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The rapid rise in technologies for data collection has cre-
ated an unmatched opportunity to advance the use of data-
rich tools for lifecycle decision-making. However, the useful-
ness of these technologies is limited by the ability to translate
lifecycle data into actionable insights for human decision-
makers. This is especially true in the case of sustainable
lifecycle design (SLD), as the assessment of environmen-
tal impacts, and the feasibility of making corresponding de-
sign changes, often relies on human expertise and intuition.
Supporting human sense-making in SLD requires the use
of both data-driven and user-driven methods while explor-
ing lifecycle data. A promising approach for combining the
two is through the use of visual analytics (VA) tools. Such
tools can leverage the ability of computer-based tools to
gather, process, and summarize data along with the ability
of human-experts to guide analyses through domain knowl-
edge or data-driven insight. In this paper, we review previous
research that has created VA tools in SLD. We also highlight
existing challenges and future opportunities for such tools
in different lifecycle stages—design, manufacturing, distri-
bution & supply chain, use-phase, end-of-life, as well as life
cycle assessment. Our review shows that while the number of
VA tools in SLD is relatively small, researchers are increas-
ingly focusing on the subject matter. Our review also sug-
gests that VA tools can address existing challenges in SLD
and that significant future opportunities exist.

1 INTRODUCTION
Reducing the environmental impacts of products and

services is now an important focus for industries [1]. With
the ever-increasing complexity of production and consump-
tion systems, it is imperative for industries to harness knowl-
edge from every phase of the lifecycle to create more sus-
tainable products and services.

The arrival and emergence of information technologies,
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such as the Internet of Things (IoT), cloud computing, and
cyber-physical systems, is pegged to herald a fourth in-
dustrial revolution (often termed as Industry 4.0 [2]). In-
dustry 4.0 is expected to create knowledge vital for en-
abling data-driven approaches to sustainable lifecycle design
(SLD) [3]. While such technologies have the potential to
significantly advance the use of data-rich tools for decision-
making in SLD, their usefulness is limited by the ability to
translate lifecycle data into actionable insights for decision-
makers [4]. To illustrate, a report by the McKinsey Global
Institute [5] states that the manufacturing sector alone stores
close to 2 Exabytes of new data, a figure from 2010. How-
ever, it is widely accepted that until now, the manufacturing
world is far from effectively using this data and meeting its
true potential in the digital age [6]. Considering that manu-
facturing represents only a fraction of the total data generated
throughout the lifecycle, other data sources such as customer
feedback from web surveys, use-phase resource consump-
tion data from on-board sensors, and recycling rate reports,
compound the challenge of translating data to knowledge for
use in SLD.

Addressing this challenge requires new approaches for
collecting, structuring, analyzing, and presenting lifecycle
data in a manner that is useful for decision-makers. To this
end, our paper reviews the motivation, current status, chal-
lenges, and future opportunities for visual analytics (VA)
tools—that combine data-driven approaches for data anal-
ysis with user-driven methods for data exploration—in the
context of SLD. To clarify, in this paper, SLD is defined as
the process of designing every lifecycle stage of a product
to minimize its environmental impact. We specifically fo-
cus on the environmental dimension of sustainability due to
large number of previous works discussing relationships be-
tween lifecycle decision-making and the resulting environ-
mental impacts. Here, we begin our discussion by giving a
brief overview of VA and its use in SLD.

VA differs from existing approaches to complex data
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analysis in that it augments the most appropriate data analy-
sis algorithms for a given application area and goal with hu-
man perception through the use of interactive visualizations.
VA has a number of definitions depending on its context of
use. It is broadly defined by Thomas and Cook [7, p. 5]
as “the science of analytical reasoning facilitated by interac-
tive visual interfaces”. It is important to note the distinction
from visualization, which is defined as the “use of computer-
based, interactive visual representations of data to amplify
cognition” [8, p. 7]. Visualization subsumes the fields of in-
formation visualization (where the data is nonphysical) and
scientific visualization (where the data is physically based).
Keim et al. [9] in their definition, explain how information
visualization is part of VA: “Visual analytics combines auto-
mated analysis techniques with interactive visualizations for
an effective understanding, reasoning and decision making
on the basis of very large and complex data sets” [p. 157].

VA achieves its goal through a sense-making loop where
analysts use interactive visualizations for exploring results of
an initial analysis, then use their perception to gain further in-
sights into the data, guiding further analysis. This results in
a progressive loop of analysis, visualization, perception, and
insight, which ultimately guides the analyst to form and test
hypotheses. Key application areas wherein VA has found
prominent success include business intelligence, medicine,
emergency management, physics, astronomy, and weather
monitoring [10]. Each one of these domains requires col-
lecting, processing, and visually summarizing sizable, dis-
parate data. As an example from the business intelligence do-
main, the 300 million credit card transactions per day intro-
duce significant complexity in analyzing data under multiple
perspectives and assumptions across changing historical and
current situations [10]. Foreseeing similar situations in prod-
uct lifecycle management (PLM), Keim et al. [9] suggest that
VA may be used in engineering for analyzing complex data
that arises from design, production, and feedback from prod-
uct use. Bras [11] acknowledges that methodological tools
for decision support in environmentally conscious design re-
quire effective integration in terms of gathering, managing,
analyzing data, and helping users assess the environmental
impacts of their design decisions–which forms the essence
of data-driven design. VA can be especially useful for aiding
decision-making in SLD in light of these existing challenges.
To this end, our paper aims to identify future research direc-
tions needed to create VA tools that can be applied to real-
world problems in SLD.

2 MOTIVATION
The decision-making process in SLD is complex be-

cause of ambiguities present in design representations, lack
of information from downstream life cycle stages, and uncer-
tainties in environmental assessment [12]. These issues make
it challenging to quantitatively predict relationships between
products’ attributes and their environmental impacts [13].
The growing trend towards product digitization and the envi-
ronments in which they operate make it increasingly possible
to address these challenges through the use of data-driven ap-
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Fig. 1. Creating visual analytics (VA) tools for sustainable lifecycle
design (SLD) requires research in (1) sustainable lifecycle design, (2)
data-driven approaches for lifecycle data collection/analysis, and (3)
computer-supported, interactive, visual interfaces.

proaches [14]. Fully and semi-automated approaches based
on techniques such as data mining, neural networks, auto-
mated concept generation, and expert systems have been de-
veloped [15–19]. Automated approaches for SLD are prone
to limitations faced by other knowledge-intensive systems in
design, e.g. lack of flexibility and the high cost of develop-
ment and maintenance [20]. This motivates the use of tools
that augment human expertise rather than completely replac-
ing them [21].

As humans are often an integral part of decision-making
processes in SLD, it is necessary to support sensemaking—
structuring the unexpected or the unknown [22]—during
data exploration and analysis tasks. According to Rizzoli
and Young [23], environmental systems present unique chal-
lenges as they carry distinct features: dynamics, spatial cov-
erage, complexity, randomness, periodicity, heterogeneity,
and paucity of information. These added complexities fur-
ther motivate the need for sensemaking processes in SLD.
Addressing these challenges require the use of both, data-
driven methods (that gather, process, and summarize the
data) as well as user-driven methods (that allow users to in-
put their domain knowledge or data-driven insights) while
exploring lifecycle data. A promising approach for combin-
ing the two is through the use of VA tools [24]. VA tools
combine the powerful pattern detection properties of the hu-
man visual system with the large data processing and ma-
nipulation capabilities of a computer system [25]. This al-
lows such tools to support designers’ insight generation pro-
cesses and leverage their expertise in qualitative decision-
making. As noted earlier, VA has been successfully applied
in domains such as business intelligence, emergency man-
agement, and weather monitoring [10], which like SLD, need
decision-makers to work with sizable, disparate data. Thus,
VA tools have the potential to augment existing approaches
for decision-making in SLD.

Figure 1 illustrates the primary domains underlying VA
tools for SLD. Creating such tools is an interdisciplinary task
that bridges (1) data-driven approaches for lifecycle data col-
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Table 1. List of keywords used to identify papers relevant to VA tools for SLD. All combinations of search strings formed by selecting 1
keyword in the sustainability domain and 1 keyword in the visualization domain were used as queries. For example, one query in the design
stage was, “sustainable design” (AND) “visual analytics”. The only exception to this rule was the end-of-life stage in which 2 domain keywords
were coupled with 1 visualization keyword, e.g. “end of life” (AND) “sustainable” (AND) “data visualization”.

LC STAGE DOMAIN KEYWORDS VISUALIZATION KEYWORDS

Design
{eco design, sustainable design, environmentally conscious design,
eco conscious design, green design, design for environment}

{visual exploration, visual analytics,
information visualization, data visualization}

Manufac-
turing

{sustainable manufacturing, eco conscious manufacturing,
environmentally conscious manufacturing, environmentally benign
manufacturing, green manufacturing}

{visual exploration, visual analytics,
information visualization, data visualization}

Supply
chain

{sustainable distribution, sustainable supply chain, green supply
chain}

{visual exploration, visual analytics,
information visualization, data visualization}

Use-phase
{sustainable use, ambient display, persuasive computing, eco
feedback}

{visual exploration, visual analytics,
information visualization, data visualization}

End-of-life
{end of life, reuse, remanufacture, upgrade, recycle, disassembly,
take back, recovery} & {sustainable, green, eco conscious,
environmentally conscious}

{visual exploration, visual analytics,
information visualization, data visualization}

Life cycle
assessment

{life cycle assessment, life cycle analysis, LCA} {visual exploration, visual analytics,
information visualization, data visualization}

Keyword-based	
search	of	
academic	
databases

Relevant	to	
sustainable	
lifecycle	
design?	

