
Imposing Fine-grain Next Generation Access Control over Database
Queries

David Ferraiolo, Serban Gavrila, Gopi Katwala, and Joshua Roberts
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
{dferraiolo, Serban.gavrila, gopi.katwala, joshua.roberts}@nist.gov

ABSTRACT
In this paper, we describe a system that leverages ANSI/INCITS
Next Generation Access Control (NGAC) standard called Next-
generation Database Access Control (NDAC) for accessing data in
tables, rows, and columns in existing RDBMS products. NDAC
imposes access control at the data level, eliminating the need for
implementing and managing access control in applications and/or
through the use of proprietary RDBMS mechanisms.
Consequently, the same policies can protect multiple databases
from queries sent from multiple applications. Furthermore, NDAC
not only provides control down to the field level, but to varying
fields of select rows. NDAC is unique in achieving this granularity
of control without the use and coordination of multiple ptotection
mechanisms. Operationally, users issue wide sweeping queries, and
NDAC allows access to the optimal amount of data permissible for
the user. The method includes an Access Manager for trapping and
enforcing policy over SQL queries issued by applications as well
as a Translator for converting SQL statements to NGAC inputs and
converting NGAC authorization responses to either an access Deny
or one or more permitted SQL statements.

Keywords
ABAC; NGAC; Policy Machine; DBMS; Access Control

1. INTRODUCTION
Relational Database Management Systems (RDBMSs) do not
typically impose access control directly on its data. To restrict
access to sensitive data that might reside in a RDBMS, controls are
typically implemented at the application level or through propriety
RDBMS methods such as views. These controls take on many
forms including role-based access to “screens” with parameters that
can be characterized and subsequently used to formulate and issue
SQL queries. SQL queries comprise four basic types of operations–
Select, Insert, Update, and Delete–that respectively read, create,
write, and delete data in tables. An important feature of RDBMSs
is that they are able to specify criteria and extract and/or alter data
that might reside in one or more tables with great efficiency. For
example, “give me all the employees over 50 years old that live in
Virginia”.

This paper is authored by an employee(s) of the United States Government and
is in the public domain. Non-exclusive copying or redistribution is allowed,
provided that the article citation is given and the authors and agency are clearly
identified as its source.
ABAC'17, March 24 2017, Scottsdale, AZ, USA
ACM 978-1-4503-4910-9/17/03
DOI: http://dx.doi.org/10.1145/3041048.3041050

In this paper we describe a method that leverages ANSI/INCITS
Next Generation Access Control (NGAC) standard [1] [2] called
Next-generation Database Access Control (NDAC) for imposing
access control over database queries at the data level, independent
of the application and with minimal impact on performance. As a
result, the same policies can protect multiple databases from
queries sent from multiple applications.

NDAC’s method of protection begins with automatically generated
composite objects in the form of object attributes from a database
schema and the expression of access control policies in terms of
those attributes. NDAC uses NGAC as an authorization engine to
manage access control policies (through its Policy Administration
Point (PAP)) and compute authorization responses (through its
Policy Decision Point (PDP)). [3] provides an open source for such
an engine. The method also includes an Access Manager (a
customized NGAC Policy Enforcement Point (PEP)) for trapping
and enforcing policy over SQL queries issued by applications and
a Translator for converting SQL statements to NGAC inputs and
converting NGAC authorization responses to either an access Deny
or one or more permitted SQL statements.

Furthermore, NDAC provides control down to the granularity of
select rows with varying fields. Operationally, users issue wide
sweeping queries, and NDAC allows access to an optimal set of
permissible data. Although other technologies (see section 6–
Related Work) achieve a similar granularity of protection through
the combined use of multiple protection mechanisms, NDAC is
unique in its use of just one policy store. The principle advantage
is that NDAC does not need to maintain and coordinate multiple
access control schemes and can use the same policy store to protect
non-RDBMS resources, such as files, using an NGAC standards
PEP.

