Chapter 8

CHALLENGES TO AUTOMATING
SECURITY CONFIGURATION
CHECKLISTS IN MANUFACTURING
ENVIRONMENTS

Joshua Lubell and Timothy Zimmerman

Abstract Information technology is essential to today’s manufacturing systems,
but it makes them more vulnerable to cyber security threats than ever
before. This chapter discusses the challenges to developing automat-
able configuration checklists for manufacturing environments using the
Security Content Automation Protocol (SCAP) family of standards.
Increased use of SCAP in manufacturing environments could reduce se-
curity vulnerabilities and the likelihood of damaging cyber attacks on
manufacturing systems. However, complex relationships and dependen-
cies within and between checklist rules, checking instructions and soft-
ware result in platform fragmentation. Platform fragmentation makes
it difficult to reuse or repurpose existing SCAP-expressed checklist con-
tent. Recent research and technological developments can be leveraged
to yield potentially promising approaches for mitigating platform frag-
mentation and improving reuse.

Keywords: Manufacturing environments, control systems, security, checklists

1. Introduction

Information technology is essential to today’s manufacturing systems. Mi-
croprocessors, software, data repositories, networking protocols and the Inter-
net improve product quality, increase throughput and reduce production costs.
But the increased reliance on information technology makes manufacturing en-
vironments more vulnerable to cyber security threats than ever before. A cyber
attack can cause a loss of confidentiality, data corruption and costly downtime.
An additional consequence for manufacturing systems — as with Stuxnet [3] and
the German steel mill cyber attacks of 2014 [17] — is extensive physical damage
to equipment and the surrounding environment. Physical and environmental

176 CRITICAL INFRASTRUCTURE PROTECTION XI

damage can, in turn, result in personal injury or death as well as large financial
losses.

Proper security configurations reduce the likelihood of a cyber attack com-
promising a system, with the added benefit of protecting against incidents
caused by (non-malicious) human errors. Configuration settings such as pass-
word and remote access policies, authorizing only the minimum access needed
by users or processes to accomplish assigned tasks (least privilege principle) and
restricting communications between subsystems and external systems (bound-
ary protection principle) help improve the security posture [6]. The least privi-
lege and boundary protection principles are included in the hundreds of security
controls specified in National Institute of Standards and Technology (NIST)
Special Publication 800-53, Recommended Security Controls for Federal Infor-
mation Systems and Organizations [23].

The U.S. Department of Homeland Security 2016 Industrial Control Systems
Assessment Summary Report [22] underscores the importance of proper con-
figurations of control systems in manufacturing and industrial environments.
According to the report, among the most common areas of weakness are the
lack of adherence to the least privilege and boundary protection principles,
poor authentication mechanisms and weak passwords. The right configuration
settings can mitigate these vulnerabilities.

The U.S. National Checklist Program [32] defines a security configuration
checklist — also referred to as a hardening guide or security benchmark — as “a
series of instructions or procedures for configuring an information technology
product to a particular operational environment, for verifying that the product
has been configured properly and/or for identifying unauthorized changes to the
product.” Because such checklists provide guidance that is both concrete and
actionable, they are especially useful to smaller companies and organizations
that lack in-house cyber security expertise. A checklist may be automatable
so that it can be used as digital input to a software tool that reports how well
a system is configured with respect to the checklist’s guidance. Automated
security configuration checking is highly desirable because it reduces the costs of
maintaining security and documenting the extent of compliance with a security
policy.

To facilitate automation, a checklist should contain structured, computer-
interpretable digital data. Furthermore, the tool that interprets the checklist
should implement the data models used in the checklist. In other words, in
order for a tool to automate a checklist, the tool should parse and process
the data structures used in the checklist’s digital representation. In this man-
ner, the structured information in an automatable checklist serves as a “digital
thread” [10] for cyber security [18] that integrates configuration guidance with
system-specific settings. Additionally, the digital thread can associate a config-
uration setting with a specific security control or requirement, thereby linking
the setting to its rationale. An automatable checklist with data structures
that provide computer-interpretable configuration instructions and traceability

Lubell €& Zimmerman 177

to security requirements is extremely useful. Such a checklist enables a longer
and broader cyber security digital thread than a checklist that lacks these items.

This chapter discusses the challenges to developing automatable checklists
for manufacturing environments using the Security Content Automation Pro-
tocol (SCAP — pronounced “ess-cap”) family of standards [31, 33]. The stan-
dards specify a means for representing checklist information in a manner that
an SCAP-conforming software tool can determine how well the system config-
uration complies with the checklist. SCAP is widely used in government [25]
as well as by private sector enterprises to manage configuration compliance of
common operating systems and software applications. Greater use of SCAP in
manufacturing environments can reduce security vulnerabilities and the likeli-
hood of damaging cyber attacks on manufacturing systems.