Contains	
example	of	
interactive	
visual	tool?

No

Yes

Yes

Categorize	paper	
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Other	papers	
by	authors	
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Review	paper(s)	that	
describing	the	

complete	visual	tool	

Yes

No
Discusses	
challenges,	
methods,	or	

future	
research
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Review	relevant	paper(s)	cited	
by	and	citing	selected	paper

Fig. 2. Decision-making approach for filtering papers obtained from the keyword search.
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Fig. 3. Histograms illustrating publication years of 164 papers (cat-
egorized by lifecycle stage) left after the filtering process.

lection, modeling, simulation, and analysis, (2) creation of
computer-supported, interactive visual interfaces for present-
ing lifecycle data, and (3) application of domain knowledge
from sustainable lifecycle design.

Though VA tools present significant potential for facili-
tating better decision-making in the context of environmen-
tal sustainability, their methods and practices are not void of
their own challenges in implementation and dissemination.
One study [26], in particular, distills out practical challenges
and barriers experienced during a 3.5 year academic-industry

collaboration that aimed to deploy integrated VA tools in a
large automotive company. Our paper discusses similar an-
ticipated challenges in delivering practical VA tools for SLD.

3 REVIEW METHODOLOGY
To identify VA and visualization tools in SLD, we con-

ducted a detailed review of previous literature. First, we
formulated a list of search keywords based on our knowl-
edge of previous work. We added search keywords to the
original list as we found alternate terminology used in pa-
pers from the search results. Table 1 lists the final set of
keywords used. Papers were identified through online aca-
demic databases, including Google Scholar Search, Scopus,
Engineering Village, Web of Science, and the ASME digi-
tal collection. These databases were chosen as they index
a wide range of journals, books, and conference proceedings
in engineering. Restricting our search to these databases may
have resulted in us missing significant previous work. How-
ever, we believe that the breadth of articles returned is repre-
sentative of the area. In total, 367 publications were obtained
from the keyword search process.

Figure 2 shows the decision flowchart used for filtering
papers. At the first decision point, results were analyzed to
verify their relevance to SLD and VA. This was done through
an analysis of the paper title, abstract, and mentioned key-
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4. VA tools for Sustainable Lifecycle Design
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Fig. 4. Graphical view showing the organization of Section 4. As shown, the review of VA tools for SLD is split into subsections that follow
the stages in the product lifecycle—from design to end of life. VA tools for LCA are also reviewed. Each lifecycle stage is further divided into
sub-themes based on the type and number of tools that we found in our literature survey. Each subsection ends with a discussion of relevant
current challenges and future opportunities.

words. Next, we checked if the resulting papers contained
examples of computer-supported, interactive visual tools rel-
evant to SLD. If they did not contain such a tool, we checked
if the paper discussed methods for creating such tools, chal-
lenges in creating such tools, and future opportunities or re-
search directions. We also checked if the same authors pub-
lished other work on the same visual tool. If so, we only
discuss the paper with the most comprehensive description
of the tool in our review.

Finally, the paper is classified based on its relevance
to a lifecycle stage. As shown in Table 1, the lifecycle
stages include design, manufacturing, supply chain, use-
phase, and end-of-life. These specific lifecycle stages were
chosen based on the classification by Ramani et al. [12]. We
added two other stages—use-phase and life cycle assessment
(LCA) as we found previous research also discusses infor-
mation visualization and VA tools specific to these contexts.
If a lifecycle stage did not have any significant work that
met this criterion, we expanded the scope to papers visual-
ization approaches that can potentially be used to create VA
tools. Methods such as machine learning, expert systems,
and data mining have also been used to promote sustainable
design [15–17], manufacturing [27], supply chains [28], and
end-of-life [29]. We do not classify such works as VA tools
as they do not explicitly include means for the visual analy-
sis and exploration of data. In total, 164 publications were
obtained through our filtering. These publications relate to
previous VA tools in SLD, methods for creating such tools,
challenges in creating such tools, and potential research di-
rections. Figure 3 illustrates the publication year of these
papers. They are categorized based on lifecycle stages in Ta-
ble 1. As shown, the rising number of publications seems to
be indicative of an increasing interest in this research area.

In the papers that were filtered out, we found that one
set of papers used common, static visualizations (such as bar
charts) to display lifecycle data relevant to SLD. Another set
of papers discussed new visual representations for lifecycle
data. These papers are not included in our review as they
did not discuss the creation of computer-supported interfaces
that could use the visual representations. Finally, the largest
set of papers filtered corresponded to computer-supported vi-
sual tools that were not directly related to SLD. Such papers

were obtained in our search as they mentioned sustainability
in discussions not central to the paper’s theme.

4 VA TOOLS FOR SUST. LIFECYCLE DESIGN
Here, we discuss previous research that has created vi-

sual analytics (VA) and visualization-focused tools in sus-
tainable lifecycle design (SLD). Our review focuses on iden-
tifying the kinds of tools created, the challenges in creating
them, and the research that must be conducted to improve
their adoption and dissemination in research and practice.
We classify the discussed papers based on the lifecycle stages
to which they are most applicable. As shown in Fig. 4, the
review of VA tools for SLD is split into subsections accord-
ing to lifecycle stages mentioned in Ramani et al. [12]. VA
tools for use-phase and life cycle assessment (LCA) are also
reviewed. Each lifecycle stage is further divided into sub-
themes. For example, in the design stage, we discuss VA
tools for SLD in the context of (1) conceptual and early-
phase design, and (2) design optimization and simulation.
The sub-themes were created based on the type and number
of tools that we found in our literature survey. Each subsec-
tion (i.e. VA tools for sustainable design) ends with a discus-
sion of relevant current challenges and future opportunities.
We have attempted to organize these sections in a modular
fashion, so that readers interested in a particular topic can
easily locate relevant references. Section 5 presents a more
holistic view and details the future research needed for pro-
moting VA tools in SLD.

4.1 VA Tools for Sustainable Design
The use of visualization in design is mostly driven by

the need to (1) characterize and navigate multi-dimensional
design spaces [30], (2) understand parameter trade-offs for
design optimization [31–33], and (3) generate insights, pat-
terns, and trends for decision-making [34, 35]. Thus, visu-
alization finds application in design for both scientific vi-
sualization (SciVis) and information visualization (InfoVis).
Card et al. [8] distinguish the two methods in that SciVis typ-
ically applies to scientific and physically-based data, e.g. en-
gineering stress and fluid velocity, while InfoVis applies to
abstract, non-physically based data, e.g. parameter spaces
and product/supply chain structures. VA tools for design
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simulation often rely on SciVis for enabling visualization of
physical parameters [36]. Such tools are widely used in sus-
tainable building design for exploring energy use, daylight-
ing, and thermal management [37]. VA tools used earlier
in the sustainable design process often focus on facilitating
parameter and design space exploration. Design parame-
ters and environmental indicators lack physical dimension-
ality and thus do not have unique mappings to visual repre-
sentations. A wide range of standard and custom visualiza-
tion methods are used in previous work to support such pro-
cesses. Interested readers are directed to works by Chi [38]
and Keim [39] that present taxonomies for data visualization.

4.1.1 Conceptual and early-phase design
In the initial stages of design, although the end goal is

known, designers rarely know the best approach for the prob-
lem, what questions to ask, and which among them are the
right questions to consider. Therefore, it is important to facil-
itate reuse of previous information and exploration of design
spaces at this stage for aiding sustainable design [12].

Previous research in creating VA tools for early design
has looked at (1) facilitating exploration of 3D part repos-
itories for eco-conscious decision-making [40], (2) solution
finding using the theory of inventive problem solving (TRIZ)
for helping designers transform the most impactful flows
from LCAs into potential flows for eco-improvement [41],
(3) relating LCA results with design using visualization and
dynamic interfaces [42], and (4) predicting energy usage &
carbon emissions for visual exploration of buildings [43].
The developed VA tools facilitate the following:
1) Relating results from environmental assessment to design
attributes in previous products: Such efforts can help re-
duce disparities between data representations used in envi-
ronmental assessment and those used in early design. This
disparity has been identified as a challenge for current eco-
design tools [44]. Addressing this gap is vital for aiding
environmentally-benign design of new products.
2) Simultaneously exploring design and sustainability re-
lated information in large, complex decision spaces: This
is achieved using visual overlays or through linking visual
representations [45]. When evaluating shapeSIFT with de-
signers, Ramanujan et al. [46] mention that visual overlays
help designers better understand relationships between sus-
tainability and design attributes by allowing them to trade
materials, manufacturing processes, and part functions.
3) Discovering a suitable redesign strategy by evaluating the
impact of design changes: For example, assessing the effect
of material or manufacturing process substitution, geometry
change, on the environmental performance of a design.

