Detector-Independent Verification of Quantum Light
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We introduce a method for the verification of nonclassical light which is independent of the
complex interaction between the generated light and the material of the detectors, which are in our
work superconducting transition-edge sensors. This is achieved by an optical multiplexing scheme.
The measured coincidence statistics is shown to be a mixture of multinomial distributions for any
classical light field and any type of detector. This allows us to formulate bounds for the statistical
properties of classical states. We apply our directly accessible method to heralded multi-photon
states which are detected with a single multiplexing step only and two transition-edge sensors.
The nonclassicality of the generated light is verified and characterized through the violation of the
classical bounds without the need for characterizing the used detectors.

Introduction.— The generation and verification of
nonclassical light is one of the main challenges for real-
izing optical quantum communication and computation
[1-4]. The protocols and the needed resources are becom-
ing more and more sophisticated. However, robust and
easily applicable methods are required to verify quantum
features in order to employ quantum states of light for
real-world applications; see, e.g., [5].

The complexity of producing reliable sensors stems
from the problem that new detectors need to be char-
acterized initially. For this task, various techniques have
been proposed, e.g., detector tomography [6-11]. How-
ever, such a calibration requires many resources, for ex-
ample, computational/numerical efforts, reference mea-
surements, etc. Only after this handling, the interac-
tion between quantum light and the bulk material of
the detector can be inferred and quantum features can
be uncovered. The latter verification of quantumness
also depends on the bare existence of criteria that are
applicable to this measurement. Here, we will prove
that detectors with a general response to incident light
can be employed in an optical detection scheme, which
is well-characterized, to identify nonclassical radiation
fields based on simple nonclassicality conditions.

The concept of device-independent quantumness has
recently gained a lot of importance, because it allows
one to employ even untrusted devices; see, e.g., [12]. For
instance, device-independent entanglement witnesses can
be used without relying on properties of the measurement
system [13, 14]. It has been further studied to treat pro-
tocols for communication and computation tasks [15, 16].
The concept of detector-independence has been also ap-
plied to state estimation and quantum metrology [17, 18]
for the aim of gaining knowledge about a physical system
which might be too complex for a full characterization.

An equivalently remarkable progress has been made in
the field of well-characterized photon-number-resolving

(PNR) detectors [19, 20]. A charge-coupled-device cam-
era is one example of a system that can record many pho-
tons at a time. The correlation between different pixels
can be used to infer quantum correlated light [21, 22].
Another example of a PNR device is a superconduct-
ing transition-edge sensor (TES) [23-25]. This detec-
tor requires a cryogenic environment and its operation
is based on superconductivity. Hence, a proper detection
model for this detector would require the quantum me-
chanical treatment of a solid-state bulk material which
interacts with a quantized radiation field in the frame of
low-temperature physics.

Along with the development of PNR detectors, mul-
tiplexing layouts define another approach to realize
photon-number resolution [26-29]. The main idea is that
an incident light field, which consists of many photons, is
split into a number of spatial or temporal modes, which
consist of a few photons only. These resulting beams are
measured with single-photon detectors which do not have
any photon-number-resolution capacity. They can only
discriminate between the presence (“click”) and absence
of absorbed photons. Hence, the multiplexing is used
to get some insight into the photon-statistics despite the
limited capacity of the individual detectors. With result-
ing click-counting statistics, one can verify nonclassical
properties of correlated light fields [30-34]. Recently, a
multiplexing layout has been used in combination with
TESs to characterize quantum light with a mean photon
number of 50 and a resolution of up to 80 photons for
each of the two correlated modes [35].

In this Letter, we formulate and apply a method to
verify quantum light with arbitrary detectors. This tech-
nique is based on a well-defined multiplexing scheme
and individual detectors which can discriminate different
measurement outcomes. The resulting correlation mea-
surement is always described as a mixture of multinomial
distributions in classical optics. Based on this finding,



we formulate nonclassicality conditions in terms of co-
variances whose violation directly certifies nonclassical
light. We implement our approach for quantum light
which is produced by heralding photon-number states
from a parametric down-conversion (PDC) source. We
show that a single multiplexing step is already sufficient
to verify the nonclassicality of such states without the
need of characterizing the used TESs.