To demonstrate viability and assess performance, we have created
an NDAC prototype/experimental implementation using Harmonia
1.6–an NGAC reference implementation that uses MySQL for its
access control database [3]. For purposes of computing a decision
or reviewing access rights, all information that is needed resides in
memory. Harmonia 1.6 access control information is loaded from
disk into memory when the PDP is initialized and updated when an
administrative change occurs.

The remainder of this paper focuses on the method rather than the
NDAC prototype/experimental implementation due to its early
stage of development.

2. NGAC OVERVIEW
The Policy Machine (PM) [4] is an access control framework that

served as the basis for the development of an ANSI/INCITS
standard call Next Generation Access Control (NGAC). NGAC
consists of:

• a standard set of data elements and relations that can be

configured to express arbitrary access control policies in
support of a wide variety of data services and applications

• a generic set of operations that include read/write operations
that can be performed on resource data as well as
administrative operations for configuring (creating and
deleting) the data elements and relations that represent
policies

• a standard set of functions for computing access control
decisions and enforcing policy over user access requests to
perform read/write and its administrative operations

NGAC is a flexible access control framework in that it can be
molded in support of multiple combinations of diverse access
control policies. NGAC can often provide much of the same data
service functionality that is supplied by existing application
products and system utilities (e.g., file management, workflow,
internal messaging) and with similar performance [5]. An
advantage of NGAC is that access control policies are
comprehensively enforced over its data services, while non-NGAC
data service counterparts lack such faculties. Although it is possible
to develop a NGAC relational DBMS data service with features
similar to today’s commercially available RDBMS products, the
NGAC data service performance would pale in comparison.
Furthermore, the NGAC-enabled RDBMS data service could not
directly accommodate the broadly recognized SQL standard for
accessing databases.

3. NDAC
NDAC provides a means of leveraging NGAC for expression and
enforcement of access control policies over SQL queries for
accessing data in tables, rows, and columns in existing RDBMS
products. By leveraging NGAC, the method provides a means of
access control policy support that goes beyond state-of-the-art with
minimal impact on performance. It can impose forms of mandatory,
discretionary, and history-based access control policies [6].
Architecturally, NDAC could be deployed externally to RDBMS,
thereby providing a general solution for a variety of RDBMS
products, or it could be implemented as a database-kernel module.

Figure 1. Converting Database Schema to NGAC Access Control

Data

Included among NGAC’s data elements and relations used to
express and enforce policies are Object Attributes. Object
Attributes are containers that group and characterize data objects in
diverse ways. Data objects and object attributes are placed into
containers through an assignment relation. Vis. Figure 1, the
NDAC process for expressing access control policies begins with
an existing RDBMS schema, which includes columns and tables
that are automatically converted into NGAC-corresponding object
attributes and assignments.

Given that rows are also object containers, existing rows could be
automatically converted as well. NGAC data elements and relations
also include User Attributes, a generic set of operations, and three
types of relations for specifying an access policy. Once the
RDBMS schema has been converted, NGAC relations are
configured in formulating policy in terms of the created object
attributes and assignments using NGAC’s administrative API. The
resulting data elements and relations are stored as NGAC Access
Control Data. In addition to the conversion and supplementary data
elements and relations, NDAC includes an Access Manager for
trapping SQL queries from applications, a Translator for converting
SQL queries along with a user identity to NGAC inputs, and NGAC
authorization responses to those inputs to either an access deny or
permitted SQL queries.

Figure 2. Placement of NDAC with respect to existing components

Figure 2 shows the placement of NDAC’s Access Manager and
Translator in an authorization flow that involves Applications, a
target Database, and an NGAC authorization Engine. The
authorization flow is as follows:

(1) The SQL statement from a user of the Application is

intercepted by the Access Manager and sent to the Translator.
(2) For Select, Update, and Delete statements, using a separate

transaction, identify the set of rows that meet the criteria
included in the SQL statement. For Insert, this step is not used.

(3) The Translator converts the SQL statement from the user into
NGAC inputs that are fed to an NGAC implementation
(engine).

(4) Using its Access Control Data, and the rows identified in (2),
the NGAC implementation computes and renders an
Authorization Response that is sent back to the Translator.