4.1.2 Design optimization and simulation
Computer-aided tools for parametric design, simula-

tion, and optimization find extensive use in design. The
large amounts of data generated by such tools makes them
amenable for VA. The fields of building design and ur-
ban planning have used VA tools for aiding sustainable de-
sign [37, 47]. Examples include (1) collaborative decision-
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Fig. 5. While a product’s environmental impact is a consequence
of parameters chosen in early design, explicitly relating the two is
a challenge. Sustainability-focused exploration of design spaces re-
quires approaches that can dynamically link complex, multi-modal,
multiply-related data.

making of in-fill development in cities [48], (2) design, con-
trol and implementation of adaptive lighting [49], (3) integra-
tion of daylighting considerations into building design [50],
(4) regional energy planning [51, 52], (5) optimization of
building elements reusability [53], and (6) design & man-
agement of sustainable data centers [54]. The design meth-
ods used in these domains may differ from those adopted in
product design. Even so, the underlying methods for creating
such tools, visual representations, and the interaction frame-
works, can inform researchers creating VA tools for SLD in
the context of product design.

Interactive visual analysis tools have been explored in
the context of mechanical engineering [36]. It can be ar-
gued that VA tools in mechanical design address sustain-
ability through applications such as, engine design for re-
ducing emissions, computational fluid dynamics analysis of
automobile design, or use-phase energy simulation of elec-
tronics. However, the lack of simultaneous visualization of
environmental indicators with design parameters can prevent
designers from gaining insights about the impact of a de-
sign change on the overall environmental impact of the prod-
uct. For example, understanding the environmental bene-
fit from an engine design that uses 5% more aluminum but
produces 0.01% less carbon dioxide emissions is quite com-
plex. Additionally, it can also prevent designers from trading
off design parameters for realizing a globally optimal design
with regards to environmental sustainability. The barriers to-
wards creating VA tools of sustainable design in such appli-
cations include translating design attributes to inventory pa-
rameters, automatically quantifying environmental impacts
during simulation or optimization runs, developing environ-
mental indicators that are understandable by designers, and
enabling the reusability of visualization and interaction mod-
els for design and sustainability-related data.

4.1.3 Existing challenges and future opportunities
One of the most significant constraints to creating VA

tools for sustainable design is the limited amount of data
available during early design. To address this challenge, re-
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searchers have to look at approaches for projecting lifecycle
information back to the design stage [12]. As shown in Fig.
5, the relationship between design variables (particularly in
early design) and the consequent environmental impacts is
challenging to explicitly quantify. This is because the com-
putation of environmental impacts depends on multiple inter-
related parameters such as design function, geometry, mate-
rials, and manufacturing processes. Significant research op-
portunities exist in relating results from environmental as-
sessment of similar products back to design. The increased
use of digital interfaces for collecting product-related data
across its entire lifecycle will also help in this endeavor.

Another challenge is the ability to create representations
for products that promote exploration of design spaces and
product attributes. The design stage uses multiple represen-
tations of products, including function trees, sketches, phys-
ical prototypes, and computer-based models. Also, current
representations of product lifecycle data are not universally
standardized [55]. Thus, VA tools for sustainable design
must contend with heterogeneous data from a wide variety
of sources. To this end, there has been a recent push to create
standards for gathering and modeling lifecycle data [56–60].
These standards efforts have been met with great challenges
themselves. One significant barrier is formally representing
knowledge and lifecycle information models. A proposed so-
lution is the formal ontology-based representation of product
data through OntoSTEP [61]. Future research can look at uti-
lizing such efforts to create VA tools for sustainable design.

The rise in consumer demand for green products cou-
pled with the ability for techniques such as ubiquitous sens-
ing and crowdsourcing to gather user needs in large volumes
will also drive the need for novel VA tools in sustainable de-
sign. Such tools will be needed to help designers gain insight
into the needs, perceptions, and preferences of end users and
to translate these insights into design attributes [62–64].

We also envision improvements in environmental as-
sessment, such as improved model & data separation, more
automation, and better integration with computer-aided engi-
neering tools, will help develop VA tools for sustainability-
focused design optimization and simulation. Here, a promis-
ing use case for VA tools is aiding designers gain insights
about design changes that can reduce the environmental im-
pacts of products and processes from large-scale simulation
results. Another potential application for VA tools is study-
ing the sustainable design process itself to better understand
designer behavior [65].

4.2 VA Tools for Sustainable Manufacturing
One of the earliest, most widely studied uses of InfoVis

in manufacturing is the process control chart, first proposed
in 1932 by Walter Shewhart as a general statistical technique
to make sense of individual process samples [66]. Significant
advances have occurred since then. Today, production facili-
ties commonly process data codified in visual variables, e.g.
position and color, to represent different system states and
track particular key performance indicators (KPIs) [67]. Fo-
cused on improving scheduling and manufacturing sequence

management, Sackett et al. [68] classified opportunities for
graph-based visualizations of production facilities under the
InfoVis techniques classification by Keim [69].

Though most VA tools for manufacturing are developed
in-house by large manufacturing companies, there have been
some published prototypes. Matković et al. [70] presented
TTPView 3.0, which was designed to visualize manufactur-
ing processes at varying levels of detail depending on the
user and goals of the analysis. Mazumdar et al. [71] pro-
posed a knowledge-based visualization dashboard that al-
lows users to quickly identify problems on the manufactur-
ing floor by querying a large collection of documents from
disparate sources. ViDX [72] was an interface developed to
deal with the significant velocity of data streams from pro-
duction facilities. In ViDX, users can aggregate various lev-
els of data with automated anomaly detection that is already
embedded in the system. This interaction allows users to fo-
cus on specific disruptions in the production facility, such
as significant energy consumption of a single or set of pro-
cesses. Similarly, LiveGantt [73] uses data aggregation and
codification schemes to present a large amount of stream-
ing information of a production facility in a packaged view
primarily using horizon graphs [74]. None of these tools ex-
plicitly track environmental aspects of a production system.
However, extending these tools to include analytics on en-
vironmental indicators is a viable future research direction.
Researchers and practitioners are working towards extending
related methods specifically in the context of environmental
sustainability [59,60,75]. With the availability of more intu-
itive and open tools for statistical learning, such as predictive
analytics, there is a clear opportunity for integrating them
with VA tools for sustainable manufacturing.

In this section, we focus on works that aid in improving
the environmental sustainability of production systems from
two primary perspectives: (1) simulation-based visualiza-
tion, and (2) process-based performance monitoring. A more
general overview of the use of visualization in manufactur-
ing, can be found in the review by Esmaeilian et al. [76].

4.2.1 Simulation-based visualization
Simulation-based visualizations have provided key in-

sights for tracking sustainability aspects of manufacturing
processes [77, 78]. Wenzel et al. [79] presented a taxon-
omy of visualization techniques for simulation in production
systems. Langrana et al. [80] illustrated the use of simula-
tion visualization to optimize control parameters for environ-
mental performance in the context of fused deposition meth-
ods. Herrmann et al. [81] presented a visualization dash-
board tracking an energy oriented simulation model to aid
in planning and better controlling manufacturing systems.
Another prototype allows users to compose eco-assessment
models of unit manufacturing processes and compute overall
emissions, energy consumption, and waste [82]. In the pro-
cess composition interface, users change parameter variables
associated with models and modify process sequence to test
environmental performance of different states and configu-
rations. The SIMTER tool provides a rich interactive sim-
ulation environment, wherein users experiment with various
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factory layout configurations and quickly understand advan-
tages of one design to another with respect to environmental
performance [83]. This work was extended to provide a VA-
based perspective using a Gantt chart as the primary interac-
tion [84]. Changing parameters, e.g. time associated with a
single stage in a string of processes, holistically shows prop-
agated effects across the factory layout. Wörner et al. [85]
presented a similar system that allows user interaction in the
visual analysis of an advanced manufacturing simulation.

4.2.2 Monitoring performance of production systems
A prominent development in this area is the deploy-

ment of visualization dashboards to monitor manufactur-
ing process performance. Some of these solutions also in-
clude platforms that provide additional intelligence based on
the collected shop-floor data, such as classifying produc-
tive and nonproductive periods for equipment. Examples
of such commercial software include System Insights VI-
MANA, TechSolve ShopViz, FORCAM Force, and Memex
MERLIN [86, 87]. Gröger and Stach [88] studied the fea-
sibility of a mobile manufacturing dashboard, which allows
both shop floor workers and production supervisors to under-
stand performance in real-time.

Another focus here is to better understand complex rela-
tionships of factory-level measurements and high-level KPIs
through interactive interfaces. Heße and Groh [89] discuss a
prototype interface that details facility-related KPIs as mov-
able cards in a hierarchical tree based on their relationships to
other KPIs and metrics. Here, environmental sustainability is
considered alongside other performance metrics. Similarly,
Brundage et al. [90] studied various visual representations
of KPIs based on their functional relationships presented in
ISO 22400 [67]. A prototype interface is presented that rep-
resents each KPI as a small multiples visualization. Each
multiple includes a bar chart of related metrics values. Users
can modify the low-level metrics to discover various com-
binations of metric thresholds that meet KPI goals. Users
still require expertise or external insights for extending these
methods towards sustainability-related data.

