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Abstract. In the last few years multivariate public key cryptography has experienced 
an infusion of new ideas for encryption. Among these new strategies is the ABC Simple 
Matrix family of encryption schemes which utilize the structure of a large matrix algebra to 
construct effectively invertible systems of nonlinear equations hidden by an isomorphism of 
polynomials. One promising approach to cryptanalyzing these schemes has been structural 
cryptanalysis, based on applying a strategy similar to MinRank attacks to the discrete 
differential. These attacks however have been significantly more expensive when applied to 
parameters using fields of characteristic 2, which have been the most common choice for 
published parameters. This disparity is especially great for the cubic version of the Simple 
Matrix Encryption Scheme. 
In this work, we demonstrate a technique that can be used to implement a structural 
attack which is as efficient against parameters of characteristic 2 as are attacks against 
analogous parameters over higher characteristic fields. This attack demonstrates that, not 
only is the cubic simple matrix scheme susceptible to structural attacks, but that the 
published parameters claiming 80 bits of security are less secure than claimed (albeit only 
slightly.) Similar techniques can also be applied to improve structural attacks against the 
original Simple Matrix Encryption scheme, but they represent only a modest improvement 
over previous structural attacks. This work therefore demonstrates that choosing a field 
of characteristic 2 for the Simple Matrix Encryption Scheme or its cubic variant will not 
provide any additional security value. 

Key words: multivariate public key cryptography, differential invariant, MinRank, en­
cryption 

1 Introduction 

The National Institute of Standards and Technology (NIST) is currently engaged in an effort to 
update the public key infrastructure, providing alternatives to the classical public key schemes 
based on arithmetic constructions. The discovery by Peter Shor in the 1990s of efficient algorithms 
for factoring and computing discrete logarithms, see [1], accelerated research towards building 
the necessary class of computers, those that Feynman famously suggested in [2]: quantum com­
puters. There has been growing interest among scientists in our discipline in the years since, to 
provide protocols and algorithms that are post-quantum, that is, secure in the quantum model 
of computing. The recent publication by (NIST), see [3], of a call for proposals for post-quantum 
standards directly addresses the challenge of migration towards a more diverse collection of tools 
for our public key infrastructure. 
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Public key schemes based on the difficulty of inverting nonlinear systems of equations provide 
one possibility for post-quantum security. Multivariate Public Key Cryptography (MPKC) is a 
reasonable option because the problem of solving systems of nonlinear equations, even if only 
quadratic, is known to be NP-complete; thus, the generic problem is likely beyond the reach 
of quantum adversaries. Furthermore, there are a variety of standard techniques to metamor­
phosize multivariate schemes, to introduce new properties, to enhance security, to reduce power 
consumption, to resist side-channel analysis, etc. 

There are numerous long-lived multivariate digital signature schemes. All of UOV [4], HFE­
[5], and HFEv- [6] have been studied for around two decades. Moreover, some of the above 
schemes have optimizations which have strong theoretical support or have stood unbroken in 
the literature for some time. Notable among these are UOV, which has a cyclic variant [7] that 
dramatically reduces the key size, and Gui [8], an HFEv- scheme, that, due to tighter bounds 
on the complexity of algebraically solving the underlying system of equations, see [9], has much 
more aggressive parameters than QUARTZ, see [6]. 

Multivariate public key encryption, however, has a much rockier history. Several attempts at 
multivariate encryption, see [10, 11] for example, have been shown to be weak based on rank or 
differential weaknesses. Recently, a new framework for developing secure multivariate encryption 
schemes has surfaces, drawing on the idea that it may impose sufficiently few restrictions on a 
multivariate map to be merely an injective map into a much larger codomain instead of being 
essentially a permutation. A few interesting attempts to achieve multivariate encryption have 
originated from this thought. ZHFE, see [12], the quadratic and cubic variants of the ABC 
Simple Matrix Scheme, see [13] and [14], and Extension Field Cancellation, see [15], all use 
fundamentally new structures for the derivation of an encryption system. 

A few of the above schemes have already suffered some setbacks. A questionable rank property 
in the public key of ZHFE presented in [16] makes this scheme appear dubious, while it was shown 
that the quadratic Simple Matrix structure leaves the signature of a differential invariant in the 
public key which is exploited in [17] to effect an attack. 