Theory.— The detection scenario under study is
shown in Fig. 1. Its detector-independence is achieved by
the optical multiplexing layout whose optical elements,
e.g., beam splitters, are much simpler and better charac-
terized than the detectors. Our only requirement for the
following detection model is that the measured statistics
are the same at each detector. In contrast to the typical
idea of multiplexing, e.g., in Ref. [35], we do not seek for
a higher photon-number resolution, but we employ this
scheme for obtaining a measurement model which does
not depend on the properties of the individual detectors.

CC

FIG. 1. (Color online) Multiplexed click-counting (CC) layout
consisting of N = 4 individual detectors. An incident light
field is split into N beams with identical intensities. Each of
the N identical detectors returns a measurement outcome k.
The number of detectors N with the same outcome 0 < k <
K is recorded.

First, we consider a single coherent, classical light
field. Suppose the detector can resolve the outcomes
k=0,..., K—or, equivalently, K + 1 bins—which have
a probability pr. Hence, the probability to have a coin-
cidence (k1,...,kn) from the N individual detectors is
Dk, - - Dry after the 50/50 splittings in Fig. 1. Further
on, the integer N}, represents the number of individual de-
tectors that measure simultaneously the outcome k. This
means we have Ny-times the outcome 0 together with IV;-
times the outcome 1, etc. from the N = Ny +--- + Nk
detectors. The probability to get (Np,..., Ng) in such
scenario is known to be described by a multinomial dis-
tribution [36],

C(No,...,NK) =

Nol---NgtPo P
Note that we counter a deviation from the 50/50 splitting
by including a corresponding systematic error.

For a different intensity, the probabilities py of the in-
dividual outcomes k might change. Hence, if we consider

a statistical mixture of arbitrary intensities, we can gen-
eralize the distribution in Eq. (1) by averaging over a
classical probability distribution P,

N!
¢(No,...,Nk) = <mpévo"'ljﬁk>
' ' (2)
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Because any light field in classical optics can be consid-
ered as an ensemble of coherent fields [38, 39], the mea-
sured statistics of the setup in Fig. 1 can be described
as a mixture of multinomial distributions (2). This is
not necessarily true for quantum light as we will demon-
strate. The distribution (2) applies to arbitrary detectors
and includes the case of on-off detectors (K = 1), which
yields a binomial distribution and has been previously
considered [37]. In addition, we determine the number of
outcomes, K + 1, directly from our data.

Let us now formulate a criterion that allows for the
identification of quantum correlations. The mean values
of multinomial statistics obey Nj, = Npy, [36]. Averaging
over P yields

N =N (pg). (3)

In the same way, we get for the second-order moments,
Nka/ = N(N*l)pkpk/ +5k,k/Npk [36] with 5k,k’ =1 fOI‘
k =k’ and 0 ;- = 0 otherwise, an averaged expression

NigNw =N(N — 1) (peprr) + Ok N (pr) - (4)
Thus, we find the covariance from Egs. (3) and (4),

ANLAN =N (pr) (Ok.x — (prr))

+ N(N — 1) (ApkApk/> . (5)

Note that the multinomial distribution has the covari-
ances ANyANp = Npk((sk’k/ — pk/) [36] Multiplying
Eq. (5) with N and using Eq. (3), we can introduce the
(K +1) x (K + 1) matrix

M = (NiANkANk/ — Nu(Néy — N_k/))

=N3N-1) ((ApkAPE))j k=0, i -

yeey

kok'=0,...K ()

As the covariance matrix ((AprApis )k, is nonnega-
tive for any classical probability distribution P, we can
conclude: We have a nonclassical light field if

0 £ (NANANG-Ne(Nowso—Ni))ypo ser (1)
i.e., the symmetric matrix M in Eq. (6) is not positive
semidefinite. In other words, M % 0 means that the
fluctuations of the parameters py in ((ApiApg))k i are
below the classical threshold of zero. Based on condition
(7), we will experimentally certify nonclassicality.



