a thumb, their lateral dimensions must be smaller than 

one micrometer. However, despite multiple theoretical proposals2–5, and several candidates such 

as memristive6 or superconducting7 oscillators, there is no proof of concept today of neuromorphic 

computing with nano-oscillators. Indeed, nanoscale devices tend to be noisy and to lack the 

stability required to process data in a reliable way. Here, we show experimentally that a nanoscale 

spintronic oscillator8,9 can achieve spoken digit recognition with accuracies similar to state of the 

art neural networks. We pinpoint the regime of magnetization dynamics leading to highest 

performance. These results, combined with the exceptional ability of these spintronic oscillators to 

interact together, their long lifetime, and low energy consumption, open the path to fast, parallel, 

on-chip computation based on networks of oscillators.  

 

Spintronic nano-oscillators, illustrated in Fig. 1a, are nanopillars composed of two ferromagnetic 

layers separated by a non-magnetic spacer. Charge currents become spin-polarized when they flow 

through these junctions and generate torques on the magnetizations10,11 leading to sustained 

magnetization precession at frequencies between hundreds of megahertz to several tens of 

gigahertz. Magnetization oscillations are converted into voltage oscillations through magneto-

resistance. The resulting radiofrequency oscillations, up to tens of millivolts12, can be detected by 

measuring the voltage across the junction (Fig. 1b). Spin-torque nano-oscillators are therefore simple 

and ultra-compact: their lateral size can be scaled down to ten nanometers and their power 

consumption reduced down to one microwatt13. As they have the same structure as current 

magnetic memory cells, they are compatible with Complementary Metal Oxide Semiconductor 

technology, have high endurance, operate at room temperature, and can be fabricated in large 

numbers (up to hundreds of millions today) on a chip14. Finally, just as the frequency of a neuron is 

modified by the spikes received from other neurons, the frequencies of spin-torque nano-oscillators 

are highly sensitive to the magnetization dynamics of neighboring oscillators to which they are 

coupled15,16. Together, these features of spin-torque nano-oscillators are promising for neuromorphic 

computing with large arrays of coupled oscillators17–21. However, their use for an actual computing 

task has never been physically demonstrated. 

 
Our idea consists in exploiting the amplitude dynamics of spin-torque nano-oscillators for 

neuromorphic computing. Indeed, their oscillation amplitude  ̃ (dotted blue line in Fig. 1b) is robust 

to noise, due to the confinement provided by the counteracting torques exerted by the injected 

current and magnetic damping22. In addition,  ̃ is highly non-linear as a function of the injected 

current and intrinsically depends on past inputs15. Exploiting the amplitude dynamics of spin-torque 

nano-oscillators therefore gathers in one single nanodevice the two most crucial properties of 

neurons: non-linearity and memory, which would otherwise require the combination of several 

lumped components and a much larger area on chip using conventional electronics23. To compute we 

encode neural inputs in the current injected in the oscillator      and use the amplitude response 

 ̃    as the neural output.  
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Our nanoscale oscillators are circular magnetic tunnel junctions, with a 6 nm thick FeB free layer 375 

nm in diameter, which have magnetic vortex ground states (see Methods). We measure directly the 

signal amplitude dynamics  ̃    with a microwave diode. Fig. 1c shows the non-linear response of 

the amplitude  ̃ to a dc current  :  ̃   √       , where     is the current threshold for steady 

oscillations to occur15. Using an arbitrary waveform generator, we inject a varying current though the 

junctions in addition to the dc current, using the set-up schematized in Fig. 1d. The resulting voltage 

oscillations, recorded with an oscilloscope, are shown in Fig. 1e. The amplitude of the oscillator varies 

in response to the injected dc current, with a relaxation time inducing a few hundred nanoseconds 

memory of past inputs22.  

Recent studies have elegantly pointed out that time-multiplexing can be leveraged to use a single 

oscillator to emulate a full neural network24–26. Here we use this approach, a form of “reservoir 

computing”4,5 (see Methods), to demonstrate the ability of spin-torque nano-oscillators to realize 

neuromorphic tasks. We perform experimentally a benchmark task of spoken digits recognition. The 

input data, taken from the TI-46 database27, are audio waveforms of isolated spoken digits (0 to 9) 

pronounced by five different female speakers (Fig. 2a). The goal is to recognize the digits, 

independent of the speaker.  