2. Manufacturing Environments

Modern manufacturing environments use industrial control systems to safely
and reliably operate industrial processes. At the front line of these operations
are programmable logic controllers (PLCs), which are computers developed
specifically to monitor and control industrial processes [20]. Early genera-
tions of programmable logic controllers were intended to operate in isolated
environments with custom operating systems and proprietary communications
protocols. In contrast, modern programmable logic controllers incorporate in-
formation technologies such as TCP/IP and Ethernet for communications, USB
ports for file transfers and commodity operating systems for efficiency, flexibil-
ity and convenience. The technologies enable greater visibility of manufactur-
ing processes, the incorporation of real-time manufacturing data in corporate
business systems, interoperability with existing networking infrastructures and
remote monitoring capabilities [13]. However, the technologies also expose pro-
grammable logic controllers to greater cyber security risks.

Programmable logic controllers must be able to audit their configurations in
order to detect potential vulnerabilities before they are exploited as attack vec-
tors. Many attack vectors are introduced by enabled-by-default programmable
logic controller features and services (e.g., embedded web servers, terminal
servers and remote access servers). These features and services may only be
detected after a thorough review of cyber-security-hardening guidance from
vendors or discovery through active-scanning techniques employed by penetra-
tion testers.

The integration of information technologies directly in industrial control sys-
tems and manufacturing environments is now a normal occurrence. This is ex-
emplified in the NIST ICS Cybersecurity Testbed [4, 41]. The testbed contains
two robotic arms that emulate a material handling application; the robots are
integrated into simulated manufacturing machines to perform repetitive tasks
normally performed by a human operator (e.g., insert raw parts, remove finished
parts, operate machine guarding and start and stop the machining cycle). The
manufacturing machines communicate with the robot controllers via TCP/IP

178 CRITICAL INFRASTRUCTURE PROTECTION XI

Figure 1. Robotic portion of the NIST ICS Cybersecurity Testbed.

and Ethernet to coordinate the loading and unloading of parts. Figure 1 shows
an image of the robotic portion of the NIST testbed.

Software executing in dedicated external controllers controls each robot. The
controllers, which are high-performance servers typically found in information
technology environments, run the Robot Operating System (ROS) on top of
Ubuntu Linux, enabling the robots to collaborate in performing machine tend-
ing tasks. Ubuntu is the most common deployment environment for ROS, a
software framework that is widely used in robotics research projects and in-
creasingly in commercial robotic applications [7]. ROS-Industrial, a variant
of ROS tailored for commercial applications, accelerates ROS deployment by
augmenting its advanced manipulation capabilities with better support for re-
liability and safety [21, 34]. Note that certain commercial and third-party
products and services are identified in this chapter to enhance understanding.
Such identification does not imply recommendation or endorsement by NIST,
nor does it imply that the materials or equipment identified are necessarily the
best available for the purpose.

A motivating example is used to demonstrate the relationships between rules,
security controls and a high-level security objective for an Ubuntu Linux server
running ROS. Figure 2 shows two rules, one rule stipulates that a firewall

Lubell €& Zimmerman 179

~

Function
Rationale <
Security Boundary Least
Control Protection Privilege
.
Checklist
Rule Default Firewall Ensure AppArmorl I
(Linux) Policy is “Deny” is Enabled
| |
S (0 mEEnLes o (6 grep "~\s*linux" \
Command chain INPUT (policy DROP) > /boot/grub/grub.cfg |\
(Ubuntu) chain FORWARD (policy DROP)||> grep "apparmor=0"

chain OUTPUT (policy DROP) /

Figure 2. Checklist example.

should be set by default to deny all traffic (with all exceptions explicitly pro-
vided) and the other states that an AppArmor Linux kernel enhancement [1]
should be enabled to restrict program access to system resources. AppArmor
is commonly used in Ubuntu systems with stringent security requirements and
its namespaced access control mechanism is a good match for the ROS data
model [39]. The first rule supports boundary protection while the second rule
supports least privilege. Both these security controls, in turn, support the
high-level “protect” security function specified in the NIST Framework [24] —
a methodology for managing cyber risk, describing an organization’s current
security posture and target state, and communicating and assessing progress
toward meeting goals. Below each rule are shell commands for checking com-
pliance.

Each level in Figure 2 is less general and more implementation-specific than
the level above it. The top two levels describe security objectives and are
independent of system-specific and implementation details. They provide the
rationale for the rules in the checklist rule level. The checklist rule level applies
to Linux systems, but it does not assume a particular Linux distribution. The
shell command level applies only to Linux systems with the iptables package
(pre-installed by default in Ubuntu distributions); iptables is an application
that can be used to configure a Linux kernel firewall.