4.2.3 Existing challenges and future opportunities
Researchers have emphasized the vital role of visualiza-

tion in the emergence of smart manufacturing and Industry
4.0 [96]. Furthermore, there is an unmet need for novel meth-
ods to incorporate environmental aspects into manufacturing
system modelling and simulation [97]. The above factors in-
dicate the potential role of VA tools specifically designed to
address the environmental aspects of future manufacturing
systems. We discuss possible research directions below.

First and foremost, further contextualization of
manufacturing-related information across the lifecycle
is heavily needed. Even within manufacturing-specific
decision making, e.g. relating production planning to
inspection plans and results, significant barriers still remain
for integrating and managing knowledge. In spite of the
recent progress shown in our review, practical challenges
exist. For example, a significant amount of manufacturing
information is informally stored in natural language, e.g.

Fig. 6. Overcoming the variety in data formats, contexts, and scales
is a challenge for developing VA tools in sustainable manufactur-
ing. A manufacturing environment generates information related both
to the operations and build levels in a wide variety of forms, such
as natural language maintenance issues and near-continuous data
streams [91]. The wide adoption and convergence of manufacturing
standards [59,60,75,92–95] present promising opportunities.

quick hand-written notes. Information such as mainte-
nance logs must be formalized within models that specify
machines, operators, and status. This will help create
data visualizations for intuitive decision-making. Figure 6
summarizes these challenges with an example of a simple
manufacturing system (shown in the outlined centered
box), including three computer numerical controlled (CNC)
milling centers and two coordinate measuring machine
(CMM) inspection stations. The data that serves as input
to the manufacturing system is related to the specific
builds, including machine instructions, e.g. G-code and
inspection plans, and part-specific data, such as geometry
and material specifications. Here, we show two categories
of data generated by the manufacturing system, including
(1) data specific to the build, e.g. inspection results, and
(2) aggregate data important for operations monitoring,
e.g. sensor data and machine maintenance issues. The red
dotted lines present opportunities for contextualizing the
data generated from manufacturing systems back to design
to improve decision-making on environmental performance.

The full realization of smart manufacturing can expe-
dite these solutions [91]. However, to reach such poten-
tial, alignment between industrial and academic communi-
ties is necessary. A recent survey [98] revealed that, while
researchers want to incorporate sustainability metrics like
KPIs, industry professionals remain focused on more tradi-
tional metrics. An increase in the tracking environmental
aspects, such as material waste and energy consumption, can
increase the availability of data and knowledge models. On a
more positive note, there has been considerable work in the
standards community to prepare for such cataloging, such as
MTConnect [92–94], recent sustainability efforts in ASTM
International [60, 75], and similar efforts in the ISO commu-
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nity [59,95]. Some work has begun to leverage these or sim-
ilar technologies to improve the environmental performance
of manufacturing systems [99, 100].

4.3 VA Tools for Sust. Distribution/Supply Chains
Supply chains have consistently been studied as an ap-

plication domain for information visualization. The flow-
and-stage nature of supply chains lends itself quite well to
graph-based visual representations. For example, Minegishi
and Thiel [101] represented supply chain interactions, e.g.
cost tradeoffs in production, using a causal loop diagram.
Greer [102] incorporated geographic information system
(GIS) based information into a multi-level network represen-
tation. Hu et al. [103] developed a framework for visually
representing geographical attributes of a supply chain using
a case study from the transport container industry. TISC-
SOFT [104] was presented as a decision-support tool to op-
timize transportation infrastructure for supply chains. Lin et
al. [105] described efforts in representing traditional inven-
tory management information using dynamic interfaces.

Others have focused on creating traditional KPI-based
dashboards for supply chain cases. Hesse et al. [106] study
effects of various performance-based metrics on invento-
ries. Visually tracking metrics using value stream map-
ping (VSM) has gained wide adoption for summarizing and
monitoring supply chain performance [107]. Khaswala and
Irani [108] presented ideas for improving visual layouts
of VSM. Others focused on incorporating simulation tech-
niques into traditional VSM [109, 110]. Merging the no-
tion of performance metrics, e.g. risk and resilience, with
graph-based visualizations, Basole and Bellamy [111] de-
veloped static visual representations of supply chains from
the electronics industry to identify hotspots for risks, such as
weather disturbances. The work listed above does not explic-
itly discuss eco-related performance metrics and constraints.
Readers interested in developing their own visual represen-
tations of supply chains are directed to a dataset compiled by
Willems [112] that contains 38 real-world supply chains.

4.3.1 Green supply chains
Here, we present methods and tools that incorporate

visual analysis with the goal of designing and monitoring
more sustainable supply chains. Many of these efforts have
extended on best practices for supply chain visualization
and InfoVis, such as including a sustainability-based scoring
method for innovation potential [113] and formally model-
ing carbon footprints [114]. Another example from Faulkner
and Badurdeen [115] extended the idea of VSM and built a
framework for sustainability-based value stream mapping.

We found little previous work on VA tools for improv-
ing the environmental performance of supply chains. One
promising effort is Sourcemap, a material-focused tool that
allows the user to understand environmental costs per sup-
plier [116]. Sourcemap has an interactive visualization envi-
ronment and provides an overview of the geographic location
of each supply chain using a global map. In the context of
SLD, such overlays help in understanding environmental in-

Fig. 7. Supply chains can exhibit unique structures that span multi-
ple geographic regions. This particular example represents the sup-
ply chain for farm equipment [112]. As shown, in such systems, dis-
tribution sub-networks could have different attributes (i.e energy mix,
demand models). Similarly, the characteristics of assembly clusters
can depend on it’s location. These complexities make it difficult to
assess how a change in a supply chain’s structure effects it’s envi-
ronmental impact.

dicators such as carbon footprint resulting from transporting
goods/services across geographies. Sourcemap also allows
designers to easily identify hotspots for improvement and re-
alize alternative supply chains that are both economically vi-
able as well as more environmentally benign [117].

Another VA tool, ViSER [118] implements two mutu-
ally coordinated panes representing a supply chain tree and a
product architecture graph. Users can explore the impact of
a change in the supply chain to its product architecture and
vice versa. Similar to Sourcemap, ViSER (1) provides up-
dated metrics based on user selection and changes to the net-
work, and (2) shows details-on-demand via a tooltip based
on users’ interactions. Through a user study with industry
experts, ViSER was shown to aid in discovering a variety of
redesign opportunities for real-world supply chains [119].

ImpactMap [120] provides a web-based decision sup-
port tool that combines information about environmental im-
pact and visualizes data uncertainty levels based on the user’s
request. Since the primary purpose of ImpactMap is to reflect
the uncertainty values and sources of the environmental im-
pact for a particular supplier’s location, the most prominent
visual variables are codified to pertain to the uncertainty val-
ues. The tool also allows the user to adjust the weights as-
signed to the impact category depending on preference.
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4.3.2 Existing challenges and future opportunities

Figure 7 depicts a supply chain representing the distri-
bution of farm equipment [112]. Depending on the prod-
uct, supply chains exhibit unique structures often spanning
across multiple regions, countries, or even continents. Each
individual distribution sub-network, shown in red boxes in
Fig. 7, could have quite different attributes depending on its
location, such as energy mix statistics, temporal attributes,
distribution models, and demand models. These characteris-
tics directly relate to the environmental performance of each
sub-group. The product procurement and assembly aspects
of the supply chain, shown in yellow boxes in Fig. 7 also
have their own attributes, important for environmental per-
formance evaluation. Furthermore, changes in one region of
a supply chain can affect seemingly unrelated supply chain
entities with respect to their environmental performance. All
of these challenges are specific to supply chains and must be
considered when designing VA tools.

It is difficult to pinpoint the status of VA supply chain
tools targeted to improve environmental sustainability in in-
dustry. Similar to the manufacturing domain, there are many
in-house interfaces built for observing, monitoring, and im-
proving supply chain networks. However, all these tools are
not reported to the public. It is our sense that significant
challenges remain, based on available reports detailing visu-
alization tools in the industry (e.g. BMW [26]).

Since the visual exploration of supply chains is quite
widespread, there is an open need for standardizing vi-
sual components of supply chains to promote multi-channel,
multi-level, and multi-organizational decision making. Ben-
doly [121] proposes standard visual variables and plug-and-
play components for business processes. Similarly, Beynon-
Davies and Lederman [122] attempt to distill theoretical af-
fordances for particular kinds of effective visual variables for
tracking the development of products. Case studies in health-
care, clothing manufacturing, and software production are
presented by the authors. Such standards for visually repre-
senting supply chain components could promote the devel-
opment and integration of tools that involve multiple stake-
holders. However, consensus among interface designers and
domain experts is needed through future collaboration.

4.4 VA Tools in the Use Phase

The sustainable use of a product requires recruiting and
educating the end user on the impact of their use. The fo-
cus of sustainable use has thus been in the realm of human-
computer interaction, specifically persuasive computing, am-
bient awareness, interaction design, as well as pervasive and
participatory computing [123]. VA has not made significant
inroads to the use phase, mainly due to the challenge of ed-
ucating the average user in reading abstract visual represen-
tations of multidimensional data. Instead, the solution has
been on artistic visualizations that use metaphors of natural
ecosystems to illustrate the impact of use.