Neural networks classify information through chain reactions: neuron after neuron, each input 

undergoes a series of non-linear transformations28. In a trained network, the same digit always 

triggers a similar chain reaction even if it is pronounced by different speakers, whereas different 

digits generate different chain reactions, thus allowing pattern recognition. An input can trigger a 

chain reaction in space by using ensembles of neurons: the state of downstream neurons depends on 

the state of upstream neurons. But an input can also trigger a chain reaction in time by constantly 

exciting a single non-linear oscillator with memory: the state of the oscillator in the future depends 

on the state of the oscillator in the past. Here, we use this approach, which simplifies the hardware 

as only one oscillator is needed, but requires preprocessing the input: each point of the audio file is 

converted to a fast binary sequence designed to generate a chain reaction of oscillator amplitude 

variations24.  

The procedure is illustrated in Fig. 2a-d and detailed in Methods. As acoustic features are mainly 

encoded in frequencies29, we filter each audio file to Nf different frequency channels (a standard 

procedure in speech recognition), which are then concatenated in intervals of duration , as 

displayed in Fig. 2b. For preprocessing, each of these segments is multiplied by a randomly filled 

binary matrix (of dimensions Nf  N). In this way, each point of the input audio file is converted in a 

binary sequence of duration  composed of Npoints separated by a time step  ( = N). When 

this preprocessed input (Fig. 2c) is applied as a current to our spin-torque oscillator, the resulting 

amplitude variations  ̃    (Fig. 2d) function as a set of N neurons coupled in time (we take N 

samples  ̃  per interval). For spoken digit recognition, we emulate N = 400 neurons, and use = 

100 ns (about one fifth of the oscillators’ relaxation time) to set the oscillator in transient state. 

The responses of the oscillator’s voltage amplitude  ̃    are recorded for each utterance of each 

spoken digit. The goal of the subsequent training process, done on a computer, is to choose a linear 

combination of these responses (e.g. sets of  ̃ ) for each digit such that the sum is one for that digit 

and zero for the rest (see Methods). As each digit has been pronounced ten times by each of the five 

speakers, we can use part of the data to determine the coefficients (training), and the rest to 
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evaluate the recognition performance (testing) (see Methods). In order to assess the impact of our 

oscillator on the quality of recognition, we always perform a control trial without the oscillator. In 

that case, the pre-processed input traces are used directly to reconstruct the outputs on the 

computer, without going through the experimental set-up. 

In both Fig. 2e and f, the improvement shown in the experimental results over the control results  

indicates that the spintronic oscillator significantly improves the quality of spoken digit recognition, 

despite the added noise concomitant to its nanometric size. In Fig. 2e (linear spectrogram filtering), 

we present a case in which the acoustic feature extraction, achieved by Fourier transforming the 

audio waveform over finite time windows, plays a minimal role in classification. Without the 

oscillator (black), the recognition rates are consistent with random choices. With the oscillator (red 

line in Fig. 2e), the recognition rate is improved by +70 % and reaches values up to 80 %. This 

example highlights the crucial role played by the oscillator in the recognition process. Using a non-

linear cochlear filtering30 (Fig. 2f), which is the standard in reservoir computing24–26, and has been 

optimized based on the behavior of biological ears, we achieve recognition rates up to 99.6 %, as 

high as the state of the art. Compared to the control trial, the oscillator reduces the error rate by a 

factor of up to 15. Our results with a nanoscale spintronic oscillator are therefore comparable to the 

recognition rates obtained with more complicated electronic or optical systems (between 95.7 % and 

99.8 % for the same task with cochlear filtering)23–26,29. 

The optimal operating conditions for pattern recognition with our spin-torque nano-oscillator are 

determined by the oscillation amplitude and noise. We use a simpler task, classification of sine and 

square waveforms with the same period28, to investigate the ability of the oscillator to classify 

waveforms in a wide range of injected dc currents IDC and applied magnetic fields µ0H (see Methods). 