A corollary to the observation regarding levels and generality is that in-
formation in the higher levels is more reusable than information in the lower
levels. For example, many rules in a wide variety of checklists support the least
privilege security control. This is because least privilege is a universal principle
that applies to many deployment situations. The AppArmor rule, however,
is more specific. It applies only to Linux systems where the security bene-

180 CRITICAL INFRASTRUCTURE PROTECTION XI

fit of AppArmor outweighs the convenience of programs having less-restrictive
access to system resources. However, several Linux systems have specialized se-
curity limited functionality (SSLF) requirements [32], including the robot con-
troller server that runs ROS. These systems have especially stringent security
requirements because of the threats they face and the potential consequences of
incidents. Thus, the rule is reusable in many specialized security limited func-
tionality contexts. However, the shell command that implements the rule is less
reusable because it assumes the presence of iptables instead of an alternative
firewall configuration application.

3. SCAP Background

An automated checklist has limited value if it is hardwired to a particu-
lar configuration tool or scripting language. Standards for representing rules,
system settings, vulnerabilities, platforms and other relevant information en-
able checklists to be interoperable. Interoperable checklists can be used with
any standards-compliant tool. Interoperability standards save checklist devel-
opers the trouble of having to learn multiple proprietary formats and lower
the barriers to automated configuration checking. To address the need for in-
teroperability, the cyber security research, development and user communities
have created several Extensible Markup Language (XML) [40] data representa-
tion and exchange standards for software weaknesses and vulnerabilities, nam-
ing conventions, system state, configuration checklists, asset identification and
severity measurement of software and configuration issues [19]. SCAP provides
the recommended practices for using these standards together [31, 33].

SCAP is commonly used to automate security configuration compliance
checking, which is the focus of this research. The following SCAP languages
and taxonomies are especially relevant to the example in Figure 2 and the
upcoming discussion:

s Extensible Configuration Checklist Description Format (XC-
CDF): This language is used to express security checklists, benchmarks
and other configuration recommendations. XCCDF can represent the
highly structured data needed for automated configuration checking as
well as the semi-structured data needed to produce human-readable doc-
umentation of a checklist and the results of checking a system configura-
tion.

Common Platform Enumeration (CPE): This naming scheme pro-
vides unique identifiers for hardware, operating systems and applications.

m Common Configuration Enumeration (CCE): This registry main-
tains unique identifiers for operating system and software security config-
urations. SCAP checklists can use mappings from common configuration
enumeration values to taxonomies of security principles or business ob-
jectives, providing traceability from configuration settings to higher-level
requirements.

Lubell & Zimmerman 181

:Benchmark | p1:Profile | | p2:Profile |
platform=
"cpe:2.3:0:debian:debian_linux:8.0:*:*:*:**:**" - + +
Profiles
Groups |Values
v1:Value | | v2:Value | | v3:Value |
a1:Group Groups g2:Group
Rules Rules | r1:Rule | | r2:Rule |
r3:Rule * +
a3:Group Values v4:Value | | r5:Rule | | ré:Rule |

i '

Figure 3. Example of an XCCDF benchmark XML document.

m Open Vulnerability and Assessment Language (OVAL): This lan-
guage is used to express system configuration information, assess machine
state and report assessment results. OVAL is widely used in the cyber
security community as part of SCAP as well as with other standards [14].
Many hardware and software vendors produce OVAL content, which they
make available to their customers directly and through third-party online
repositories. The OVAL data model is versatile and complex; interested
readers are referred to [29] for details about the data model

The XCCDF data model [38] represents a checklist document as a Benchmark
object. A Benchmark is a collection of Rule, Value and Group objects. A Rule
specifies a single item to check, such as the default setting of a firewall. A Rule
also specifies how the checking should be done, such as with an implementation-
specific scripting language or with the OVAL standard. A Value represents
a named quantity that can be used in a rule and is tailored to a particular
configuration scenario. A Group collects Rule, Value and other Group objects
into an aggregation that is meaningful to a checklist user (e.g., a collection of
firewall configuration settings). An XCCDF Benchmark also contains one or
more Profile objects. A Profile is a named collection that references Group,
Rule and Value objects. For example, an XCCDF Ubuntu checklist may have
three profiles: one for single-user desktop systems, another for file servers and
a third for specialized security limited functionality systems.