Persuasive computing: focuses 

on incremental, individual 

behavioral changes

behavior

feedback

Behavioral models consider only a 

narrow range of user/usage types; 

need more sample data

user 

model

Flow 

data

Energy 

data

Patterns

Series 1 Series 2

Smart sensors can identify 

and monitor usage of 

individual appliances 

Fig. 8. Challenges in monitoring sustainable behavior in the use
phase include limited framing of user behavior in persuasive comput-
ing support [131], and the need for user models to consider a wider
range of user behaviors [132]. Solutions could lie in the direction of
addressing scalability using single, central smart sensors for monitor-
ing resource consumption, coupled with machine learning to identify
consumption at the appliance-level [126, 127].

.

4.4.1 Persuasive computing
Persuasive computing is defined as “interactive technol-

ogy that changes a persons attitudes or behaviors” [124, p.
225]. Visualization approaches to persuasive computing for
the average user often take the form of “ambient awareness”.
This involves a visualization intended to make users aware of
some aspect of their impact on the environment [123]. Exam-
ples can be as simple as a lamp whose power cord glows in
response to its use, or a room heater that emits light as well as
heat to make energy consumption “visible” [125]. Ambient
displays can also be more sophisticated. For instance, Ubi-
green uses personal ambient displays in the form of mobile
phone wallpapers that update with visual metaphors of fruit-
bearing trees or an Arctic ecosystem to track and encourage
sustainable transportation habits [126].

With the rise in smart products and IoT, it is becoming
easier to track user behavior with product performance an-
alytics (Fig. 8). Along with persuasive computing, this has
been effectively used through a residence or office building’s
infrastructure, thus extending its influence from the use of a
single product to the use of energy or resources. Examples
include using the household water infrastructure to sense ac-
tivities of water consumption [127], or large-scale visualiza-
tions systems for monitoring power generation [128].

4.4.2 Monitoring usage & impact
While artistic visualizations are seen to be more acces-

sible to the average user, Froehlich [129] argues that prag-
matic visualizations, though requiring a learning curve for
the average user, are better at providing concrete informa-
tion. Costanza et al. [130] suggest integrating interactive
visualizations of users’ energy consumption into ubiquitous
computing systems. In their field study, they find that when
users are allowed to view, modify, and annotate visualiza-
tions of their domestic energy consumption, they start seeing
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energy consumption in terms of activities rather than appli-
ances, and works as a self-motivated persuasive computing
system. Perhaps the solution is a combination of both, as
seen in examples given by Froehlich [131] where a combina-
tion of sensing and persuasive computing is used to provide
feedback to users at the individual, household, and social lev-
els, indicating through visualizations and visual metaphors
how their actions impact the environment around them.

4.4.3 Existing challenges and future opportunities
Brynjarsdóttir et al. [132] critique persuasive computing

support for inducing sustainable behavior as blinkered with a
limited framing of user behavior and of sustainability itself.
They highlight the methodological issues caused by focus-
ing on incremental as opposed to systemic changes, and on
individual behavior rather than societal. They recommend a
shift from prescriptive behavior to reflective behavior, which
necessitates a shift to participatory design and a broadening
of the notion of persuasion from dogma to argument.

It is also critical to inspect computational models used to
assess impact. Popoff et al. [133] identify usage eco-drifts:
the increased environmental impacts caused by sub-optimal
use of products, and argue the case for a model to assess use-
phase impact that incorporates a wider range of behaviors.
They identify delayed impacts—such as abnormal wear and
tear and the environmental cost of repair or replacement—as
being critical but hidden factors often not considered in use-
phase studies, and suggest a use-phase model that incorpo-
rates such impacts. Niedderer et al.’s [134] study of profes-
sional stakeholders working on design for behavior change,
identified a lack of theoretical understanding in conceptual-
izing design solutions. This was further linked to lack of
availability and consistency in evidence-based examples of
prior cases, or a clear connection between theory and prac-
tice. Studying and amassing human behavior data is criti-
cal: humans are very effective in using their intuition to find
optimal solutions to complex problems, as evidenced in eco-
racer, a system that incorporates human computation in solv-
ing optimization problems [135]. There is potential, there-
fore, in mining human behavior to identify potential optimal
patterns of use for a minimal ecological impact.

4.5 VA Tools for Sustainable End-of-life
Strategies to recover products at end-of-life (EoL) for

reuse, repair, remanufacturing, and recycling can help miti-
gate environmental burdens of products. Identifying optimal
strategies for recovery and the impact on profitability is an
active concern [136–139]. The increasing ability to gather
product lifecycle data is aiding predictive analyses for guid-
ing such decisions [140]. The use of VA tools in EoL can po-
tentially augment human decision making in such scenarios,
often characterized by large, complex, and uncertain data.

4.5.1 Disassembly planning
An important aspect of EoL is the ability to plan effi-

cient disassembly for repair, remanufacturing, and recycling.
VA tools facilitate designers to visualize computer-aided de-
signs for products and explore disassembly strategies. Pre-
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Fig. 9. A key challenge in decision-making for sustainable EoL is
the need to gather information from a wide variety of stakeholders
across the product lifecycle. Potential research directions towards
addressing this challenge are also listed.

vious research has looked at supporting such tasks through
immerse virtual environments [141]. Decision-support sys-
tems that concurrently visualize life cycle flows and product
structure for evaluating alternative end-of-life strategies have
also been developed [142]. Another potential application for
VA tools is to support the design of modular products. Cre-
ating modular products can help ease EoL activities, e.g. dis-
assembly and recycling [143]. Research in SLD has looked
at visual representations such as weighted disassembly net-
works [144], weighted liason graphs [145], and design struc-
ture matrices [146] that can be used as the basis for creating
future VA tools in EoL. A list of applicable visual represen-
tations is reviewed by Gebhardt et al. [147].

4.5.2 Regulatory compliance and waste minimization

Environmental regulations such as the Restriction on
Hazardous Substances (RoHS), the Waste Electrical and
Electronic Equipment (WEEE), and the End of Life Vehicles
(ELV) directive have made it necessary for manufacturers to
adopt design strategies for ensuring product compliance and
waste minimization. This can be challenging as there are a
limited number of approaches in the design phase that sup-
port such activities. Bilal et al. [148] conclude that a robust
material database with comprehensive support for interactive
visualization is required early in the design stage for reduc-
ing building construction waste. The same analogy can also
be made for minimizing waste from other engineered prod-
ucts. VA tools can help address these issues by presenting
such constraints in a linked dashboard that merges design and
regulation-related knowledge. One such tool is the Eco Ma-
terials Adviser (EMA), available as a plug-in for Autodesk
Inventor [149]. EMA links to an extensive database of ma-
terial properties and offers a co-ordinated multi-view dash-
board that helps designers explore interrelationships between
carbon footprint, embedded energy and water, material cost,
toxicity, and EoL compliance, e.g. RoHS and WEEE.
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4.5.3 Existing challenges and future opportunities
Effective decision-making for sustainable EoL requires

product-related information generated throughout the lifecy-
cle. As shown in Fig. 9, this necessitates information sharing
from stakeholders involved in different lifecycle stages. A
lack of information sharing between end-users, third party
stakeholders in EoL, and original equipment manufacturers
(OEMs), often leads to to poor management of retired prod-
ucts. Fig. 9 also summarizes potential research directions
that can help address this challenge.

A specific challenge for creating VA tools in EoL is the
ability of OEMs to gather reliable information about the con-
dition of the product as it nears retirement. Stoughton et
al. [150] point out that the information in the context of ex-
tended producer responsibility (EPR) can be characterized as
(1) poorly understood, (2) considerably complex, (3) seem-
ingly unavailable, and (4) reluctantly shared. The develop-
ment of data-driven information gathering and processing
approaches can address this challenge.

Open sharing of collected data can be a significant en-
abler for sustainable EoL [151] and consequently help the
creation of VA tools in EoL. However, the proprietary nature
of some of the collected data hinders such collaboration. Ap-
proaches for managing confidentiality during collaboration
are strongly needed [152]. An additional challenge faced by
VA tools in EoL is the need to present and analyze time-
series based lifecycle data. For example, VA tools need to
present dynamic parameters such as part wear, trends in sup-
ply and demand, price fluctuations, and history of ownership
in order to better support SLD. Currently, most LCA tech-
niques handle these complex parameters as stochastic pro-
cesses, often represented by a single percentage value.

A strong potential use case for VA tools is to identify and
characterize the interactions among design decisions, recov-
ery strategies, environmental impact, and local regulations.
VA tools that can visualize compliance-constrained design
spaces and help designers explore the effect of a design
change on regulatory considerations can greatly aid design
for EoL. Another avenue open to such tools is to aid stake-
holders in the design process, analyzing the vast quantities of
data that can be gathered by sensors during customer-use of a
product. Such tools can be used for understanding the current
state of a product and relating product performance to up-
stream decisions (design for EoL) as well as downstream de-
cisions (co-ordinating product repair or recovery). The rise
in technologies such as IoT will fuel this need.