As can be seen in Fig.3a, the quality of pattern recognition, characterized by the root mean square of 

deviations between reconstructed output and target, varies from 10 % to over 30 % depending on 

the bias conditions. The oscillator performs well when it responds strongly to the time-varying 

preprocessed input, with large amplitude variations Vup and Vdw for both positive and negative 

directions (Fig.3b, top). On the other hand, it performs poorly when the oscillator’s noise V, (the 

standard deviation of the voltage amplitude noise) is high (Fig.3b, bottom). As shown in Fig.3b, we 

extract these parameters from the time traces of the oscillator’s emitted voltage at each bias point, 

and plot VupVdw (Fig.3c) and 1/V (Fig.3d) as a function of current and field. The red regions of large 

oscillation amplitudes in Fig.3c correspond to low magnetic fields where the magnetization is weakly 

confined and high currents where the spin torque on magnetization is maximal. The blue regions of 

high noise in Fig.3d correspond to areas just above the threshold current Ith for oscillation where the 

oscillation amplitude  ̃ is growing rapidly as a function of current and is becoming sensitive to 

external fluctuations15. As can be seen by comparing Fig.3c and d, a range of bias conditions 

highlighted by a dotted white box (currents between 6 mA to 7 mA and magnetic fields from 350 mT 

to 450 mT) features wide variations of oscillation amplitudes and low noise. In this region, root mean 

square deviations below 15 % are achieved, for which there is no classification errors between sines 

and squares. The good match between the map of VupVdw/V in Fig.3e and the map giving the 

performance of classification (Fig.3a) confirms that the best conditions for classification correspond 

to regions of optimal compromise between low noise and large amplitude variations. The necessity 

of high signal-to-noise ratio for efficient neuromorphic computing highlighted here for magnetic 

oscillators is a general guideline that applies to any type of nanoscale oscillator. 
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As a conclusion, our pattern recognition results show that simple, ultra-compact spintronic oscillators 

have all the properties needed to emulate collections of neurons: non-linearity, memory and 

stability. The ability of groups of these oscillators to mimic neural connections by influencing each 

other’s behavior through their coupling via the currents and magnetic fields opens a path to large 

scale hardware neural networks exploiting magnetization dynamics for computing15–21. 
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Figure legends 

Figure 1: Spin-torque nano-oscillator for neuromorphic computing. (a) Schematic of a spin-torque 

nano-oscillator, consisting of a non-magnetic spacer between two ferromagnetic layers. (b) Measured 

ac voltage emitted by the oscillator as a function of time       ̃             , for a steady 

current injection of 7 mA at the external magnetic field 0H = 430 mT. The dotted blue line highlights 

the amplitude  ̃. (c) ac voltage amplitude  ̃as a function of current at 0H = 430 mT. The typical 

resulting excursion of voltage amplitude is highlighted in magenta when an input signal Vin of 250 

mV is injected (here for a bias current of 6.5 mA and 0H = 430 mT.) (d) Schematic of the 

experimental set-up. A dc current IDC as well as a fast-varying waveform encoding the input Vin  are 

injected in the spin-torque nano-oscillator. The microwave voltage      emitted by the oscillator in 

response to the excitation is measured with an oscilloscope. For computing, the amplitude  ̃ of the 

oscillator is used, and measured directly with a microwave diode. (e) Input (magenta) and measured 

microwave voltage      emitted by the oscillator as a function of time. Here IDC = 6 mA, 0H = 430 mT. 

The envelope  ̃ of the oscillator signal is highlighted in blue. 