Figure 3 shows an example of an XCCDF checklist, which is based on an
example from the XCCDF specification [38]. The Unified Modeling Language
(UML) [27] object notation is employed. The checklist applies to the Debian

182 CRITICAL INFRASTRUCTURE PROTECTION XI

| :Group .CCE

titte="Configure AppArmor" platform="ubuntu16.04"

description="Ensure AppArmor Configured Correctly"
control-mapping="AC-3(3) AC-6"

:Rule

[Ptite="Ensure AppArmor Is Not
Disabled In Bootloader Configuration”

'| OR | :Check-Content
P ref="oval:org.cisecurity.ubuntu_linux:def:1065"

:Rule
“Pltitie="Ensure All AppArmor Profiles :Check-Content
—] Are Enforcing" ref="oval:org.cisecurity.ubuntu_linux:def:1066"
» :OR i *
:AND :Check-Content

ref="oval:org.cisecurity.ubuntu_linux:def:1070"

:Check-Content
ref="oval:org.cisecurity.ubuntu_linux:def:1067"

:Check-Content ¢ :Check-Content
ref="oval:org.cisecurity.ubuntu_linux:def:1068" ref="oval:org.cisecurity.ubuntu_linux:def:1069"

Figure 4. FExample AppArmor rule in XCCDF.

Linux distribution version 8.0, as indicated by the common platform enumer-
ation value assigned to the platform attribute of the Benchmark object. The
checklist has two profiles, pl and p2, each of which references a subset (omitted
from Figure 3 for simplicity) of groups gl, g2 and g3 and values v1, v2 and v3.
In the figure, gl aggregates rules r3 and r4; g2 aggregates rules rl and r2; and
g3 aggregates value v4 and rules r5 and r6.

The UML object model in Figure 4 shows how XCCDF is used to express the
rules for checking that AppArmor is configured correctly in the Ubuntu scenario
shown in Figure 2. Since the actual XCCDF rule representation would have
more objects and would be harder to understand, Figure 4 shows a simplified
version of the rule representation. Interested readers are referred to [5, 28] for
details about an actual XCCDF XML representation. The CCE object in the
upper-right corner of Figure 4 maps to two NIST Special Publication 800-53 se-
curity controls from the Access Control (AC) family, AC-3(3) and AC-6, both of
which support the least privilege principle. The two Rule objects that support
the CCE each reference Boolean expressions involving Check-Content objects.
Each Check-Content object references a specific Ubuntu Linux OVAL defi-
nition in an external location. SCAP-conforming configuration scanner tools
must support OVAL as a checking system. Support for other checking systems,
such as those based on Linux shell command languages, is optional. To facili-
tate interoperability, the use of OVAL in checklists is preferable to non-SCAP
checking systems.

The example in Figure 4 also illustrates the complexity of SCAP content.
Each rule requires multiple OVAL definitions. Each OVAL definition, in turn,
requires additional OVAL objects that are not shown in Figure 4.

Lubell & Zimmerman 183

Ubuntu
Linux - J
Kernel)
Fedora
—
 SE—
CentOS
—

Figure 5. Shared components of Linux distributions.

4. SCAP Reuse in Manufacturing Environments

A major benefit is that an SCAP-expressed checklist can be used with multi-
ple software tools and can be presented in multiple ways to users depending on
their desire for details or need to know. Furthermore, XCCDF enables checklist
developers to modularize content into groups and profiles, and enables check-
list users to create tailoring files based on profiles. These capabilities, along
with various online XCCDF and OVAL repositories, benefit SCAP checklist
developers and users.

However, SCAP is not as helpful at facilitating the reuse of content applicable
to multiple platforms. Consider, for example, the firewall rule in Figure 2, which
uses iptables to check that the default policy is configured properly. The
rule assumes the presence of iptables and, therefore, requires another rule
to verify that iptables is installed. For Ubuntu Linux, the shell command
dpkg -s iptables could implement such a rule. The dpkg package manager
-s command option determines the status of a package (i.e., whether or not it
is installed). However, dpkg is not universal across Linux distributions. Linux
distributions based on the Debian Linux distribution, such as Ubuntu, use dpkg.
Other Linux distributions use different package managers. For example, Fedora
and CentOS use rpm for package management. Figure 5 shows the relationships
between the Debian, Ubuntu, Fedora and CentOS Linux distributions in terms
of their shared kernel and package manager components.

This example illustrates the problem of platform fragmentation. Platform
fragmentation occurs when the same operating system, software application
and/or hardware component are bundled by multiple entities, with each bundler
providing different customizations [35]. A real-world example that demon-
strates how Linux platform fragmentation complicates SCAP checklist devel-
opment is the SCAP Security Guide (SSG) Project [28]. The project goal is to
produce SCAP content (security guides) for a variety of Linux platforms. The
SCAP Security Guide developers deal with platform fragmentation by splitting
their source code into pieces that can be shared by multiple security guides

184 CRITICAL INFRASTRUCTURE PROTECTION XI

versus pieces that are specific to a security guide. Building security guides
from the source requires running scripts that perform XML transformations,
macro substitutions and merging of source files into larger files. The build
process is complicated and requires the SCAP Security Guide developers to
understand not only SCAP, but also the one-off manner in which the source
files are organized and structured [30].