Furthermore, there is a marked shortage in collaboration
tools that facilitate knowledge sharing among stakeholders
involved in the reverse supply chain [151]. Future VA tools
can help address this gap by, formalizing the structure of the
knowledge that is to be shared, enabling means for collab-
oration, and by creating interactive tools for stakeholders to
collaboratively plan optimal EoL tasks. Such tools have the
potential to reduce the cost of product EoL management and
enable more sustainable business practices. Finally, an eas-
ily overlooked but significant future opportunity for VA tools
is fostering data-driven decision making for setting govern-
mental EoL policies. The use of advanced metrics and LCAs

for setting policies is proven to improve the rates of waste
recovery and can also aid in reducing waste creation [153].
Data-driven approaches such as sensor-driven data collection
of waste streams when coupled with VA tools can help policy
makers gain insight into the optimal EoL strategies.

4.6 VA Tools in Life Cycle Assessment
LCA is widely accepted as a means for quantifying and

mitigating the environmental burdens resulting from a prod-
uct or a process [154]. Conducting an LCA requires data
about material and energy exchanges from the entire life-
cycle. Such information is vast, uncertain, and therefore
complex [155]. Furthermore, since LCA is built without
an explicit link to decision-making, translating the results
from LCA to avenues for redesign is often challenging [156].
Thus, VA tools can play an important role in helping practi-
tioners and designers gain deeper insights into the process
and the outcomes of an LCA.

4.6.1 Inventory analysis and results exploration
One of the first interactive VA tools for exploring LCA

results was VisEIO-LCA [157]. The tool aids LCA experts
explore results from economic input-output LCAs (EIO-
LCA) [158]. VisEIO-LCA was informed by conducting a
needs analysis to understand the kind and frequency of tasks
performed by EIO-LCA users. It consists of a multi-view
interface that visualizes EIO-LCA results using charts, ma-
trix plots, scatter plots, and geographical map visualizations.
Norris & Yost [159] mention that, (1) publicly available
transparent life cycle inventory (LCI) data, and (2) the use of
interactive software for LCAs, are necessary for promoting
sustainable building design. To this end, the authors created
Life Cycle Explorer (LCE)–a tool for promoting LCA trans-
parency through interactive exploration. To help LCA prac-
titioners understand dominant factors in comparative LCAs,
LCE provides means for creating comparative scenarios and
conducting probabilistic uncertainty analysis.

Apart from these efforts, researchers have looked at de-
veloping tools and methods relevant to VA tools in LCA,
including (1) novel glyph-based visual representations for
LCA results [155], (2) the addition of interactivity to LCA re-
sults visualizations [160], (3) an interface for neighborhood-
level visualization of household carbon footprint [161], (4)
a visual interface for environmental load estimation and la-
beling [162], (5) an LCA-based toolbox incorporating data
visualizations to aid pollution prevention and waste mini-
mization [163], (6) a visual exploration tool for the QUEST
sustainability model [164], and (7) relating LCA results with
design using dynamic interfaces [42].

4.6.2 Web-Enabled tools
The increasing ease of creating dynamic websites and

connecting them to large-scale databases has helped the cre-
ation of web-based VA tools in LCA. A significant advan-
tage of such tools is that they are easier to disseminate using
the Internet. Two such efforts that enable web-based visual
exploration of LCA results are Antelope [165] and Bright-
way2 [166]. Antelope is a web-based service for publish-
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Fig. 10. Current LCA software and tools for analyzing/visualizing
LCA results are not sufficiently integrated with enterprise knowledge
management systems. Consequently, there is a lack of information
flow back to PLM/PDM databases; denoted by the break in the dot-
ted red arrows in the Figure. Addressing this challenge could sig-
nificantly aid sustainability-focused decision making throughout the
product lifecycle by helping organizations archive and make better
use of previous LCA studies. Potential research directions towards
achieving better integration, include open-source software and LCI
databases [168–170], non-proprietary data sharing standards [171],
and cloud-based and web-based LCA platforms [165–167].

ing LCA models and results. An implementation of Ante-
lope that visualizes environmental impacts of recycling mo-
tor oil is available online1. This implementation allows LCA
practitioners to interactively explore the inventory model
and also compare LCI analysis results for different scenar-
ios. Brightway2 is an open source framework for LCA that
uses the Python programming language2. This allows LCA
practitioners to use graphing libraries, e.g. Matplotlib3 and
D3.js4, to create interactive visual representations of LCA
data. While Brightway2 is not a VA tool for exploring LCA
results, it creates the necessary software framework for re-
searchers and practitioners to build such tools. A related
commercial effort is SimaPro Share & Collect [167]: a web-
based platform that allows LCA practitioners to upload their
LCA models, perform scenario analysis for project man-
agers, and collect LCA data through online surveys. SimaPro
Share & Collect helps users gather information from vari-
ous stakeholders and perform what-if analyses. To facilitate
exploration, interactive visual representations are linked to
datasets and scenarios.

4.6.3 Existing challenges and future opportunities
Current LCA tools are not well integrated into knowl-

edge management systems. As LCAs do not capture inter-
dependencies between product architecture and process re-
quirements across the lifecycle, it is challenging to relate this
information to data in PLM/PDM databases [172]. Conse-
quently, it is challenging to create VA tools in LCA facili-
tating sustainable design by concomitant exploration of de-
sign and sustainability data. Figure 10 illustrates this chal-
lenge, detailing the separation of OEM knowledge manage-

1www.uo-lca.github.io/
2www.python.org/psf/
3www.matplotlib.org
4www.d3js.org

ment systems, LCA software, and scripting or visualization
tools used for analyzing LCA results. The proprietary nature
of LCIs, data formats, and LCA tools creates hurdles for in-
terfacing VA tools, LCA software, and PLM/PDM databases.
Efforts to create open source LCA tools [166, 168], pub-
lic LCIs [169, 170], non-proprietary data exchange stan-
dards [171], and guidelines for exchanging information mod-
els, may reduce this barrier.

The lack of data interoperability between environmental
assessment tools (such as LCAs) and PDM/PLM reposito-
ries creates challenges in relating LCA results to lifecycle
design variables. As a result, creating VA tools that over-
lay LCA results onto part attributes is not trivial. This is
further complicated by the fact that specific visual repre-
sentations are used in different lifecycle stages. As an ex-
ample, supply chains are commonly visualized using graph
networks, early design often uses function diagrams, and
3D models or detailed drawings are commonly used in the
manufacturing stage. Therefore, VA tools that facilitate
lifecycle decision-making using LCA results, need to vi-
sualize specific product attributes, using specific visualiza-
tion schemes, based on the lifecycle stage. In response to
these challenges, researchers are exploring visualization tax-
onomies and techniques in contexts such as production simu-
lation [79], sustainable building design [37], and sustainabil-
ity indicators [173]. Further research is needed to develop
holistic visualization frameworks that integrate visual repre-
sentations for LCA results and product lifecycle data.

Another challenge is the prevalence of significant un-
certainties resulting from poor data quality, invalid or non-
transparent assumptions, and lack of site-specific invento-
ries [174]. VA tools in LCA need to convey these uncertain-
ties in a transparent and easy-to-understand manner for effec-
tive decision-making. Glyph-based techniques for convey-
ing uncertainties in LCA results have been proposed [175].
However, understanding the efficacy and scalability of such
visualizations for LCA results remains an open question. To
overcome the challenges described above, the creation of fu-
ture tools should consider supporting the following activities.
1) LCA Data Exploration: Most data for performing LCAs
is manually collected [176]. Data-driven methods for gather-
ing and processing lifecycle data can help industries transi-
tion to a more automated data management approach. With
this move, the need for gaining insights about data quality
becomes an important concern for validating LCA reliabil-
ity. Creating VA tools for exploratory data analysis can help
LCA experts gain insights into the data and complement the
use of automated approaches for confirmatory analysis.
2) LCA Model Structure Exploration: The re-purposing and
reproducibility of assessment models is now a research fo-
cus for the LCA community [177]. A primary driver of this
effort is separating data and their sources from the general
model representation. In manufacturing, similar efforts are
on-going to formally standardize sustainability models for
manufacturing process, to improve LCA unit process accu-
racy and to make them more amenable to engineering anal-
yses, e.g. discrete event simulation and optimization [178].
There is a significant opportunity for research to address the
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Fig. 11. Product lifecycle data from downstream stages and results
from environmental assessments, e.g. LCAs, need to be projected
back through integrated VA tools for holistic decision-making in SLD.
Such tools enable designers to perform data-driven analyses of the
implications of design changes on environmental performance.

role of VA tools in promoting transparency and standardiza-
tion of LCA model structures through exploration-focused
interfaces that support insight generation.
3) Stakeholder Collaboration: LCA results are too com-
plex for designers not well-versed with environmental as-
sessment [179]. Often, this leads to an over simplification
of results that can obscure actual hotspots. While previous
work in SLD has looked at design-focused tools to address
this challenge [180, 181], it has been argued that LCAs are
most effective when conducted by an environmental actor ex-
ternal to the design process [182]. In both cases, there is a
strong need to support collaboration, either among designers
or between designers and LCA experts, to facilitate better
decision-making. Current commercial LCA tools are lim-
ited in that they do not scale well to a group of connected
users and are independent of existing enterprise information
systems [176]. While extensions such as SimaPro Share &
Collect start to address stakeholder collaboration, future VA
tools in LCA can look at bridging this gap by acting as an
intermediate layer between PLM and LCA to facilitate the
collaborative, simultaneous exploration of data and models.