Figure 2: Spoken digit recognition (a-d) Principle of the experiment. (a) Audio waveform 

corresponding to the digit 1 pronounced by speaker 1. (b) Filtering to frequency channels for acoustic 

feature extraction. The audio waveform is divided in intervals of duration . The cochlear model filters 

each interval in 78 frequency channels (65 in the case of the spectrogram model), which are then 

concatenated as 78 (65) values for each interval, to form the filtered input. (c) Pre-processed input 

(zoom). The filtered input is multiplied by a randomly filled binary matrix (masking process), resulting 

in 400 points separated by a time step  of 100 ns in each interval of duration  ( = 400 ). (d) 

Oscillator output. Envelope  ̃    of the experimental oscillator’s emitted voltage amplitude (µ0H = 

430 mT, IDC = 6 mA). The 400 values of  ̃    per interval  ( ̃   sampled with a time step ) emulate 

400 neurons. (e-f) Spoken digit recognition rates in the testing set as a function of the number of 

utterances N used for training (since there are many ways to pick the N utterances used for training, 

the recognition rate is an average over all 10!/(10-N)!N! combinations of N utterances out of the 10 in 

the data set) (e) for the spectrogram filtering (µ0H = 430 mT, IDC = 6 mA) and (f) for the cochlear 

filtering (µ0H = 448 mT, IDC = 7 mA). The red curves are the experimental results using the magnetic 

oscillator. The black curves are control trials, in which the pre-processed inputs are directly used for 

reconstructing the output on a computer as described in Methods, without going through the 

experimental set-up. The error bars correspond to the standard deviation of the word recognition rate 

based on training with all possible combinations.   

Figure 3: Conditions for optimal waveform classification and identification of important oscillator 

properties. The task consists of recognizing sine from square waveforms with the same period. The 

target for the output reconstructed from the oscillator’s response is one for square, zero for sine. We 

emulate 24 neurons  ̃ ,  (a) Root mean square of output-to-target deviations: map as a 

function of dc current IDC and magnetic field µ0H. (b) Extraction of parameters from the time traces of 

the oscillator’s response. Top: Maximum positive (Vup) and negative (Vdw) variations of the oscillator’s 

amplitude in response to the varying preprocessed input. Bottom: Noise V of the oscillator’s voltage 

at steady state under IDC. (c) Maximal response (VupVdw) of the oscillator to the input: map in the IDC - 

µ0H plane. (d) Inverse of amplitude noise 1/V: map in the IDC - µ0H plane. The threshold current Ith is 

indicated by a white solid line. In (c) and (d), the optimal bias condition range for waveform 
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classification is marked by a white dashed rectangle (currents between 6 mA to 7 mA and magnetic 

fields from 350 mT to 450 mT). (e) Map of the maximal amplitudes over noise ratio VupVdw /V 

showing that these parameters largely determine the performance of the oscillator. 

 

Methods  

Samples 

Magnetic tunnel junctions (MTJs) films with a stacking structure of buffer/PtMn(15)/ 

Co71Fe29(2.5)/Ru(0.9)/ Co60Fe20B20(1.6)/Co70Fe30(0.8)/ MgO(1)/ Fe80B20(6)/ MgO(1) /Ta(8)/Ru(7) 

(thicknesses in nm) were prepared by ultra-high vacuum (UHV) magnetron sputtering. After 

annealing at 360 °C for 1 h, the resistance-area products (RA) were  3.6 Ωμm2. Circular-shape MTJs 

with a diameter  375 nm were patterned using Ar ion etching and e-beam lithography. The 

resistance of the samples is close to 40 , and the magneto-resistance ratio is about 135 % at room 

temperature. The FeB layer presents a vortex structure as the ground state for the dimensions used 

here. In a small region called the core of the vortex, the magnetization spirals out of plane. Under dc 

current injection, the core of the vortex steadily gyrates around the center of the dot with a 

frequency in the range of 250 MHz to 400 MHz for the oscillators we consider here. Vortex dynamics 

driven by spin-torque are well-understood, well-controlled and have been shown to be particularly 

stable22. 