(5) The Translator converts the Authorized Response into either
an access DENY or one or more SQL Statements that are
permitted for the user and sent back to the Access Manager.

(6) The Access Manager submits the Permitted SQL Statements
to the Database.

(7) In the case of a Select operation, Data extracted from the
database is sent back to the Access Manager and forwarded to
the Application and user.

Depending on the type of query (Select, Update, Insert, or Delete)
the Translator issues different inputs to the NGAC Authorization

Engine. These details are discussed later in the paper.

4. EXPRESSING POLICIES

4.1 Basic Elements, Containers, and
Relations

NGAC access control data includes users, data objects, generic
operations, and user and object attributes among its elements.
NGAC treats both user attributes and object attributes as
containers. Containers are instrumental in both formulating and
administering access policies and attributes. NGAC expresses
access policies through configurations of relations that include
assignments (define membership in containers), associations (to
derive privileges), and prohibitions (exceptions to privileges).

User attribute containers characterize their members. These
containers can represent user names, roles, affiliations, or other
common characteristics pertinent to policy such as security
clearances.

Object attribute containers characterize data by identifying
collections of objects such as those associated with certain projects,
applications, or security classifications. Object containers can also
represent tables, columns, and rows.

NGAC uses a tuple (x, y) to specify the assignment of element x to
element y. The assignment relation always implies containment
(i.e., x is contained in y).

Users and objects may be contained in one or more containers, and
containers may be contained by or contain other containers of the
same type. For object containers, this allows for the representation
of complex data structures such as relational database tables with
distinguished fields. Rows of a table may be expressed as
containers of data objects corresponding to the row’s fields, and
columns may be expressed as containers of data objects
corresponding to column fields. Figure 3(b) illustrates a table using
ovals to represent containers and dots to represent individual data
objects. The vertically oriented ovals represent columns (Name,
Phone, SSN, and Salary), the horizontally oriented ovals represent
rows (AliceRecord, BobRecord, and TomRecord), and their
intersections represent fields in one or more tables. Figure 3(b)
further illustrates a container of rows (Gr2Records) and two
containers of columns (Public and Sensitive). All rows and all
columns are represented by the object container EmployeeTable.

Note that for this example, the containers shown in red are the
object attributes that were automatically created by the Converter
(see figure 1). All other NGAC elements and relations are assumed
to be created through an NGAC administrative API by an
authorized user. This authorized user may be a policy administrator
or, as we discuss later, the user submitting Insert or Delete SQL
queries.

Figure 3(a) illustrates user containers (also called user attributes)
for the grouping and characterization of users. The container named
Staff includes three users (u1, u2, and u4), and the container HR
includes two users (u3, and u5). Employee is a container of
containers (HR and Staff). In addition, figure 3(a) shows three
containers—Bob, Alice and Tom—that respectively contain u1, u2,
and u4. Finally, figure 3(a) shows Gr2Mng containing user u2.

NGAC recognizes a generic set of operations that include basic

input and output operations (i.e., read and write) that can be
performed on the contents of data objects as well as a standard set
of administrative operations that can be performed on NGAC data
elements and relations that represent policies and attributes.

Figure 3. Example Policy Configuration

To carry out an operation, one or more access rights are required.
As with operations, two types of access rights apply: non-
administrative access rights and administrative access rights.

4.2 Associations
Access rights to perform operations are acquired through
associations. An association is a triple, denoted by ua---ars---pe,
where ua is a user attribute, ars is a set of access rights, and pe is a
policy element that may comprise either a user attribute or an object
attribute. The policy element pe in an association is used as a
reference for itself and the policy elements contained by the policy
element. The meaning of the association ua---ars---pe is that the
users contained in ua can execute the operations enabled by the
access rights in ars on the policy elements referenced by pe. The
set of referenced policy elements are dependent on (and meaningful
to) the access rights in ars.