The case of the Cubic Simple Matrix encryption scheme is more interesting; the authors in [14] 
present a heuristic argument for security and suggest the possibility of provable security for the 
scheme. These provable security claims were undermined in [18], however, with the presentation 
of a key recovery attack on a full scale version of the Cubic Simple Matrix encryption scheme. The 
complexity of the attack was on the order of qs+2 for characteristic p > 3, qs+3 for characteristic 

2s+63, and q for characteristic 2. Here s is the dimension of the matrices in the scheme, and q 
is the cardinality of the finite field used. This technique was an extension and augmentation of 
the technique of [17], and similarly exploited a differential invariant property of the core map 
to perform a key recovery attack. Nonetheless, the much higher complexity of this attack for 
characteristic 2 left open the possibility that there may be some security advantage to using a 
cubic ABC map over a field with characteristic 2. 

s+2In this paper, we present an attack whose complexity is on the order of q for all charac­
teristics. Similar techniques can also improve the complexity of attacks against characteristic 2 

s+4parameters for the original quadratic version of the ABC cryptosystem, from q (reported in 
s+2[17]) to q . 

Specifically, our technique improves the complexity of attacking CubicABC(q = 28 ,s = 7), 
designed for 80-bit security, from the horrendous value of 2177 in [18] to approximately 288 

operations, the same as the direct algebraic attack complexity reported in [14]. More convincing 
is our attack on CubicABC(q = 28 ,s = 8), designed for 100-bit security. We break the scheme 
in approximately 298 operations. Furthermore, the attack is fully parallelizable and requires very 
little memory; hence, our technique is asymptotically far more efficient than algebraic attacks, 
the basis for the original security estimation. Thus, the security claims in [14] not only fail to 
hold in the odd characteristic case, they fail to hold in characteristic two as well. 



3 Improved Attacks on Cubic Simple Matrix Encryption 

The paper is organized as follows. In the next section, we present the structure of the Cubic 
ABC Simple Matrix encryption scheme. In the following section, the fingerprint of the matrix 
algebra used in the construction of the ABC scheme is exposed. In the subsequent section, the 
effect of this structure on minrank calculations is determined. We then calculate the complexity of 
the full attack including the linear algebra steps required for full key recovery. Finally, we review 
these results and discuss the security of the Cubic ABC scheme and its quadratic counterpart 
moving forward. 

2 The Cubic ABC Matrix Encryption Scheme 

In [14], the Cubic ABC Matrix encryption scheme is proposed. The motivation behind the scheme 
is to use a large matrix algebra over a finite field to construct an easily invertible cubic map. The 
construction uses matrix multiplication to combine random linear and quadratic formulae into 
cubic formulae in a way that allows a user with knowledge of the structure of the matrix algebra 
and the polynomial isomorphism used to compose the scheme to invert the map. 

Let k = Fq be a finite field. Linear forms and variables over k will be denoted with lower case 
2letters. Vectors of any dimension over k will be denoted with bold font, v. Fix s ∈ N and set n = s

and m = 2s2. An element of a matrix ring Md(k) or the linear transformations they represent, 
will be denoted by upper case letters, such as M . When the entries of the matrix are being 
considered functions of a variable, the matrix will be denoted M(x). Let φ : Ms×2s(k) → k2s 2 

represent the vector space isomorphism sending a matrix to the column vector consisting of the 
concatenation of its rows. The output of this map, being a vector, will be written with bold font; 
however, to indicate the relationship to its matrix preimage, it will be denoted with an upper 
case letter, such as M.   The scheme utilizes an isomorphism of polynomials to hide the internal structure. Let x T ∈ kn 

= 
denote plaintext while y = y1, . . . , ym ∈ km denotes ciphertext. Fix two x1, x2, . . . , xn

invertible linear transformations T ∈ Mm(k) and U ∈ Mn(k). (One may use affine transforma­
tions, but there is no security or performance benefit in doing so.) Denote the input and output 
of the central map by u = Ux and v = T −1(y). 

The construction of the central map is as follows. Define three s × s matrices A, B, and C in 
the following way: ⎤⎡⎤⎡ 

p1 p2 · · · ps b1 b2 · · · bs 

A = 
⎢⎢⎢⎣ 

ps+1 ps+2 · · · p2s 
. . .. . . . . . . . . 