5 FUTURE RESEARCH DIRECTIONS
In Section 4, we presented domain-specific challenges

stepping through various stages in the product lifecycle. Sig-
nificant domain-specific challenges in each lifecycle stage
were illustrated in Figs. 5-10. In this section, we summa-
rize and contextualize these challenges to position research
directions for improving VA tools relevant to SLD.

5.1 Domain-specific challenges
To fully realize integrated VA tools for SLD, shown in

Fig. 11, domain-specific challenges in data collection, pro-
cessing, and visualization must be overcome first. A sig-
nificant issue in the design stage is mapping environmen-
tal performance to design constraints and parameters, as
shown in Fig. 5. The emergence of Industry 4.0 presents
a potential answer towards this challenge through the use
of data-driven approaches to automatically gather and ex-
tract relationships between design variables. For manufac-
turing, merging various data representations from different
perspectives, e.g. machine instructions and generated sensor
data, is still an open problem, as shown in Fig. 6. More
efforts towards developing standardized data representation

and exchange formats, e.g. MTConnect [92], ASTM E3012-
16 [60], ISO1469-1:2003 [95]) are needed. The complex-
ity of supply chains and unique characteristics of their sub-
systems present barriers for understanding environmental
performance, (see Fig. 7). Advances in technologies such as
IoT can help fill data gaps in complex supply chains. Data-
driven approaches for generating meaningful insights from
heterogeneous, multidimensional networks can aid in de-
signing green supply chains. With regards to the use-phase,
developing robust behavior models that capture a variety of
usage patterns remains a problem, as shown in Fig. 8. A
combination of data-centric approaches for pattern detection
(such as machine learning), and crowdsourcing studies to un-
derstand user behavior, can potentially address some of these
issues. Data gathering from multiple stakeholders compli-
cates sustainable EoL practices. Potential research directions
to tackle this challenge are shown in Fig. 9. Lastly, chal-
lenges in LCA relate to the lack of interoperability between
LCA software and supporting tools such as PLM databases
and visualization scripts, as shown in Fig. 10. The emergence
of web-based LCA platforms, standardized data representa-
tions, and open source inventory models/software can help
bridge this gap.

The issues discussed above relate to challenges in data
gathering and integration. Overcoming these challenges is
essential for creating effective VA tools for SLD. However,
only solving such issues will not necessarily ensure success.
VA-specific challenges in tool design and dissemination pose
additional hurdles.
5.2 VA-specific challenges

Our review shows the relatively limited number of VA
tools across various stages in the lifecycle, as seen in Table 2.
VA-focused challenges identified here can be summarized as
follows, (1) procuring data to develop VA tools for SLD, (2)
distilling design patterns (or a set of best practices) of exist-
ing successes to inform the design of such tools, (3) formally
characterizing appropriate evaluation protocols to judge the
efficacy and utility of these tools, and (4) disseminating these
tools in real industrial settings.

The latter of the listed issues should not be understated.
Practical challenges exist while deploying (even well de-
signed) VA tools into an organization. After a 3.5-year col-
laboration with a major automobile manufacture, Sedlmair
et al. [26] summarized a holistic set of encountered barriers.
Some issues are similar to the challenges identified in this pa-
per, e.g. tool/data integration, evaluation protocols, and data
collection. However, the authors also highlight “political and
organizational issues” that “may require highly collaborative
synchronization efforts and may become long and exhaust-
ing” [26]. Such problems also arise when disseminating and
implementing data format and integration standards. As a re-
sult, continual education with convincing demonstrations of
use cases is essential to garner industry buy-in.

5.3 Future research directions
Based on the challenges and discussion presented above,

we list possible research directions. These directions en-
compass research on lifecycle data modeling, computer-

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 08/07/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Table 2. Summary of references related to each lifecycle stage. References (second column) map to works cited in that section. The third
column specifically highlights visual analytics tools that explicitly mention sustainability-related improvements and their supported activities.

LC STAGE REFERENCES VISUAL ANALYTICS TOOLS FOR SUSTAINABILITY WITH SUPPORTED ACTIVITIES

Design
[Sec 4.1]

[8, 12, 30–56, 58–
65, 180, 181]

shapeSift [40]: explore 3D part repositories for eco-conscious decision-making
TRIZ + LCA [41]: transforms LCA impacts into potential eco-improvements
Uchil et al. [42]: relates LCA results with design
Greenberg et al. [43]: predicts energy use and emissions for buildings
Others [48–54]: supports building design & urban planning for sustainability

Manufacturing
[Sec 4.2]

[59, 60, 66–100]

Herrmann et al. [81]: tracks energy-based simulation as user explores sets of controls
Rebouillat et al. [82]: composes set of process models to explore sets of controls
SIMTER + Gantt [84]: explores simulation environment by interacting with Gantt chart
Wörner and Ertl [85]: explores factory simulation through a coordinated dashboard

Supply Chain
[Sec 4.3] [26,101–122,183]

Sourcemap [117]: presents geo-location of suppliers in a web-based tool
ViSER [119]: shows coordination between supply chain and product architecture
ImpactMap [120]: aids supply chain design while incorporating uncertainty

Use-phase
[Sec 4.4]

[123–135, 184,
185]

BuildingOS [185]: supports energy monitoring through an interactive dashboard

End-of-life
[Sec 4.5]

[136–153]
Berg et al. [141]: supports disassembly planning through a virtual environment
Fukushige et al. [142]: visualizes LC flows & product structure to compare EoL options
Eco Materials Adviser [149]: provides dashboard to help comply with waste regulations

Life cycle
assessment
[Sec 4.6]

[37, 42, 44, 79,
154–182]

VisEIO-LCA [157]: aids in exploring LCA results from EIO-LCA
Life Cycle Explorer [159]: creates different scenarios and conducts uncertainty analysis
Antelope [165]: publishes LCA models and presents results
Brightway2 [166]: provides necessary software framework for building VA tools
SimaPro Share & Collect [167]: provides platform for sharing & re-using LCA models

supported interfaces, and sustainable lifecycle design—the
domains underlying VA tools for SLD (see Fig. 1).

To expedite development of VA tools for SLD, there is
a need to reduce the barrier for creating research prototypes
and testing them with real-world data. This requires publicly
available datasets, vetted by domain experts and well publi-
cized to the SLD community. A few existing data sources in-
clude Purdue’s Shape Benchmark [186], the Design Repos-
itory5 [187], the NIST Smart Manufacturing Systems Test
Bed6, open LCI databases [169,170,188], and 38 real-world
supply chains [112]. More datasets from reliable sources will
improve re-usability and extendibility of VA tools.

Another vital research direction is the need for inter-
operability between VA tools in SLD. Technologies such
as the semantic web, are a promising and emerging field,
and can potentially trace linkages across different lifecycle
stages [55, 189]. In this regard, one promising effort is the
Industrial Ontology Foundry (IOF), a collaboration in its in-
fancy aiming to construct standardized ontologies for prod-
uct lifecycle data. These openly available sets of ontologies
will abide by the Basic Formal Ontology (BFO) [190]. The
BFO has been widely accepted in the biology community for
(1) advancing the sharing and dissemination of medical tax-
onomies and (2) providing a common platform for conducing
advanced bio-informatics [191]. The expectations of the IOF
is to enable similar opportunities for the engineering commu-
nity. Interested readers can refer to initial work from Furini
et al. [192] that provides a BFO-based ontology for function-
ally graded materials. Structured taxonomic representations,

5http://design.engr.oregonstate.edu/repo
6http://smstestbed.nist.gov

such as those presented by Kumaraguru et al. [193], also ex-
pedite the prototyping of visual representations, as shown by
Li and Bernstein [194]. These efforts will also benefit from
the development of a minimum information concept for life-
cycle data in the context of SLD which can enable better data
verification and analyses across the community [195].

There is also a need for research focusing on the devel-
opment of integrated VA tools for SLD. The rise in data gen-
erated in each life cycle stage and the necessity for synthe-
sizing design insight from these data, motivates the creation
of integrated VA tools. As shown in Fig. 11, such tools must
be capable of merging lifecycle data with results from envi-
ronmental assessments helping designers extract causal rela-
tionships. Simultaneously, such tools should also help de-
signers assess the impact of a design change on downstream
lifecycle stages. To fully realize this vision, harmonization
of standards on related data representations as well as moni-
toring and assessment techniques mentioned throughout this
paper [56–60, 67, 75, 92–95] is strongly recommended. To
ensure that future work will be more sharable, reproducible,
and applicable across domains, research and effective collab-
oration is needed to overcome these significant challenges.
Highlighting some early successes, Narayanan et al. [196]
developed a visual query system for the landscape of prod-
uct engineering standards. Another example illustrates the
use of existing out-of-the-box VA tools [197] for presenting
results from analyzing standard design representations7.