Ezxperimental setup.— Our experimental implemen-
tation is outlined in Fig. 2(a). A PDC source produces
correlated photons. Conditioned on the detection of k
clicks from the heralding detector, we measure the click-
counting statistics ¢(Np, ..., Nk), see also Eq. (2). Be-
sides the standard optical elements, the key components
of our experiment are (i) the PDC source and (ii) the
three TESs used as our heralding detector and as our
two individual detectors after the multiplexing step.
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FIG. 2. (Color online) Panel (a) depicts an outline of the
experiment. A PDC source produces correlated photon pairs
which are separated with a polarizing beam splitter (PBS). A
conditioning to a certain outcome (labeled as “click”) of a sin-
gle TES yields a certain number of photons in the other beam.
The latter signal is measured with a multiplexing scheme that
consists of N = 2 TESs [cf. Fig. 1]. Panel (b) shows the bin-
ning into K + 1 possible outcomes (bins). The energies that
are counted with a TES (shown for the heralding detector)
can be separated into 12 bins.

(i) PDC source. Our PDC source is a waveguide-
written 8 mm-long periodically poled potassium titanyl
phosphate crystal. We pump a type-II spontaneous PDC
process with laser pulses at 775nm and a full width at
half maximum of 2 nm at a repetition rate of 75 kHz. The
heralding idler mode (horizontal polarization) is centered
at 1554 nm, while the signal mode (vertical polarization)
is centered at 1546 nm. The output signal and idler pulses
are spatially separated with a PBS. The pump beam is
discarded using an edge filter. Subsequently, they are
filtered by a 3nm bandpass filters in order to filter out
the broadband background which is typically generated
in dielectric nonlinear waveguides [40].

(i) TES detectors. We use superconducting TESs [23],
provided by NIST, as our detectors. They consist of

25 um x 25 pm x 20nm slabs of tungsten inside an op-
tical cavity designed to maximize absorption at the de-
sired wavelengths. They are maintained at their transi-
tion temperature by Joule heating caused by a voltage
bias, which is self-stabilized via an electro-thermal feed-
back effect [41]. When photons are absorbed, the in-
crease in temperature causes a corresponding electrical
signal which is picked up and amplified by a supercon-
ducting quantum interference device (SQUID) module
and subsequently amplified at room temperature. This
results in complex time-varying signals of about 5 us du-
ration which fall into clearly distinguishable bins [42].
Our TESs are operated within a dilution refrigerator with
a base temperature of about 70 mK. They have an esti-
mated detection efficiency of 0.9879-02 [42]. The electrical
throughput is measured using a waveform digitizer and
assign a bin (described below) to each output pulse [43].
We process incoming signals at a speed of up to 100 kHz.

The time-integral of the measured signal results in an
energy whose counts are shown in Fig. 2(b) for the
heralding TES. The energies are binned into K + 1 differ-
ent intervals. One typically fits such a signal with a num-
ber of Gaussian distributions to infer the photon statis-
tics. As our technique of multinomial distributions (2)
does not rely on a particular binning of the outcomes—as
it is detector-independent—, we can make a much simpler
division into disjoint energy intervals. Above a certain
threshold energy, no further peaks can be significantly
resolved—note the logarithmic scale in Fig. 2(b)—and
those events are collected in the last bin. No measured
event is discarded. Our heralding TES therefore allows
for a resolution of K + 1 = 12 outcomes. Due to the
splitting of the photons on the beam splitter in the mul-
tiplexing step, the other two TESs allow for a reduced
distinction between K + 1 = 8 outcomes. Let us stress
that we have not assumed any detection model for the
TESs to perform this binning and that even the value K
is inferred from the data themselves.

Results.— The nonclassicality in terms of the condi-
tion (7), 0 £ M, can be directly applied to the mea-
sured statistics ¢(Ny, ..., Nk ) by sampling its mean val-
ues, variances, and covariances [Eq. (6)]. In Fig. 3, we
show the resulting nonclassicality of the heralded states.
As the minimal eigenvalue of the matrix M has to be non-
negative for classical light, this eigenvalue is depicted in
Fig. 3 for demonstrating the nonclassicality [32]. A sys-
tematic error is included that stems from the fact that the
measured statistics of the two TESs in the multiplexing
scheme are not perfectly identical.