⎥⎥⎥⎦ , B = 
⎢⎢⎢⎣ 

bs+1 bs+2 · · · b2s 
. . .. . . . . . . . . 

⎥⎥⎥⎦ , 

ps2−s+1 ps2−s+2 · · · ps2 bs2−s+1 bs2−s+2 · · · bs2 

and ⎤⎡ ⎢⎢⎢⎣ 

c1 c2 · · · cs 

cs+1 cs+2 · · · c2s 
. . . . . . . . . . . . 

· · · 2cs2 −s+1 cs2−s+2 cs

⎥⎥⎥⎦ 
C = . 

Here the pi are quadratic forms on u chosen independently and uniformly at random from among 
all quadratic forms and the bi and ci are linear forms on u chosen independently and uniformly 
at random from among all linear forms. 

We define two s × s matrices E1 = AB and E2 = AC. Since A is quadratic and B and C are 
linear in ui, E1 and E2 are cubic in the ui. The central map E is defined by 

E = φ ◦ (E1||E2). 



4 D Moody, R Perlner, & D Smith-Tone 

Thus E is an m dimensional vector of cubic forms in u. Finally, the public key is given by 
F = T ◦ E ◦ U . 

Encryption with this system is standard: given a plaintext (x1, . . . , xn), compute (y1, . . . , ym) = 
F(x1, . . . , xn). Decryption is somewhat more complicated. 

To decrypt, one inverts each of the private maps in turn: apply T −1, invert E , and apply U−1 . 
To “invert” E , one assumes that A(u) is invertible, and forms a matrix ⎤⎡ 

A−1(u) = 
⎢⎢⎢⎣ 

w1 w2 · · · ws 

ws+1 ws+2 · · · w2s 
. . . . . . . . . . . . 

· · · 2ws2−s+1 ws2 −s+2 ws

⎥⎥⎥⎦ , 

where the wi are indeterminants. Then collectinging the relations A−1(u)E1(u) = B(u) and 
2 2A−1(u)E2(u) = C(u), we have m = 2s linear equations in 2n = 2s unknowns wi and ui. 

Using, for example, Gaussian elimination one can eliminate all of the variables wi and most of 
the ui. The resulting relations can be substituted back into E1(u) and E2(u) to obtain a large 
system of equations in very few variables which can be solved efficiently in a variety of ways. 

3 The Structure of the Cubic ABC scheme 

3.1 Column Band Spaces 

Each component of the central E(u) = E1(u)||E2(u) map may be written as: 

ss
E(i−1)s+j = p(i−1)s+lb(l−1)s+j , 

l=1 

for the E1 equations, and likewise, for the E2 equations: 

ss
Es2 +(i−1)s+j = p(i−1)s+lc(l−1)s+j 

l=1 

where i and j run from 1 to s. 
Consider the s sets of s polynomials that form the columns of E1, i.e. for each j ∈ {1, . . . , s}

consider (Ej , Es+j , . . . , Es2−s+j ). With high probability, the linear forms bj , bs+j , . . . , bs2−s+j are 
linearly independent, and if so the polynomials may be re-expressed, using a linear change of 

: : :variables to (u1, . . . u 2 ) where u = b(i−1)s+j for i = 1, . . . , s. After the change of variables, the s i 
only cubic monomials contained in (Ej , Es+j , . . . , Es2−s+j ) will be those containing at least one 

: :factor of u1, . . . , u . We can make a similar change of variables to reveal structure in the s setss
:of s polynomials that form the columns of E2: Setting u = c(i−1)s+j for i = 1, . . . , s and a fixed i 

j, the only cubic monomials contained in (Es2 +j , Es2+s+j , . . . , E2s2−s+j ) will be those containing 
: :at least one factor of u1, . . . , u .s

More generally, we can make a similar change of variables to reveal structure in any of a large 
family of s dimensional subspaces of the span of the component polynomials of E1 and E2, which 
we will call column band spaces in analogy to the band spaces used to analyze the quadratic 
ABC cryptosystem in [17]. Each family is defined by a fixed linear combination, (β, γ), of the 
columns of E1 and E2: 
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Definition 1 The column band space defined by the 2s-dimensional linear form (β, γ) is the 
space of cubic maps, Bβ,γ , given by: 