The SCAP platform fragmentation problem is not just limited to Linux. For
example, consider the effort needed to develop a checklist for a programmable
logic controller. A programmable logic controller may include an operating
system (developed by a third party but customized by the vendor) in addi-
tion to automation software. Each of these components may be vulnerable to
cyber attacks. The NIST ICS Cybersecurity Testbed has a Beckhoff CX9020
programmable logic controller [2] that runs the Windows Embedded Compact
operating system (which Beckhoff licenses from Microsoft and has customized)
and Beckhoff’s TwinCAT automation software. It is actually less challenging
to automate the security configuration of a Beckhoff programmable logic con-
troller than that of many other programmable logic controllers with hardware-
optimized, vendor-accessible-only operating systems. For these programmable
logic controllers, there is no way for even an advanced user to deploy an auto-
mated configuration compliance checker. Indeed, only the vendor can alter the
operating-system-level configuration settings.

A security professional tasked with developing an SCAP checklist for a Beck-
hoff CX9020 programmable logic controller might begin by reviewing the ICS-
CERT Advisory ICSA-16-278-02 [12]. This document provides guidance for
mitigating the vulnerabilities associated with the Windows Embedded Com-
pact operating system and TwinCAT components of the programmable logic
controller. Since it is easier to reuse existing SCAP XML content than to
create new content from scratch, the security professional could search for XC-
CDF and OVAL content that is applicable to Windows Embedded Compact
and TwinCAT. Unfortunately for the security professional, no registered com-
mon platform enumeration identifiers exist for Windows Embedded Compact
and TwinCAT. However, SCAP content may exist for a third-party software
library used by TwinCAT and Windows Embedded Compact has a number
of components in common with Windows 7 (for which a great deal of SCAP
content exists). In such a situation, it would be beneficial if the security pro-
fessional could determine which, if any, of the existing SCAP content could be
easily repurposed to automate the ICSA-16-278-02 guidance. Unfortunately,
the existing SCAP content lacks the metadata needed to make such a determi-
nation.

5. Relevant Research and Standards

In addition to the SCAP Security Guide Project, other recent and ongoing
research, implementation and standardization efforts have proposed solutions
for coping with fragmentation and promoting reuse. The solutions can be

Lubell & Zimmerman 185

categorized as employing: (i) information modeling; (ii) document-focused;
(iil) centralized; or (iv) content-focused approaches.

Fitzgerald and Foley [8] have analyzed SCAP content from several reposi-
tories, classified the types of inconsistencies that create ambiguity and impede
reuse and provided examples of implicit relationships. Their analysis focused on
the OVAL language and common platform enumeration and common configura-
tion enumeration taxonomies, but did not include XCCDF content. They then
developed an SCAP ontology employing semantic threat graphs and demon-
strated how the SCAP ontology addresses inconsistency challenges by making
implicit relationships explicit.

Other researchers have pushed the envelope of SCAP deployment by develop-
ing checklists for platforms beyond the usual SCAP realm of desktop operating
systems, Internet browsers and office applications. Hlyne et al. [11] have de-
veloped a configuration checklist for Cisco routers, which uses OVAL content
developed by Cisco and is deployed using the jOval SCAP configuration scan-
ning tool. Kuo and Yang [16] have created an SCAP configuration checklist for
Android devices and a configuration management tool using the jOval scanning
engine; the tool runs on a server and performs remote scanning and remedia-
tion of misconfigurations. Kuo and Yang have used as their information source
prose text (without SCAP content) benchmark documentation from the Center
for Internet Security (CIS) [9]. CIS benchmarks [5] are available for a variety
of operating systems, software environments and network devices. Although
many CIS benchmarks are in prose form and not expressed using SCAP, an in-
creasing number are now available to CIS members in the XCCDF and OVAL
formats.

Vecchiato et al. [35] have studied configuration assessment data from more
than 500 Android smartphones and have found several recurring misconfigura-
tions, the most common being weak passwords and overly-permissive network
settings. Android device configuration compliance is an interesting SCAP use
case because its platform fragmentation challenges parallel those encountered
in manufacturing environments. In comparing Android with common desktop
and laptop operating systems, Vecchiato and colleagues characterize Android
smartphones as being more personalized to consumer preferences and having
lesser capabilities due to their reduced size and other physical constraints.
These characteristics are similar to those in manufacturing environments, where
hardware and information technology capabilities have to meet requirements
unique to the production scenarios and environmental conditions. Further-
more, as in the case of the programmable logic controller example in Section 4,
smartphone vendors customize Android devices with their own applications and
carrier-specific settings. As a result, Android smartphone vulnerabilities and
configuration issues can be hardware-vendor-dependent.