 
Measurement set-up 

The experimental implementation for spoken digit recognition and sine/square classification tasks is 

illustrated in Fig. 1d. The preprocessed input signal Vin is generated by a high frequency arbitrary 

waveform generator and injected as a current through the magnetic nano-oscillator. The sampling 

rate of the source is set to 200 MHz (20 points per interval of time ) for the spoken digit recognition 

task, and 500 MHz (50 points per interval of time ) for the classification of sines and squares. The 

peak to peak variation of the input signal is 500 mV, which corresponds to peak to peak current 

variations of 6 mA, as illustrated in Fig.1c (part of the incoming signal is reflected due to impedance 

mismatch). The bias conditions of the oscillator are set by a dc current source and an electromagnet 

which applies a field perpendicular to the plane of the magnetic layers. The oscillating voltage 

emitted by the nano-oscillator is rectified by a planar tunnel microwave diode, of bandwidth from 0.1 

GHz to 12.4 GHz and response time of 5 ns. The input dynamic range of the diode is between 1 µW 

and 3.15 mW corresponding to a dc output level between 0 mV and 400 mV, respectively. We use an 

amplifier to accommodate the emitted power of the nano-oscillator to the working range of diode. 

The output signal is then recorded by a real time oscilloscope. In Figs. 1b, c and e, 2d and 3b c, d and 

e the amplitude of the signal emitted by the oscillator is shown without amplification (the signal 

measured after the diode has been divided by the total amplification of the circuit,  +21 dB). If, due 

to sampling errors, the measured oscillators’ envelope is shifted with respect to the input, 

classification accuracy can be degraded. We use alignment marks to align our measurements with 

the input when we reconstruct the output. The alignment precision is  1 ns. 
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Reservoir Computing: general concepts 

In machine learning, a reservoir is a network of recurrently and randomly connected non-linear 

nodes4,5. When an input signal is injected in the reservoir, it is mapped to a higher dimensional space 

in which it can become linearly separable. The key insight behind reservoir computing is that the 

network does not need any tuning: all connections inside the reservoir are kept fixed. Only external 

connections (between the reservoir and an output layer) are trained to achieve the desired task.  

In other words, reservoir computing requires the generation of complex non-linear dynamics but as a 

trade-off, learning is greatly simplified. For efficient reservoir computing, several requirements 

related to dynamical properties of the network should be satisfied. First, different inputs should be 

trigger different dynamics (separation property) while similar inputs should generate similar 

dynamics (approximation property) allowing efficient classification. Second, the reservoir state 

should not only depend on present inputs but also on recent past inputs. This short-term memory, 

called fading memory, is essential for processing temporal sequences for which the history of the 

signal is important.  

A single non-linear oscillator can emulate a reservoir when it is set in transient dynamics by a fast 

varying input24. The loss of parallelism is compensated by an additional pre-processing input step: the 

input is multiplied by a fast varying mask, which allows defining virtual nodes interconnected in time 

through the resultant oscillator dynamics. This approach provides a drastic simplification of the 

reservoir scheme for hardware implementations, and has been realized in hardware with optical or 

electronic oscillators assembled from several components23–26. 

 

Spoken digit recognition 

For this task, the inputs are taken from the NIST TI-46 data corpus30. The input consists of isolated 

spoken digits said by five different female speakers. Each speaker pronounces each digit 10 times. 

The 500 audio waveforms are sampled at a rate of 12.5 kHz and have variable time lengths.  

We have used two different filtering methods: spectrogram and cochlear model. Both filters break 

the word in several time intervals  N of duration τ and analyze the frequency content in each interval 

τ either through Fourier transform (spectrogram, 65  channels, N = 24 to 67, Fig. 2b) or a more 

complicated non-linear approach (cochlear, 78 channels, N = 14 to 41). The input for each word is 

composed of an amplitude for each of Nf = 65 (78) frequency channels times N time intervals. This 

input is preprocessed by multiplying the frequency content for each time interval by a mask matrix 

containing Nf x N random binary values giving at total of N x N  values as input to the oscillator (Fig. 

2c). Here, we are modelling N = 400 input neurons, each of which is connected to all of the 

frequency channels for each time interval.  