Bβ,γ = Span(Eβ,γ,1, . . . , Eβ,γ,s), 

where 
ss 

Eβ,γ,i = (βj E(i−1)s+j + γj Es2+(i−1)s+j ) 
j=1 ⎛ ⎞ 

s ss s  
= ⎝p(i−1)s+l βj b(l−1)s+j + γj c(l−1)s+j

⎠ . 
l=1 j=1

Note that under a change of variables 

ss   M : : :(x1, . . . , xs2 )  −→ (u1, . . . u s2 ), where ui = βj b(i−1)s+j + γj c(i−1)s+j for i = 1, . . . , s, 
j=1

the only cubic monomials contained in the elements of Bβ,γ will be those containing at least one 
: :factor of u1, . . . , u .s

In such a basis, the third formal derivative, or the 3-tensor of third partial derivatives s ∂3E 
D3E = du: 

i ⊗ duj 
: ⊗ du: 

k,∂u: ∂u: ∂u: 
i j ki,j,k 

of any map E ∈ Bβ,γ has a special block form, see Figure 1. This tensor is the same as the one 
used for the attack in [18], although in that case it was computed using the discrete differential. 
There are, however, a number of disadvantages to using this 3-tensor to represent the structural 
features of cubic ABC. In particular, when defined over a field of characteristic 2, the symmetry 
of the 3-tensor results in the loss of any information about coefficients for monomials of the form 
2xi xj , since the 3rd derivatave of such a monomial is always 0. We will therefore use a different 

tool to express the structure of cubic ABC. 
:Using the same u basis as above, we see that the gradient Vu: E produces a covector of 

quadratic forms, which can be though of as a quadratic map that takes any vector w of the form 

: :(0, . . . , 0, u s+1(w), . . . , u s2 (w))T , 

to a covector of the form 
: :(y(u1), . . . , y(u ), 0, . . . , 0).s   

∂E ∂ENote that, by the chain rule, we can relate Vu: E = : , . . . , : to the formal derivative ∂u ∂u1 s2

defined over the public basis:     
∂E ∂EVE = , . . . , = Vu: E

duj 
: 

∂x1 ∂xs2 dxi i,j 

du:

using the nonsingular change of basis matrix whose entries are dx
j

i 
. We can therefore conclude 

that even defined over the public basis, the first formal derivative of any map E ∈ Bβ,γ is a 
quadratic map that takes an s2 − s dimensional space of vectors to an s dimensional space of 
covectors. 

We will define the term “band kernel” to describe this s2 − s dimensional space of vectors 
(including w) which are mapped to an s dimensonal image space by the first formal derivative 
of E . 
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Definition 2 The band kernel of Bβ,γ , denoted BKβ,γ , is the space of vectors x, such that 

s
: u = βj b(i−1)s+j (x) + γj c(i−1)s+j (x) = 0,i 

j=1 

for i = 1, . . . , s. 

x2 

x1 

s 

x3 

s 

Fig. 1. 3-tensor structure of the third formal derivative of a band space map. Solid regions correspond 
to nonzero coefficients. Transparent regions correspond to zero coefficients. 

4	 A Variant of MinRank Exploiting the Column Band Space 
Structure 

A minrank-like attack may be used to locate the column band space maps defined in the previous 
section. In this case, the attack proceeds by selecting s2-dimensional vectors w1 and w2, setting 

22s 

s 

tiVEi(w1) = 0, 
i=1 

(1)
22s 

2 2 ss 

tiVEi(w2) = 0, 
i=1 

2 2s
and then solving for the ti. The attack succeeds when tiEi ∈ Bβ,γ , and x1 and x2 are within i=1 
the corresponding band kernel. If these conditions are met, then the 2-tensors 

2s	 2s 

tiH(Ei)(w1) and tiH(Ei)(w2), 
i=1	 i=1 
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will have rank at most 2s, and this will be easily detectable. Here H(Ei) is the Hessian matrix ⎡ ⎤ 
∂2Ei ∂2Ei ∂2Ei· · · 
∂x2 ∂x1∂x2 ∂x1∂xn1 
∂2Ei ∂2Ei ∂2Ei· · · ∂x1∂x2 ∂x2 ∂x1∂xn2 

. . . 
. . . 

. . . 
. . . 

∂2Ei 
∂xn∂x1 

∂2Ei 
∂xn∂x2 

· · · ∂2Ei 
∂x2 

n 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 
H(Ei) := . 