Vecchiato et al. [35] have also proposed an intriguing approach for reduc-
ing the fragmentation problem — that vendors and researchers work together
to transition some Android device capabilities currently available only through
vendors to services available through Google Play. The anticipated result of

186 CRITICAL INFRASTRUCTURE PROTECTION XI

this approach is that vendors could leverage Google Play’s automatic update
mechanism, enabling third-party software developers and end users to receive
new Android features and patches without having to wait for less-frequent An-
droid updates from their carriers. The approach of Vecchiato and colleagues
appears to be appealing in manufacturing environments because it addresses a
significant obstacle to automating configuration checking of industrial control
devices such as programmable logic controllers — the lack of software inter-
faces for third-party access to the underlying operating system information.
Of course, vendor-provided tools employed to program the devices may en-
able users to issue queries required to support the auditing of programmable
logic controllers, but it is currently not possible to use these tools to conduct
automated audits.

An adaptation of the idea of Vecchiato and colleagues could help mitigate
the fragmentation problem in manufacturing environments. Specifically, ven-
dors of programmable logic controllers, switches and routers could make their
firmware, operating system and other software updates available through cen-
tralized trusted digital distribution services. However, unlike Android smart-
phones, automatically updating industrial control devices raises significant con-
cerns. The availability of the devices and the safety of their operations are
paramount. Enabling a third-party developer to update a device automatically
without end-user intervention could have catastrophic consequences, especially
if the update occurs during production or software bugs are present in the up-
date. However, with the right modifications to address industrial control system
availability and safety requirements, an adapted approach might be acceptable.
Indeed, the increasing use of commodity operating systems in programmable
logic controllers and other devices provides new opportunities for developers to
implement automatic software updates as part of centralized services.

Software identification (SWID) tags [37], an international standard for de-
scribing software products, offer another potential solution to platform frag-
mentation. SWID tags use an XML format that allows for better-structured
and information-richer content than provided by a common platform enumera-
tion identifier. The common platform enumeration naming scheme is syntactic
and does not provide explicit semantics, which leads to ambiguity [8]. In con-
trast, SWID tags can explicitly represent the unique identifier of a product
as well as information about its versioning scheme, patch level, relationships
to other software and a host of other useful metadata. Because they enable
better software inventory management, SWID tags can also help detect system
misconfigurations. Indeed, current SCAP recommended practices provide guid-
ance for replacing common platform enumeration identifiers in SCAP content
with SWID tags [36].

Another standard that could promote the reuse of SCAP content is the
Darwin Information Typing Architecture (DITA) [26]. As the SCAP Secu-
rity Guide Project’s complicated build system illustrates, producing an SCAP
checklist from a collection of components poses XML publishing and content
management problems. However, as discussed in Section 4, the source code ver-

Lubell & Zimmerman

187

Table 1. Research and development approaches, objectives and proposed solutions.
Approach Objective Solutions
Information Mitigate platform fragmentation by improving Fitzgerald and
Modeling the ability of SCAP to represent platform Foley [8];
dependencies and relationships within and SWID tags [37].
between XCCDF rules and OVAL definitions.
Document- Use XML-based methods to make SCAP DITA [15, 26];
Focused authoring and content reuse easier. SSG ad hoc build
system [30].
Centralized Reduce the likelihood of misconfigurations by Vecchiato et al. [35].
centralizing software distribution and updates.
Addresses the root cause of platform fragmen-
tation instead of putting the onus on checklist
authors. Requires coordination and trust
between stakeholders and tailoring to meet
the stringent operational and safety require-
ments of manufacturing environments.
Content- Develop more XCCDF checklists, particularly SSG [28];
Focused for platforms where SCAP content is in short Hlyne et al. [11];

supply.

Kuo and Yang [16];

CIS benchmarks [5].

sion control systems that projects such as the SCAP Security Guide typically
use are file-based and inadequate for managing relationships between objects
within a source XML file or relationships between files. Multiple publications
(checklists) can share the same XCCDF or OVAL component. Additionally, a
publication can use the same component in more than one context. Kimber [15]
has implemented a content management and publishing system that combines
the capabilities of the Darwin Information Typing Architecture with the Git
version control system to generate publications from a collection of interrelated
version-controlled XML components. Such a standards-based strategy, if fea-
sible for the SCAP Security Guide Project, would be less ad hoc and brittle
than the current approach, which uses a mix of scripts, makefiles and manual
searches within files [30].

Table 1 summarizes the objectives and the solutions of the research and
development approaches discussed above.

6. Conclusions

This chapter has investigated the challenges to reusing existing SCAP con-
tent for checking configuration compliance of information technology compo-
nents in manufacturing environments. An illustrative example using an Ubuntu
Linux configuration checklist scenario demonstrates that platform fragmenta-

188 CRITICAL INFRASTRUCTURE PROTECTION XI

tion complicates the reuse of SCAP content. The same platform fragmentation
exists in the industrial control system and Android device domains as well.
A review and classification of related research and development approaches
and the relevant standards reveal promising solutions that ameliorate platform
fragmentation and encourage more SCAP deployments.