Each input value is consecutively applied to the oscillator as a constant current for a θ  100 ns time 

interval, which is about 5 times smaller than the relaxation time of the oscillator, as recommended in 

reference24. This time is short enough to guarantee that the oscillator is maintained in its transient 

regime so the emulated neurons are connected to each other, but it is also long enough to let the 

oscillator respond to the input excitation. The amplitude of the ac voltage across the oscillator is 

recorded for off-line post-processing (Fig. 2d).  
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The post-processing of the output consists of two distinct steps. The first is called the training (or 

learning) process and the second is called the classification (or recognition) process. The goal of 

training is to determine a set of weights      where i indexes the desired digit.  These weights are 

used to multiply the output voltages to give 10 x N output values, which are then averaged over the 

N time intervals to give 10 output values,   , which should ideally be equal to the target values   ̃   

1.0 for the appropriate digit and 0.0 for the rest.  In the training process, a fraction of the utterances 

are used to train these weights and in the classification process, the rest of the utterances are used 

to test the results. 

The optimum weights are found by minimizing the difference between  ̃   and    for all the words 

used in the training. In practice, optimal values are determined by using techniques for extracting 

meaningful eigenvalues from singular matrices such as the linear Moore-Penrose pseudo-inverse 

operator (denoted by a dagger symbol  ). If we consider the matrix target  ̃ containing the targets  ̃  

for all the time steps τ used for the training and   the matrix containing all the neuron responses for 

all the time steps τ used for the training, then the matrix W containing the optimal weights is given 

by:    ̃  . This step is done on a computer and takes several seconds. In the future, real time 

processing at the nanosecond time scale can be realized using fully parallel networks of interacting 

nano-oscillators. 

During the classification phase, the 10 reconstructed outputs corresponding to one digit are 

averaged over all the time steps τ of the signal and the digit is identified by taking the maximum 

value of the 10 averaged reconstructed outputs. The averaged reconstructed output corresponding 

to the digit should be close to one and the others should be close to zero. The efficiency of the 

recognition is evaluated with the word success rate, which is the rate of digits correctly identified. 

The training can be done using more or less data (here utterances). We always trained the system 

using the 10 digits spoken by the 5 speakers. The only parameter changed is the number of 

utterances used for the training. If we use N utterances for training, we use the remaining 10-N other 

utterances for testing. However, some utterances are very well pronounced while other are hardly 

distinguishable. As a consequence, the resulting recognition rate depends on which N utterances are 

picked for training in the set of 10 (e.g, if N = 2, the utterances picked for training could be the first 

and second, but also second and third, or sixth and tenth, or any other of the 10!/(8! 2!) 

combinations of 2 picked out of 10). In order to avoid this bias, the recognition rates that we give in 

the paper are the average of the results over all possible combinations. The error bars corresponds to 

the standard deviation of the word recognition rate. The raw spectrogram is not complex enough to 

allow a correct reconstruction of the target during the training. Adding the oscillator brings 

complexity and suppresses this phenomenon. 

Sine and squares classification 

For this classification task the input is a random sequence of 160 sines and squares with the same 

period: the first half of the sequence for training and the second half for classification. Each period is 

discretized into 8 points separated by a time step τ. The preprocessing consists in multiplying the 

value of each point by the same binary sequence generated by a random distribution of +1 and -1 

values. In comparison with spoken digit recognition, the mask is a binary vector instead of a binary 

matrix. The fast binary sequence contains 24 values, so during each time step τ, 24 neurons  ̃  are 

emulated.  
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The target  ̃ for the network output   is 0 for all the trajectories in response to a sine and 1 for all 

the trajectories in response to a square. The best weights are found by linear regression as was 

previously explained for spoken digit recognition task.  For sine/square recognition, we record five 

points instead of one for each neuron when we measure the output of the oscillator. During post-

processing, we use these additional states between  ̃  and  ̃    to increase the number of 

coefficients available for solving the problem, and thus increase classification accuracy. In addition, 

the best performance does not necessarily correspond to a target in exact phase with the oscillator’s 

output.  The standard deviation of the RMS value of                  , obtained with 10 

repetitions, is around 1 %. 

 

 

 

 

 

Acknowledgements 

This work was supported by the European Research Council ERC under Grant bioSPINspired 682955. 