Figure 3(c) lists six association relations in terms of the user and
object attributes (containers) illustrated in figures 3(a) and 3(b).
The set of referenced policy elements are dependent on the access
rights in ars. Note that the policy element of each association is an
object attribute and the access rights are read/write. In the
association HR---{r, w}---Sensitive, the policy elements referenced
by Sensitive are data objects (dots) contained in Sensitive, meaning
that user u3 and u5 can read and write those objects. If we had an
association HR---{create assign-to}---Sensitive, where “create
assign-to” is an administrative access right, then the policy
elements referenced by Sensitive would be Sensitive, SSN, and
Salary, meaning that users u3 and u5 may create assignments to
Sensitive, SSN, or Salary.

The access policy specified by the list of associations in figure 3(c)
is as follows:

• Employee users can read Name and Phone fields of all records
in EmployeeTable

• In addition to being able to read Name and Phone fields, HR
users can read and write SSN and Salary fields of all records
in EmployeeTable

• Bob, Tom, and Alice can read and write all fields (SSN,
Salary, Name, and Phone) in their own record (respectively,
BobRecord, TomRecord, and AliceRecord)

• Gr2Mng can read all fields (SSN, Salary, Name, and Phone)
of all records in Gr2Reccords (i.e., BobRecord and
TomRecord)

4.3 Prohibitions
In addition to assignments and associations, NGAC includes three
types of prohibition relations. In general, prohibition relations
specify privilege exceptions. One of these relations is user
attribute-deny. The user attribute-based deny relation is denoted by
ua_deny(ua, ars, pes), where ua is a user attribute, ars is an access
right set, and pes is a policy element set used as a reference for
policy elements contained by the policy element(s). The meaning
of the relation is that the users assigned to ua cannot execute the
operations enabled by the access rights in ars on the policy
elements in pes.

Figure 3(d) lists two prohibitions. The first prohibition specifies
that users assigned to Gr2Mng cannot read objects in SSN with the
exception of objects in AliceRecord. The second prohibition
specifies that users assigned to Staff cannot write to objects in
Sensitive.

The prohibitions listed in figure 3(d) further constrain the access
policy as follows:

• Staff users can read Name and Phone fields of all records in

EmployeeTable

• In addition to being able to read Name and Phone fields, HR
users can read and write SSN and Salary fields of all records
in EmployeeTable

• Bob, Tom, and Alice can read all fields (SSN, Salary, Name,
and Phone) and write to Name and Phone fields in their own
record (respectively, BobRecord, TomRecord, and
AliceRecord)

• Gr2Mng can read all fields of all records in Gr2Records with
the exception of the SSN field

An example set of Employee Records with data content is shown
in the top table of figure 4 under the object containers depicted in
figure 3(b). The bottom three tables show the access capabilities for
users u1, u2, and u3 under the access control policy expressed in
figure 3, where read access is highlighted in black, and read/write
access is highlighted in red.

5. TRANSLATOR
As discussed in section 3, the NDAC includes a Translator. On one
side, the Translator converts an SQL statement generated by an
application and the identity of the application’s user to an NGAC
input. On the other side, the Translator takes an NGAC
authorization response to the input and converts it to either one or
more permitted SQL statements; an access DENY in the case of a
Select statement; or to a GRANT or DENY status in the case of an
Update, Insert, or Delete statement. The Translator treats Select and
Update operations differently than Insert and Delete Operations
since Select and Update operations are directly mapped to NGAC

read and write operations on data. Alternatively, Insert and Delete
operations are mapped to create and delete administrative
operations on NGAC object containers that correspond to rows.

Figure 4. Example set of records with data content and the access

capabilities for users u1, u2, and u3 under the access control
policy of figure 3

5.1 Select and Update
Select SQL statements include a specification of one or more tables
and one or more columns from those tables along with criteria for
identifying rows from the table(s). Update SQL statements include
a specification of one table with one or more columns with criteria
for identifying rows. The method for translating a user’s requested
Select statement to one or more permitted SQL statements or an
Update statement to a GRANT or DENY result is based on
NGAC’s ability to review the access capabilities of users. See [7]
for a linear time algorithm and method for reviewing NGAC user
capabilities. In particular, NDAC identifies a set of objects that are
accessible to a user for either read for Select or write for Update as
well as attributes that contain those objects. In the algorithms that
follow, the terms “row,” “column,” and “table” refer to object
attributes that correspond to those entities. Possible algorithms for
Select and Update are as follows:

For Select:
(1) Using a separate transaction, identify the set of rows in the

SQL database that meet the criteria included in the Select SQL
statement.