Theorem 1 The probability that 2 randomly chosen vectors, w1 and w2, are both in the band 
1kernel of some band space Bβ,γ is approximately . q−1 

Proof. The condition that the w1 and w2 are contained within a band kernel is that there be a 
nontrivial linear combination of the columns of the following matrix which is equal to zero (i.e. 
that the matrix has nonzero column corank): ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

cs+1(w1) cs+2(w1) . . . c2s(w1) 
. . .. . . . . .. . . 

⎡ 
b1(w1) b2(w1) . . . bs(w1) c1(w1) c2(w1) . . . cs(w1) 

. 

bs+1(w1) bs+2(w1) . . . b2s(w1) 
. . .. . . . . . 

bs2−s+1(w1) bs2−s+2(w1) . . . bs2 (w1) 
b1(w2) b2(w2) . . . bs(w2) 
bs+1(w2) bs+2(w2) . . . b2s(w2) 

. . . 

. . . 

. . . . . . 
bs2−s+1(w2) bs2−s+2(w2) . . . bs2 (w2) 

. . . 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

cs2−s+1(w1) cs2−s+2(w1) . . . cs2 (w1) 
c1(w2) c2(w2) . . . cs(w2) 
cs+1(w2) cs+2(w2) . . . c2s(w2) 

. . .. . . . . . 
cs2−s+1(w2) cs2−s+2(w2) . . . cs2 (w2) 

. . . 

The matrix is a uniformly random 2s × 2s matrix, which has nonzero column corank with prob­
1ability approximately .  Dq−1 

Theorem 2 If w1 and w2 are chosen in such a way that they are both in the band kernel of a 
column band space Bβ,γ , and they are linearly independent from one another and statistically in­
dependent from the private quadratic forms, p(i−1)s+j in the matrix A, then w1 and w2 are both in 
the kernel of the first formal derivative of some column band space map, E = τiEβ,γ,i Eβ,γ,i ∈Bβ,γ 

1with probability approximately .(q−1)qs 

Proof. An E meeting the above condition exists iff there is a nontrivial solution to the following 
system of equations s 

τiVEβ,γ,i(w1) = 0, 
Eβ,γ,i∈Bβ,γ s (2) 

τiVEβ,γ,i(w2) = 0. 
Eβ,γ,i∈Bβ,γ 

:We may express our band space maps in a basis (e.g. the ui basis used in Definition 2) where 
the first s basis vectors are chosen to be outside the band kernel, and the remaining s2 − s basis 
vectors are chosen from within the band kernel. Combining this with Definition 1, we see that 
the band space maps can be written as 

ss
:Eβ,γ,i = p(i−1)s+j uj . 

j=1 
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:Note that w1 and w2 are band kernel vectors, and so for both vectors we have that u = 0 for j 
j = 1, . . . , s. Therefore, in such a basis, the only formal derivatives of E that can be nonzero are 
∂E = p(i−1)s+j for j = 1, . . . , s. Thus in order for there to be a nontrivial solution to Equation ∂u: 

j 
s

(2), it is necessary and sufficient that i=1 τip(i−1)s+j (wk) = 0 for j = 1, . . . , s and k = 1, 2. 
This condition will be satisfied if and only if the following 2s × s matrix has nonzero column 
corank: ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

p1(w1) ps+1(w1) · · · ps2−s+1(w1) 
p2(w1) ps+2(w1) · · · ps2−s+2(w1) 

. . . 
. . . 

. . . 
. . . 

ps(w1) p2s(w1) · · · ps2 (w1). 
p1(w2) ps+1(w2) · · · ps2−s+1(w2) 
p2(w2) ps+2(w2) · · · ps2−s+2(w2) 

. . . 
. . . 

. . . 
. . . 

ps(w2) p2s(w2) · · · ps2 (w2) 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. 

This matrix is a random matrix over k = Fq, which has nonzero column corank with probability 
1approximately , for practical parameters. D(q−1)qs 

Combining the results of Theorems 1 and 2, we find that for a random choice of the vectors 
w1 and w2, there is a column band space map among the solutions of Equation (1) with proba­

1bility approximately . It may be somewhat undesirable to choose w1 and w1 completely(q−1)2qs 

randomly, however. The näıve algorithm for constructing the coefficients of Equation (1) for a 
8 

s 

random choice of w1 and w2 requires on the order of s field operations. This can be reduced 
6to s operations if we make sure that each new choice of w1 and w2 differs from the previous 

choice at only a single coordinate. Then, rather than recomputing Equation (1) from scratch, we 
can use the previous values of the coefficients and we will only need to include corrections for the 
monomials that contain the variable that was changed from the previous iteration. Over a large 
number of iterations, the distribution of w1 and w2 should still be sufficiently close to random 
that the probability of success for the attack will not be meaningfully altered. 