The need for cyber security solutions in manufacturing environments is grow-
ing. Although platform fragmentation is a barrier to SCAP deployment in the
manufacturing sector, other areas — most notably Android mobile devices —
share a number of the same issues. Recent and ongoing research and develop-
ment results could lead to concrete gains in SCAP adoption in the manufactur-
ing sector and in other areas, especially if the stakeholder communities work
together and learn from each another.

References

[1] M. Bauer, Paranoid Penguin: AppArmor in Ubuntu 9, Linuz Journal, issue
185, September 1, 2009.

[2] Beckhoff Automation, Manual CX9020, Embedded PC, Version 1.8,
Verl, Germany (download.beckhoff.com/download/document/ipc/em
bedded-pc/embedded-pc-cx/cx9020_hwen.pdf), 2017.

[3] E. Byres, A. Ginter and J. Langill, How Stuxnet Spreads — A Study of
Infection Paths in Best Practice Systems, Version 1.0, Tofino Security,
Lantzville, Canada, 2011.

[4] R. Candell, T. Zimmerman and K. Stouffer, An Industrial Control System
Cybersecurity Performance Testbed, NISTIR 8089, National Institute of
Standards and Technology, Gaithersburg, Maryland, 2015.

[5] Center for Internet Security, CIS Benchmarks, East Greenbush, New York
(benchmarks.cisecurity.org), 2017.

[6] A. Creery and E. Byres, Industrial cybersecurity for power system and
SCADA networks, Proceedings of the Industry Applications Society Fifty-
Second Annual Petroleum and Chemical Industry Conference, pp. 303-309,
2005.

[7] C. Fairchild and T. Harman, ROS Robotics by Example, Packt Publishing,
Birmingham, United Kingdom, 2016.

[8] W. Fitzgerald and S. Foley, Avoiding inconsistencies in the Security Con-
tent Automation Protocol, Proceedings of the IEEE Conference on Com-
munications and Network Security, pp. 454-461, 2013.

[9] R. Fritz, CIS Google Android, Android 4 Benchmark V1.0.0, Center for
Internet Security, East Greenbush, New York (benchmarks.cisecurity.
org/downloads/show-single/?file=android4.100), 2012.

[10] T. Hedberg, J. Lubell, L. Fischer, L. Maggiano and A. Feeney, Testing the
digital thread in support of model-based manufacturing and inspection,

Journal of Computing and Information Science in Engineering, vol. 16(2),
2016.

Lubell & Zimmerman 189

[11]

[12]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

C. Hlyne, P. Zavarsky and S. Butakov, SCAP benchmark for Cisco router
security configuration compliance, Proceedings of the Tenth International
Conference on Internet Technology and Secured Transactions, pp. 270-276,
2015.

Industrial Control Systems Cyber Emergency Response Team (ICS-
CERT), Advisory (ICSA-16-278-02), Beckhoff Embedded PC Images
and TwinCAT Components Vulnerabilities, U.S. Department of Home-
land Security, Washington, DC (ics-cert.us-cert.gov/advisories/
ICSA-16-278-02), January 5, 2014.

International Society of Automation, ISA99: Industrial Automation and
Control Systems Security, Research Triangle Park, North Carolina, 2015.

P. Kampanakis, Security automation and threat information-sharing op-
tions, IEEE Security and Privacy, vol. 12(5), pp. 42-51, 2014.

E. Kimber, Hyperdocument authoring link management using Git and
XQuery in service of an abstract hyperdocument management model ap-
plied to DITA hyperdocuments, Proceedings of Balisage: The Markup Con-
ference, vol. 15, 2015.

C. Kuo and C. Yang, Security design for configuration management of An-
droid devices, Proceedings of the Thirty-Ninth Annual Computer Software
and Applications Conference, vol. 3, pp. 249-254, 2015.

R. Lee, M. Assante and T. Conway, German Steel Mill Cyber At-
tack, ICS CP/PE (Cyber-Physical or Process Effects), Case Study Pa-
per, SANS Institute, Bethesda, Maryland (ics.sans.org/media/ICS-
CPPE-case-Study-2-German-Steelworks_Facility.pdf), 2014.

J. Lubell, Extending the cybersecurity digital thread with XForms, Pro-
ceedings of Balisage: The Markup Conference, vol. 15, 2015.

G. McGuire and E. Reid, The State of Security Automation Standards —
2011, A Survey, MP110439, MITRE Corporation, Bedford, Massachusetts
(www.mitre.org/sites/default/files/pdf/11_3822.pdf), 2011.