(2) For each row identified in (1), identify a maximal set of
columns that are a subset of the columns in the Select
statement, and each identified column contains an object (for
which the user has Read access) that is also contained in the
row. These columns are said to be associated with the row.

(3) For each row, column association, remove the columns that
are also included in any DENY relation for the user with
respect to Read.

(4) For each subset of identified rows so that each row in the
subset has a common associated set of columns, generate a
Select SQL statement for that set of columns with the original
table and original condition augmented by a condition that
limits the Select to the subset of identified rows.

(5) If the set of rows or columns are empty, the Translator issues
a DENY response.

For Update:
(1) Identify the set of rows in the SQL database that meet the

criteria included in the Update SQL statement.
(2) Identify a set of rows in the table of the Update SQL statement

containing objects accessible by the user under the write
operation.

(3) If the rows identified by (1) are a subset of those identified in
(2), proceed to (4). Otherwise, DENY access.

(4) For each row identified in (1), verify the existence of objects
common to the row and the set of columns included in the SQL
Update statement. If the condition fails, DENY access.
Otherwise, proceed to (5).

(5) For the columns included in the SQL Update statement, verify
that the columns are not included in any deny relation for the
user. If the condition holds, GRANT the SQL Update
Statement. Otherwise, DENY access.

To provide a sense of potential performance, preliminary data
shows that the NDAC prototype/experimental implementation
currently computes and displays the results of authorizations of 100
records with 6 fields in 4 seconds and 1,000 records in 40.2
seconds.

5.2 Delete and Insert
The execution of an SQL Delete statement removes one or more
rows from a table in accordance with criteria included in the
statement. NDAC Grants or Denies a user’s request to delete one
or more rows in a database table, and, in the case of a Grant,
subsequently deletes the corresponding NGAC object attributes
and relations. The execution of a SQL Insert statement creates a
new row with specified column values in a specified table. The
method either Grants or Denies a user’s request to insert a row in
the database, and, in the case of a Grant, subsequently creates an
NGAC object attribute corresponding to the row, creates objects
(representing the values), and assigns those objects to the row
attribute and appropriate column attributes. A user’s capability to
perform an SQL Delete or Insert operation is dependent on the
existence of administrative privileges.

The creation and deletion of objects, object attributes, and
assignments is achieved through the execution of administrative
operations. A user’s capabilities to execute administrative
operations are established through administrative privileges.

5.2.1 Administrative Operations
Administrative operations in NGAC are implemented using
parameterized routines, prefixed by a precondition, with a body that
describes how a data set or relation (denoted by Y) changes to Y′.
The precondition tests the validity of the actual parameters. If the
condition evaluates to false, then the routine fails:

Rtnname (x1, x2, …, xk) {
…preconditions…
{
Y′= f(Y, x1, x2, …, xk)
}

Consider as an example the administrative operation CreateOinOA
shown below, which specifies the creation of an object x and
assigns the object to an object attribute y. The preconditions here
stipulate that the x parameter is not a member of objects (O), and
the y parameter is a member of object attributes (OA). The body
describes the addition of the x to the set of objects (O), which
changes the state of the set to O’, and the addition of the tuple (x,
y) to the set of assignments (ASSIGN) relation, which changes the
state of the relation to ASSIGN’.

CreateOinOA(x, y)
 x ∉ O ⋀ y ∈ OA
 {
 O’ = O ⋃ {x}
 ASSIGN’ = ASSIGN ⋃ {(x, y)}
 }

Each administrative routine entails a modification to the NGAC
configuration.