One final factor which may increase the cost of attacks is the expected dimension of the 
solution space of Equation (1). If this space has a high dimension, then the attack will be slowed 
down since the attacker much search through a large number of spurious solutions to find a 

22s
real solution (i.e. one where tiH(Ei)(wl) has rank at most 2s for l = 1, 2). Fortunately, i=1 

2 2Equation (1) is a system of 2s equations in 2s variables and it generally has a 0-dimensional 
space of solutions. The lone exception occurs for characteristic 3. In this case, there are two linear 

T T
dependencies among the equations, given by w1 [VEi(w1)] = 0 and w2 [VEi(w2)] = 0. In this 
situation we would therefore expect a 2-dimensional solution space. We can, however, recover 
two additional linear constraints on the ti’s by also requiring: 

22s 

tiEi(wl) = 0, for l = 1, 2. 
i=1 

When these additional linear constraints are added to those given by Equation (1), the expected 
dimension of the solution space drops back to 0. We can therefore assess the cost of the above 

6attack at approximately s qs+2, regardless of the characteristic. 

5 Application to the Quadratic ABC Scheme 

A similar technique was used to attack the original quadratic version of the ABC cryptosytem 
in [17]. While this technique was expressed in terms of the discrete differential, it can also be 
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expressed using the formal derivative. In that case, the attack proceeds by selecting two random 
vectors w1 and w2, and solving an equation identical to Equation (1) for ti, where the Ei are 

22s
quadratic rather than cubic. The attack succeeds when tiH(Ei) has low rank. i=1 

When this attack is applied to parameters chosen over a field with characteristic 2, it is less 
efficient for the same reason as the basic attack given in the previous section is less efficient 

2for the characteristic 3 parameters: the 2s linear equations given by Equation (1) have three 
T T T

linear dependencies given by w1 [VEi(w1)] = 0, w2 [VEi(w2)] = 0, and w1 [VEi(w2)] + 
T 

w2 [VEi(w1)] = 0, and the attacker must generally search through a 3-dimensional solution 
space of spurious solutions in order to find a 1-dimensional space of useful solutions. As a result, 

2ω s+4 2ω s+2the complexity of the attack for characteristic 2 is s q , instead of s q , as it is for all 
other characteristics. (ω ≈ 2.373 is the linear algebra constant.) 

However, just as with cubic ABC parameters of characteristic 3, we can add two additional 
linear constraints and reduce the expected dimension of the solution space to 1: 

22ss 
tiEi(wl) = 0, for l = 1, 2. 

i=1 

Thus, we can also reduce the attack complexity for quadratic ABC parameters with characteristic 
2ω s+22 to s q . 

6 Completing the Key Recovery 

Once the MinRank instance is solved, key extraction proceeds in a similar manner to [18, Section 
6] in the cubic case and [17, Section 6]. Here we discuss the cubic version. 

First, note that U is not a critical element of the scheme. If A is a random matrix of quadratic 
forms and B and C are random matrices of linear forms, then so are A ◦ U , B ◦ U and C ◦ U for 
any full rank map U . Thus, since T ◦ φ(AB||AC) ◦ U = T ◦ φ((A ◦ U)(B ◦ U)||(A ◦ U)(C ◦ U)), 
we may absorb the action of U into A, B, and C, and consider the public key to be of the form 

P (x) = T ◦ φ(AB||AC)(x). 

Let E ∈ Bβ,γ , and consider H(E). For w1 and w2 in the band kernel corresponding to Bβ,γ , 
there is a basis in which both H(E)(w1) and H(E)(w2) have the form illustrated in Figure 2. 
Thus, for s ≥ 3, with high probability the kernels of both maps are contained in the corresponding 
band kernel Bβ,γ , and span{ker(H(E)(w1), ker(H(E)(w2)} = Bβ,γ . 