The authors would like to thank Laurent Larger, Bogdan Penkovsky and François Duport for useful 

discussions.  

Author contributions 

The study was designed by JG and MDS, samples were optimized and fabricated by ST, experiments 

were performed by JT and MR, numerical studies were realized by FAA, MR and GK, all authors 

contributed to the analysis of results and writing of paper. The authors declare no competing 

financial interests. 

 

Additional information 

Reprints and permissions information is available online at www.nature.com/reprints. 

Correspondence and requests for materials should be addressed to J.G. 

 

 

 

 



0 10 20

-10

-5

0

5

10

 Time (ns)

 V
o
s
c
 (

m
V

)

 

a 

Ferromagnet 

Ferromagnet 

Normal 

Spin torque 

Current 

 10 to 500 nm 

d e 

IDC 

Arbitrary  

Waveform 

Generator Vosc(t) 

µ0H 

CoFeB 

FeB 

MgO 

Input Vin 

Diode 

V (t) 

+ 

0 2 4 6 8 10

0

5

10

15

V
o

lt
a

g
e

 a
m

p
lit

u
d

e
 (

m
V

)

dc current (mA)

Vin = ± 250 mV 

V  

-200

0

200

V
in
 (

m
V

)
32.0 32.5 33.0

-15

0

15

V
o

s
c
 (

m
V

)

Time (s)

V 1 

V 3 V 4 V 6 

V 2 V 5 V 7 

V (t) 

b c 



200 202 204 206 208 210

-150

0

150

V
o

lt
a

g
e

 (
m

V
)

Time (s)

1 2 3 4 5 6
0.0

0.2

0.4

0.6
A

m
p
lit

u
d

e
 (

a
.u

.)

Time/

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

R
e

c
o

g
n

it
io

n
 r

a
te

 (
%

)

Utterances for training 

1 2 3 4 5 6 7 8 9
65

70

75

80

85

90

95

100

R
e

c
o

g
n

it
io

n
 r

a
te

 (
%

)

Utterances for training 

Cochlear 

With oscillator 

Without oscillator 

f 

Input:  

audio file 

a 

Filtering to 

frequency 

channels 

Pre-

processed 

input 

b 

Without  

oscillator 

c 

Recorded 

trace 

"1" 
Reconstruction of  the 

output (computer)  

d 

Without oscillator 

Spectrogram e 

200 202 204 206 208 210

6

9

12

V
o

lt
a

g
e

 (
m

V
)

Time (s)

20 q 

78 frequency 

channels 

With 

oscillator 

(Spectrogram 
or Cochlear) 

2000 4000 6000
-0.1

0.0

0.1

A
m

p
lit

u
d

e
 (

a
.u

.)

Time (a.u.)

 

With oscillator 

"1" 



1 2 3 4 5 6 7

300

400

500

600

dc current (mA)

0

20

40

60

80

100

V
up

V
dw

 (mV
2
) 

1 2 3 4 5 6 7

300

400

500

600

dc current (mA)

0

2

4

6

8

10

1/V (mV)
-1
 

M
a

gn
e

ti
c 

fi
e

ld
 µ

0
H

 (
m

T
) 

c 

1 2 3 4 5 6 7

300

400

500

600

dc current (mA)

14

17

21

24

27

30

RMS deviation (%)

M
a

gn
e

ti
c 

fi
e

ld
 µ

0
H

 (
m

T
) 

a 

Ith 

(%) 

-500 0

-70

-68

-66

O
u
tp

u
t 
v
o
lt
a
g
e
 (

m
V

)

time (s)

V 

Vup 

Vdw 

Time (µs) 

O
sc
il
la
to
r’
s 

 
vo

lt
a

ge
 (

m
V

) 

b 

O
sc
il
la
to
r’
s 

 v
o

lt
a

ge
 (

m
V

) 

Time (µs) 
-500 0 500 1000 

10 

5 

0 

6.6 

6.8 

7.0 

1 2 3 4 5 6 7

300

400

500

600

370

290

205

dc current (mA)

45

450

V
up

V
dw

/V (mV) 

125

d e 