5.2.2 Administrative Privileges
In order to execute an administrative operation, the requesting user
must possess appropriate access rights. Just as access rights to
perform read/write operations on data objects are defined in terms
of associations, so too are capabilities to perform administrative
operations on policy elements and relations.

For example, consider the following two associations in support of
the configuration depicted by Figure 3(b):

TableAdmin---{create-oa, create-o, create ooa}---
EmployeeTable

TableAdmin---{delete-o, delete-oa, delete-ooa, delete-
oaoa}---EmployeeTable

The meaning of the first association is that a user assigned to
TableAdmin can:

(1) create an object attribute (e.g., corresponding to a row)

assigned to an object attribute (e.g., EmployeeTable) in
EmployeeTable

(2) create an object assigned to an object attribute (e.g., an
existing row) in EmployeeTable

(3) create an object to object-attribute assignment from an object
(e.g., an object in a row) to an object attribute (e.g.,
corresponding to a column) in EmployeeTable

The meaning of the second association is that a user assigned to
TableAdmin can:

(1) delete an object to object-attribute assignment (e.g., delete

object assignments to attributes corresponding to a row and
column) in EmployeeTable

(2) delete an object in EmployeeTable
(3) delete an object-attribute to object-attribute assignment (e.g.,

a row assigned to EmployeeTable) in EmployeeTable
(4) delete an object attribute (e.g., corresponding to a row) in

EmployeeTable

5.2.3 Administrative Routines
The administrative operations necessary to insert or delete an object
container corresponding row in another object container

corresponding to a table do not need to be executed on an individual
basis, but instead can be executed as an NGAC administrative
routine.

An administrative routine consists mainly of a parameterized
interface and a sequence of administrative operation invocations.
The body of an administrative routine is executed as an atomic
transaction—an error or lack of user privileges that causes any of
the constituent operations to fail execution subsequently causes the
entire routine to fail, producing the same effect as though none of
the operations were ever executed.

The following routine (in the context of figure 3(b)) creates an
object attribute (corresponding to a row) assigned to
EmplyeeTable, creates new objects (corresponding to values), and
assigns those objects to object attributes (corresponding to
columns) and the object attribute corresponding to the row. Assume
the columns Name, Phone, SSN, and Salary already exist and are
assigned to the object attribute EmployeeTable.

 Insert_Row_in_EmployeeTable(row, name, phone, ssn, salary)
 { CreateOAinOA(row, EmployeeTable)
 CreateOinOA(name, row)
 Assign(name, Name)
 CreateOinOA(phone, row)
 Assign(phone, Phone)
 CreateOinOA(ssn, row)
 Assign(ssn, SSN)
 CreateOinOA(salary, row)
 Assign(salary, Salary)
 }

Although the Insert routine applies to the object attributes
corresponding to the example schema of figure 3, a similar and
corresponding routine could automatically be created for each table
of an RDBMS schema, or a generic Insert routine could exist that
uses a template specific to each table.

An administrative Delete routine could be used to delete an object
attribute, objects and assignments corresponding to a RDMBS row,
and column values. Consider, for example the following routine in
the context of figure 3(b):

 Delete_Row_from_EmployeeTable(row)
 { For each object obj in row {
 DeleteO (obj) /*includes deletion of assignments of obj*/
 }
 DeleteOAinOA(row, EmployeeTable) /*includes deletion
 of assignments row to EmployeeTable*/
 }

Similar to Insert, a Delete routine could automatically be created
for each table of an RDBMS schema, or a generic Delete routine
could exist that uses a template specific to each table.

Administrative routines not only allow for consistence between
RDBMS rows and corresponding NGAC object attributes, objects,
and assignments, but also provide a means for testing a user’s
authority to Insert and Delete RDBMS rows.

For Insert:
The algorithm for translating an Insert statement to an NGAC
authorization response assumes the existence of an NGAC
administrative Insert routine. The algorithm is as follows:

(1) Invoke the routine corresponding to the table specified in the

Insert statement using the identity of the user that issued the
Insert statement with the specified row and column values,
thereby creating an object attribute that corresponds to the row
as well as objects that represent and correspond to column
values that are assigned to the row and are appropriately
assigned to object attributes that correspond to columns.