Given the basis for an s2 − s dimensional band kernel BK, we may choose a basis {v1, . . . , vs}
for the subspace of the dual space vanishing on BK. We can also find a basis Ev1 , . . . , Evs for the 
band space itself by solving the linear system s 

τiEi(w1) = 0, 
Ei s 

τiEi(w2) = 0, 
Ei 

. . . . . = . s 
τiEi(wt) = 0, 

Ei 

where t ≈ 2s2 and wi is in the band kernel. 
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Fig. 2. Structure of H(E)(w) when E ∈ Bβ,γ and w is in the band kernel corresponding to the band 
space Bβ,γ . The shaded region corresponds to nonzero coefficients. 

T 
Since the basis Ev1 , . . . , Evs is in a single band space, there exists an element b: · · · b: in1 s 

ColumnSpace(B||C), and two matrices Ω1 and Ω2 such that ⎤⎡⎞⎤⎡⎛⎞⎤⎡⎛ 
b: 1 v1 Ev1 

Ω1A
⎜⎝Ω2 

⎢⎣ 
⎟⎠⎥⎦ =: A: ⎢⎣ 

⎜⎝ 
⎟⎠⎥⎦ = ⎢⎣ 

⎥⎦ . . . . . . . . . . 
b: s vs Evs 

Solving the above system of equations over Fq[x1, . . . , xs2 ] uniquely determines A: in the quo­
tient Fq[x1, . . . , xs2 ]/ (v1, . . . , vs). To recover all of A:, note that the above system is part of an 
equivalent key 

F = T : ◦ A:(B:||C :) 

where v1 · · · vs 
T 

is the first column of B: . 
Applying T :−1 to both sides and inserting the information we know we may construct the 

system 

A:(B:||C :) = T :−1F . (3) 

Solving this system of equations modulo (v1, . . . , vs) for B: , C : and T :−1 we can recover a space 
of solutions, which we will restrict by arbitrarily fixing the value of T :−1. Note that the elements 
of T :−1 are constant polynomials, and therefore T :−1(mod (v1, . . . , vs)) is the same as T :−1. Thus, 
for any choice of T :−1 in this space, the second column of T :−1F is a basis for a band space. 

: :Moreover, the elements vs+1, . . . , v of the second column of B:(mod (v1, . . . , vs)) are the image, 2s 
modulo (v1, . . . , vs), of linear forms vanishing on the corresponding band kernel. Therefore, we 
obtain the equality     

s 2s
:ker(vi) ker(vi) = BK2 ∩ BK1, 

i=1 i=s+1 

the intersection of the band kernels of our two band spaces. 
We can reconstruct the full band kernel of this second band space using the same method we 

used to obtain our first band kernel. We take a map E2 from the second column of T :−1F , and two 
vectors wa and wb from BK2∩BK1, and we compute BK2 = span{ker(H(E2)(wa) ∪ ker(H(E2)(wb)}. 

T 
We can now solve for the second column of B: , vs+1 · · · v2s , uniquely over Fq[x1, . . . , xs2 ] 
(NOT modulo (v1, . . . , vs)) by solving the following system of linear equations: 
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: vi ≡ vimod (v1, . . . , vs) , 
vi(w1) = 0, 

vi(w2) = 0, 

. . . . . = . 

vi(ws2−s) = 0, 

where i = s +1, . . . , 2s, and {w1, . . . , ws } is a basis for BK2. We can now solve for A: (again,2−s

uniquely over Fq[x1, . . . , xs2 ]) by solving: ⎤⎡⎞⎤⎡⎛ 
v1 Ev1 

A: ⎢⎣ 
⎜⎝ 

⎟⎠⎥⎦ ≡ ⎢⎣ 
⎥⎦. . . . mod (v1, . . . , vs) ,. . 

vs Evs ⎤⎡⎞⎤⎡⎛ 
vs+1 Evs+1 ⎢⎣ 

⎜⎝ 
⎟⎠⎥⎦ ≡ ⎢⎣ 

⎥⎦A: . . . . mod (vs+1, . . . , v2s) ,. . 
v2s Ev2s 

T 
where Evs+1 · · · Ev2s is the second column of T :−1F . This allows us to solve Equation (3) for 
the rest of B: and C :, completing the attack. 