S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A. Sadeghi, M. Ma-
niatakos and R. Karri, The cybersecurity landscape in industrial control
systems, Proceedings of the IEEE, vol. 104(5), pp. 1039-1057, 2016.

M. Munaro, C. Lewis, D. Chambers, P. Hvass and E. Menegatti, RGB-D
human detection and tracking for industrial environments, Proceedings of
the Thirteenth Conference on Intelligent Autonomous Systems, pp. 1655—
1668, 2014.

National Cybersecurity and Communications Integration Center/Indus-
trial Control Systems Cyber Emergency Response Team, NCCIC/ICS-
CERT Industrial Control Systems Assessment Summary Report, FY 2015,
U.S. Department of Homeland Security, Washington, DC, 2013.

National Institute of Standards and Technology, Security and Privacy Con-
trols for Federal Information Systems and Organizations, NIST Special
Publication 800-53, Revision 4, Gaithersburg, Maryland, 2013.

190 CRITICAL INFRASTRUCTURE PROTECTION XI

[24] National Institute of Standards and Technology, Framework for Improv-
ing Critical Infrastructure Cybersecurity, Version 1.0, Gaithersburg, Mary-
land, 2014.

[25] National Institute of Standards and Technology, The United States
Government Configuration Baseline (USGCB), Gaithersburg, Maryland
(usgeb.nist.gov), 2017.

[26] OASIS, Darwin Information Typing Architecture (DITA) Version 1.3 Part
0: Overview (Plus Errata 01), OASIS Standard (Incorporating Approved
Errata), Burlington, Massachusetts, 2016.

[27] Object Management Group, OMG Unified Modeling Language (OMG
UML), Version 2.5, Document No. Formal/2015-03-01, Needham, Mas-
sachusetts, 2015.

[28] OpenSCAP, SCAP Security Guide (www.open-scap.org/security-poli
cies/scap-security-guide), 2017.

[29] OVAL, OVAL Documentation (ovalproject.github.io), 2017.

[30] M. Preisler, Contributing to SCAP Security Guide — Part 1
(martin.preisler.me/2016/10/contributing-to-scap-security-gui
de-part-1), October 28, 2016.

[31] S. Quinn, K. Scarfone and D. Waltermire, Guide to Adopting and Using
the Security Content Automation Protocol (SCAP), Version 1.2 (Draft),
NIST Special Publication 800-117, Revision 1, National Institute of Stan-
dards and Technology, Gaithersburg, Maryland, 2012.

[32] S. Quinn, M. Souppaya, M. Cook and K. Scarfone, National Checklist
Program for IT Products — Guidelines for Checklist Users and Develop-
ers, NIST Special Publication 800-70, Revision 3, National Institute of
Standards and Technology, Gaithersburg, Maryland, 2015.

[33] S. Radack and R. Kuhn, Managing security: The Security Content Au-
tomation Protocol, IT Professional, vol. 13(1), pp. 9-11, 2011.

[34] SwRI Manufacturing Technologies, ROS-Industrial, San Antonio, Texas
(rosindustrial.org), 2017.

[35] D. Vecchiato, M. Vieira and E. Martins, The perils of Android security
configuration, IEEE Computer, vol. 49(6), pp. 15-21, 2016.

[36] D. Waltermire and B. Cheikes, Forming Common Platform Enumeration
(CPE) Names from Software Identification (SWID) Tags, NISTIR 8085
(Draft), National Institute of Standards and Technology, Gaithersburg,
Maryland, 2015.

[37] D. Waltermire, B. Cheikes, L. Feldman and G. Witte, Guidelines for
the Creation of Interoperable Software Identification (SWID) Tags, NIS-
TIR 8060, National Institute of Standards and Technology, Gaithersburg,
Maryland, 2016.

Lubell & Zimmerman 191

[38] D. Waltermire, C. Schmidt, K. Scarfone and N. Ziring, Specification for the
Extensible Configuration Checklist Description Format (XCCDF), Version
1.2, NISTIR 7275, Revision 4, National Institute of Standards and Tech-
nology, Gaithersburg, Maryland, 2012.

[39] R. White, H. Christensen and M. Quigley, SROS: Securing ROS over the
wire, in the graph and through the kernel, presented at the IEEE-RAS
International Conference on Humanoid Robots, 2016.

[40] World Wide Web Consortium, Extensible Markup Language (XML) 1.0
(Fifth Edition), W3C Recommendation, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts (www.w3.org/TR/REC-xml), 2008.

[41] T. Zimmerman, Metrics and Key Performance Indicators for Robotic Cy-
bersecurity Performance Analysis, NISTIR 8177, National Institute of
Standards and Technology, Gaithersburg, Maryland, 2017.