(2) If the routine successfully executes, GRANT the SQL Insert
statement. Otherwise, DENY access.

For Delete:
The algorithm for translating a Delete statement to an NGAC
authorization response assumes the existence of an NGAC
administrative Delete routine, particularized for the referenced
table. The algorithm is as follows:

(1) Identify the set of rows in the SQL database that meet the

criteria included in the Delete SQL statement.
(2) For each row identified in (1), sequentially invoke, using the

identity of the user that issued the statement, the Delete routine
of the table specified in the Delete statement by caching the
parameters of the object attribute corresponding to the
identified row and the objects contained in the object attribute.

(3) If any invocation of the routine fails to successfully execute,
DENY the SQL Delete statement, and roll back changes due
to previous invocations by applying the cache as NGAC
administrative Insert routine parameters. Otherwise, GRANT.

6. Related Work
NDAC is not the only system for enforcing fine-grain access
control policies over database queries in support of applications.
Two others are Oracle’s Real Application Security (RAS) [8] and
Axiomatics’ Data Access Filter (ADAF) [9]. Both are designed to
intercept and modify SQL statements for the purpose of applying
rule-based controls in database access scenarios.

RAS Allows application developers to define a data security policy,
application roles, and application users. At the application layer,
security policies are defined in terms of Access Control Lists on
dynamically created (using a “where” clause) Data Realms (set of
rows) and static “Views” on columns using the RAS API. In effect,
control is provided down to the record/field level.

ADAF includes a proxy that intercepts SQL statements, which in
turn are sent to an ADAF engine. The engine employs two policy
enforcing capabilities. First, a “where” clause is computed and
added to the SQL statement, thereby filtering out rows for which
the user is not authorized. This filtering operates on XACML 3.0
[10] policies in terms of object attributes created to correspond to
the tables and columns of the database schema. Second, ADAF
uses Masking to further redact individual cells of the filtered rows,
thereby providing filtering down to the record/field level.

NDAC has a number of similarities and differences with RAS and
ADAF. The RAS protection scheme is application centric and
DBMS specific, while ADAF and NDAC allow the same policies
to protect multiple databases from queries sent from multiple
applications. ADAF and RAS policies for controlling access to
rows are fully dependent on the database schema definition, while
NDAC is not. NDAC can define object attributes that contain
schema related object-attributes (e.g., Public and Sensitive of figure

3(b)) and express policies in terms of those object attributes. This
is an important distinction because enterprise policies are fluid and
change over time while schemas are ridged and typically remain
fixed.

In contrast to ADAF and RAS, NDAC does not need to maintain
and coordinate policies of two access control schemes to achieve
fine-grain access control. Although NDAC is shown external to the
DBMS, its policies are expressed in terms of relations like RAS,
allowing NDAC to be implemented as a database-kernel loadable
module.

Since ADAF is based on XACML, it is not amenable to policy
review, while RAS and NDAC can query the rule configuration
(relations) to determine the tables, rows, and columns accessible to
a given user in advance (without computing a decision). Moreover,
NDAC can graphically visualize the overall set of rules. See [7] for
NGAC algorithms and techniques for efficient policy review and
visualization.

7. CONCLUSION
This paper describes a system that leverages a ANSI/INCITS Next
Generation Access Control (NGAC) standard called Next-
generation Database Access Control (NDAC) for accessing data in
tables, rows, and columns in existing RDBMS products. NDAC
imposes access control at the data level and eliminates the need for
implementing and managing access control in applications, and/or
through the use of proprietary RDBMS mechanisms. As a
consequence, the same policies can protect multiple databases from
queries sent from multiple applications. Furthermore, NDAC does
not only provide control down to the field level, but to the level of
varying fields of select rows. Although other technologies achieve
a similar granularity of protection through the combined use of
multiple protection mechanisms, NDAC is unique in its use of just
one policy store. Operationally, users issue wide sweeping queries
and NDAC allows access the optimal amount of data permissible
for the user.