The primary cost of the attack involves finding the band space map. The rest of the key 
recovery is additive in complexity and dominated by the band space map recovery; thus the total 
complexity of the attack is of the same order as the band space map recovery. Hence, the cost of 

s+2private key extraction is approximately q s6 for all characteristics. 
The original parameters of Cubic ABC were designed for a security level of 80-bits and 100­

bits. Since NIST has been recommending a security level of 112-bits since 2015, see [19], these 
figures may be a bit out of date. In fact, our attack seems more effective for larger parameter 
sets than small. 

We note that our attack breaks CubicABC(q = 28, s = 7), designed for 80-bit security, in 
approximately 288 operations. More convincingly, our attack breaks CubicABC(q = 28, s = 8), 
designed for 100-bit security, in approximately 298 operations, indicating that for parameters as 
small as these, we have already crossed the threshold of algebraic attack efficiency. Furthermore, 
the attack is fully parallelizable and requires very little memory. Hence, this technique is asymp­
totically far more efficient than algebraic attacks, the basis for the original security estimation 
in [14]. 

In the case of the quadratic ABC scheme, the original 86-bit secure parameters ABC(q = 
28, s = 8). The attack complexity with the new methodology presented here is 287, just above 
the claimed level. We note, however, that the authors of [13] supplied additional parameters using 
odd characteristic in their presentation at PQCRYPTO 2013, see [20], with a claimed security 
level of 108-bits. This scheme, ABC(q = 127, s = 8) offers resistance only to the level of 277 to 
our slight improvement in technique over that of [17]. Thus, our attack definitively breaks these 
parameters. 

7 Experiments 

Using SAGE [21], we performed some experiments as a sanity check to confirm the efficiency of 
our ideas on small scale variants of the Cubic ABC scheme. The computer used has a 64 bit 
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quad-core Intel i7 processor, with clock cycle 2.8 GHz. Rather than considering the full attack, 
we were most interested in confirming our complexity estimates on the most costly step in the 
attack, the MinRank instance. Given as input the finite field size q, and the scheme parameter 
s, we computed the average number of vectors v required to be sampled in order for the rank of 
the 2-tensor H(E)(v) to fall to 2s. As explained in Section 4, when the rank falls to this level, 
we have identified the subspace differential invariant structure of the scheme which can then be 
exploited to attack the scheme. 

As this paper is only concerned with binary fields, we ran experiments with q = 2, 4 and 8. 
We found that for s = 3 and q = 2, 4, or 8, with high probability only a single vector was needed 
before the rank fell to 2s. For s = 4 and s = 5, the computations were only feasible in SAGE for 
q = 2 and q = 4. The average values obtained are presented in the table below. Note that for 
q = 4 and s = 5 the average value is based on a small number of samples as the computation 
time was quite lengthy. 

s = 4 (q − 1)2 q s s = 5 (q − 1)2 q s 

q = 2 24 16 35 32 
q = 4 1962 2304 7021 9216 

Table 1. Average number of vectors needed for the rank to fall to 2s versus the predicted values. 

In comparison, our previous experiments [18] were only able to obtain data for q = 2 and 
s = 4, 5. The average number of vectors needed in the s = 4 case was 244, while for s = 5, the 
average number in our experiments was 994 (with the predicted values being 256 and 1024). 

8 Conclusion 

The ABC schemes offer an interesting new technique for the construction of multivariate pub­
lic key schemes. Previously, we have used the multiplicative structure of an extension field to 
generate an efficiently invertible map. Schemes built on such a construct are known as “big 
field” schemes. The ABC framework is essentially a “large structure” or perhaps “large algebra” 
scheme, depending on multiplication from a matrix algebra over the base field. Since the only 
simple algebras are either matrix algebras or field extensions, we seem to have exhausted the pos­
sibilities. Interestingly, MinRank techniques seem optimal in this setting, at least asymptotically 
in the dimension of the extension. 

Also interesting to note is the fact that the authors present in [14] a heuristic security argument 
for the provable security of the scheme and reinforce the notion of provable security in this 
venue at the presentation of the scheme at [22]. Unfortunately, this analysis does not contribute 
a sound conclusion, as demonstrated by the methodology of [18]. With our improved attack, 
we rule out the possibility that the cubic variant of ABC offers any security advantage over 
the original quadratic scheme. Likewise, our improved attack on quadratic ABC eliminates any 
security benefit associated with characteristic-2 parameters in the quadratic case. 
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