To discuss our results, we compare our findings with
a simple, idealized model. Our produced PDC state can
be approximated by a two-mode squeezed-vacuum state
which has a correlated photon statistics, p(n,n’) = (1 —
A)A"0p, s, where n(n') is the signal(idler) photon number
and r > 0 (A = tanh®r) is the squeezing parameter which
is a function of the pump power of the PDC process [44].
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FIG. 3. (Color online) The minimal eigenvalue of the matrix
M in Eq. (6) is shown including its error bars (shaded area)
as a function of the generated states, which are defined by
the bin of the heralding TES. A negative value is inconsistent
with classical optics and, therefore, verifies quantum light.

Heralding with an ideal PNR detector, which can resolve
any photon number with a finite efficiency 7, we get a
conditioned statistics of the form

plote) =i ()1 -

(1= N)*
[1= A1 =)+t

R
(8)
with Ny =

for the kth heralded state and p(n|k) = 0 for n < k and
A0 = 1. Here N} is a normalization constant as well as
the probability that the kth state is realized. The signal
includes at least n > k photons if k£ photoelectric counts
have been recorded by the heralding detector.

In the ideal case, the heralding to the Oth bin yields a
thermal state [Eq. (8)] and for small squeezing a vacuum
state. That is a coherent state with a mean photon num-
ber of zero, p(n|0) = d,,0 for A — 0. Hence, we expect
that the measured statistics is close to a multinomial one
and, therefore, M ~ 0. Our data are consistent with this
consideration, cf. Fig. 3.

An ideal heralding to higher bin numbers gives a non-
classical Fock state with the corresponding photon num-
ber. The nonclassical character of the experimentally
realized multi-photon states is certified in Fig. 3. The
generation of k photon pairs in the PDC is less likely for
higher photon numbers, A} oc A\¥. Hence, this reduced
count rate of events results in the increasing error in Fig.
3. The highest significance of nonclassicality is found for
lower heralding bins.

Moreover, one gets higher mean photon numbers for in-
creasing pump powers of the PDC process according to
the model in Eq. (8). To demonstrate the impact on the
nonclassicality, we also studied our criterion (7) as a func-
tion of the pump power in Fig. 4. The conditioning to
zero clicks of the heralding TES is consistent with a clas-
sical signal. For higher heralding bins, we observe that
the nonclassicality is larger for decreasing pump powers

as the distribution in Eq. (8) becomes closer to a pure
Fock state. We can also observe in Fig. 4 that the er-
ror is larger for smaller pump powers as fewer photon
pairs are generated (A oc A¥) within a definite measure-
ment time. Note that the nonclassicality is examined in
terms of the photon-number correlations. If our detector
would allow for a phase resolution, we could observe the
increase of squeezing with increasing pump power, which
could be a future enhancement of the current setup.
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FIG. 4. (Color online) The minimal eigenvalue of M of the
first six heralded states is shown as a function of the pump
power. The nonclassicality (negative values) decreases with
increasing power. However, the verification is more significant
for higher pump powers.

Conclusions.— We have formulated and imple-
mented a robust and easily accessible method that al-
lows for the verification of nonclassical light with ar-
bitrary detectors. Based on a multiplexing layout, we
showed that a mixture of multinomial distributions de-
scribes the measured statistics in classical optics inde-
pendently of the specific properties of the individual de-
tectors. Subsequently, we could derive bounds to the
covariance matrix whose violation is a clear signature
of quantum light. Using a single multiplexing step and
two superconducting transition-edge sensors, we success-
fully probed the nonclassicality of heralded multi-photon
states. We also studied the dependence of the nonclassi-
cality on the pump power of our spontaneous parametric-
down-conversion light source and we could confirm the
expected nonclassical properties of the generated states.
Additional results and details on the performed analysis
can be found in Ref. [45].

Our method is a straightforward technique that also
applies to, e.g., temporal multiplexing or other types of
individual detectors, e.g., multi-pixel cameras. Our non-
classicality analysis is only based on covariances between
different outcomes which requires neither sophisticated
data processing nor a lot of computational time. Hence,
it presents a simple and yet reliable tool for characterizing
quantum light for applications in quantum technologies.
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