The NDAC process for expressing access control policies begins
with an existing RDBMS schema that includes columns and tables
that are automatically converted into NGAC corresponding object
attributes and assignments. Since rows are also object containers,
existing rows can automatically be converted as well. NGAC data
elements and relations also include User Attributes, a generic set of
operations, and three types of relations for specifying an access
policy. Once the RDBMS schema has been converted, NGAC
relations are configured in formulating policy in terms of the
created object attributes and assignments using NGAC’s
administrative API. The resulting data elements and relations are
stored as NGAC Access Control Data. In addition to the conversion
and the additional data elements and relations, NDAC includes an
Access Manager for trapping SQL queries from applications and a
Translator for converting SQL queries along with a user identity to
NGAC inputs and NGAC authorization responses to those inputs
to either an access Deny or permitted SQL queries that are sent to
the RDBMS for policy preserving access.

The U.S. Government has filed a patent application of certain
aspects of the subject matter disclosed in this paper.

Disclaimer: Products may be identified in this document, but
identification does not imply recommendation or endorsement by
NIST, nor that the products identified are necessarily the best
available for the purpose.

8. REFERENCES
[1] Information technology - Next Generation Access Control -

Functional Architecture (NGAC-FA), INCITS 499-2013,
American National Standard for Information Technology,
American National Standards Institute, March 2013.

[2] American National Standards Institute, Information
technology – Next Generation Access Control – Generic
Operations and Data Structures (GOADS), INCITS 526-
2016, American National Standard for Information
Technology, January 2016.

[3] NIST Policy Machine Versions 1.5 and 1.6 - Harmonia
[Website], https://github.com/PM-Master [accessed 9/26/16].

[4] D. Ferraiolo, S. Gavrila, and W. Jansen, “Policy Machine:
features, architecture, and specification,” National Institute
of Standards and Technology, Internal Report 7987 Rev. 1,
2015.

[5] D. Ferraiolo, S. Gavrila, and W. Jansen, “On the Unification
of Access Control and Data Services,” in Proceedings of the
2014 IEEE 15th International Conference of Information
Reuse and Integration, IEEE, 2014, pp. 450 – 457.
http://dx.doi.org/10.1109/IRI.2014.7051924

[6] D.F. Ferraiolo, V. Atluria, and S.I. Gavrila, “The Policy
Machine: A Novel Architecture and Framework for Access
Control Policy Specification and Enforcement,” Journal of
Systems Architecture, vol. 57, no. 4, pp. 412-424, April 2011.
http://dx.doi.org/10.1016/j.sysarc.2010.04.005

[7] P. Mell, J. Shook, S. Gavrila, Restricting Insider Access
through Efficient Implementation of Multi-Policy Access
Control Systems. In Proceedings of the 8th ACM CCS
International Workshop on Managing Insider Security
Threats. Vienna, Austria, October 24-26, 2016.

[8] http:/www.oracle.com/technetwork/database/security/real-
application-security/real-application-security-1964775.html.

[9] https:/www.axiomatics.com/resources/102-data-sheets/431-
axiomatics-data-access-md-filter-data-sheet.html.

[10] The Xtensible Access Control Markup Language (XACML),
Version 3.0, OASIS Standard, January 22, 2013.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.pdf

https://github.com/PM-Master
http://dx.doi.org/10.1109/IRI.2014.7051924
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://www.oracle.com/technetwork/database/security/real-application-security/real-application-security-1964775.html
http://www.oracle.com/technetwork/database/security/real-application-security/real-application-security-1964775.html
https://www.axiomatics.com/resources/102-data-sheets/431-axiomatics-data-access-md-filter-data-sheet.html
https://www.axiomatics.com/resources/102-data-sheets/431-axiomatics-data-access-md-filter-data-sheet.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

	Word Bookmarks
	Ref_ANSI04
	Ref_ANSI13
	Ref_Bell76
	Ref_DoD85
	Ref_Fer05
	Ref_Fer11
	Ref_Fer14a
	Ref_Fer14b