Finally, linking theories about the design process to
theories within the human-computer interaction community

7https://pages.nist.gov/CAD-PMI-Testing/results.
html
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might help create more contextualized tools offering greater
utility for decision-makers. Providing guidelines for envi-
ronmental informatics and sustainability informatics includ-
ing their link to visualization technologies [198, 199] will
help drive SLD into more actionable product planning.

6 CONCLUSIONS
Sustainable lifecycle design (SLD) has seen significant

growth as a research field over the past few decades. Re-
searchers, educators, and industry practitioners, have been
successful in making SLD one of the focal areas in engineer-
ing. Even so, several barriers exist towards the goal of holis-
tically integrating sustainability into engineering theory and
practice. Our review points to one such important barrier—
the lack of approaches for gathering and synthesizing infor-
mation flows from downstream lifecycle stages in a manner
that is useful for design. The rapid rise in technologies for
data collection will partly address this challenge. However,
the opportunity to advance SLD through data-rich tools is
dependent on the ability to translate big data into big insight.
Doing so requires novel SLD tools that can combine auto-
mated, data-driven approaches for life cycle data collection
and analysis with user-driven approaches that enable domain
experts to use their own expertise and intuition in generating
novel insights. A promising approach for combining the two
is by creating visual analytics (VA) tools in SLD that facili-
tate analytical reasoning using interactive visual interfaces.

In this paper, we review previous research that has cre-
ated VA tools in the context of SLD. We also highlight exist-
ing challenges and future opportunities for such tools in dif-
ferent lifecycle stages—design, manufacturing, distribution
and supply chain, use-phase, end-of-life as well as life cycle
assessment. While the number of VA tools in SLD is rel-
atively small, researchers are increasingly looking into this
topic. Our review points out that VA tools can potentially ad-
dress several existing challenges in SLD and that significant
future opportunities still exist. The growing use of VA tools
in related applications such as design of complex systems,
environmental informatics, and public policy, strengthens the
case for exploring their use in SLD. Key contributions of our
paper include: (1) motivating the need for VA tools in SLD,
(2) illustrating the scope of VA tools in SLD (see Fig. 1), and
(3) outlining a possible architecture for future integrated VA
tools in SLD. We hope that this work will aid the SLD re-
search community in multiple ways. Our review of previous
VA tools will help researchers identify relevant works and
learn from the successes and limitations of these approaches.
We hope that the identified challenges for creating such tools
and the future directions that we have suggested will help
guide researchers interested in exploring this research area.

Lastly, we also hope that our work will serve as an
open call for visualization and human computer interaction
researchers to collaborate with the SLD community. Life
cycle information in the context of SLD is vast, uncertain,
complex, multi-modal, and sourced from heterogeneous data
sources. At the same time, it has open problems that we be-
lieve can be addressed through VA-like approaches. To con-

clude, the summation of these two areas–VA and SLD—has
the potential to create a unique research niche that can make
new in-roads into the grand challenge of achieving sustain-
able development.
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mer, J., and Melançon, G., 2008. Visual analytics: Defini-
tion, process, and challenges. Springer.

[10] Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F.,
2010. Mastering the information age solving problems with
visual analytics. Eurographics Association.

[11] Bras, B., 1997. “Incorporating environmental issues in
product design and realization”. Industry and Environment,
20(1), pp. 7–13.

[12] Ramani, K., et al., 2010. “Integrated sustainable life cycle
design: A review”. J Mech Design, 132(9), p. 091004.

[13] Skerlos, S. J., Morrow, W., and Michalek, J., 2006. “Sus-
tainable design engineering and science: Selected challenges
and case studies”. Sustainability Science and Engineering,
1, pp. 467–515.

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 08/07/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



[14] Van Horn, D., Olewnik, A., and Lewis, K., 2012. “Design
analytics: capturing, understanding, and meeting customer
needs using big data”. In Proc. of the ASME 2012 IDETC
& CIE, ASME, pp. 863–875.

[15] Marwah, M., Shah, A., Bash, C., Patel, C., and Ramakrish-
nan, N., 2011. “Using data mining to help design sustainable
products”. IEEE Computer, 44(8), pp. 103–106.

[16] Sousa, I., Wallace, D., and Eisenhard, J. L., 2000. “Approx-
imate life-cycle assessment of product concepts using learn-
ing systems”. J Ind Ecol, 4(4), pp. 61–81.

[17] Park, J.-H., and Seo, K.-K., 2006. “A knowledge-based ap-
proximate life cycle assessment system for evaluating envi-
ronmental impacts of product design alternatives in a collab-
orative design environment”. ADV ENG INFORM, 20(2),
pp. 147 – 154.

[18] Bohm, M. R., Haapala, K. R., Poppa, K., Stone, R. B., and
Tumer, I. Y., 2010. “Integrating life cycle assessment into
the conceptual phase of design using a design repository”. J
Mech Design, 132(9), p. 091005.

[19] Hernandez, N. V., Kremer, G. O., Schmidt, L. C., and Her-
rera, P. A., 2012. “Development of an expert system to aid
engineers in the selection of design for environment meth-
ods and tools”. Expert Systems with Applications, 39(10),
pp. 9543–9553.

[20] Bobrow, D. G., and Stefik, M. J., 1986. “Perspectives on
artificial intelligence programming”. Science, 231, pp. 951–
958.

[21] Hayes, C. C., Goel, A. K., Tumer, I. Y., Agogino, A. M., and
Regli, W. C., 2011. “Intelligent support for product design:
Looking backward, looking forward”. J Comput Inf Sci Eng,
11(2), p. 021007.

[22] Weick, K. E., 1995. Sensemaking in Organizations, Vol. 3.
Sage.

[23] Rizzoli, A., and Young, W., 1997. “Delivering environmen-
tal decision support systems: software tools and techniques”.
Environmental Modelling & Software, 12(2-3), pp. 237–249.

[24] Shneiderman, B., 2001. “Inventing discovery tools: Com-
bining information visualization with data mining”. In
Proc. of the International Conference on Discovery Science,
Springer, pp. 17–28.

[25] Munzner, T., 2014. Visualization Analysis and Design. CRC
Press.

[26] Sedlmair, M., Isenberg, P., Baur, D., and Butz, A., 2011. “In-
formation visualization evaluation in large companies: Chal-
lenges, experiences and recommendations”. Inf Vis, 10(3),
pp. 248–266.

[27] Xu, W., Shao, L., Yao, B., Zhou, Z., and Pham, D. T.,
2016. “Perception data-driven optimization of manufactur-
ing equipment service scheduling in sustainable manufactur-
ing.”. J MANUF SYST, 41, pp. 86 – 101.

[28] Xing, K., Qian, W., and Zaman, A. U., 2016. “Development
of a cloud-based platform for footprint assessment in green
supply chain management”. J Clean Prod, 139, pp. 191 –
203.

[29] Derigent, W., and Thomas, A., 2016. “End-of-life informa-
tion sharing for a circular economy: existing literature and
research opportunities”. In Service Orientation in Holonic
and Multi-Agent Manufacturing. Springer, pp. 41–50.

[30] Basole, R. C., Qamar, A., Park, H., Paredis, C. J., and
McGinnis, L. F., 2015. “Visual analytics for early-phase
complex engineered system design support”. IEEE Comput
Graph Appl, 35(2), pp. 41–51.

[31] Winer, E., and Bloebaum, C., 2002. “Development of vi-

sual design steering as an aid in large-scale multidisciplinary
design optimization. part i: method development”. Struct
Multidiscipl Optim, 23(6), pp. 412–424.

[32] Simpson, T. W., Carlsen, D. E., Congdon, C. D., Stump, G.,
and Yukish, M. A., 2008. “Trade space exploration of a wing
design problem using visual steering and multi-dimensional
data visualization”. In Proc. of the 4th AIAA Conference on
Multidisciplinary Design Optimization Specialist, pp. 7–10.

[33] Woodruff, M. J., Reed, P. M., and Simpson, T. W., 2013.
“Many objective visual analytics: rethinking the design of
complex engineered systems”. Struct Multidiscipl Optim,
48(1), pp. 201–219.

[34] Stump, G. M., Yukish, M., Simpson, T. W., and Harris, E. N.,
2003. “Design space visualization and its application to a
design by shopping paradigm”. In Proc. of the ASME 2003
IDETC & CIE, ASME, pp. 795–804.

[35] Zhang, X., Simpson, T., Frecker, M., and Lesieutre, G.,
2012. “Supporting knowledge exploration and discovery in
multi-dimensional data with interactive multiscale visualisa-
tion”. Journal of Engineering Design, 23(1), pp. 23–47.

[36] Konyha, Z., Matkovic, K., and Hauser, H., 2009. “Interactive
visual analysis in engineering: A survey”. Posters at SCCG
2009, pp. 31–38.

[37] Haeb, K., Schweitzer, S., Prieto, D. F., Hagen, E., Engel,
D., Bottinger, M., and Scheler, I., 2014. “Visualization of
building performance simulation results: State-of-the-art and
future directions”. In Proc. of the 2014 IEEE Pacific Symp.
on Visualization, IEEE, pp. 311–315.

[38] Chi, E. H., 2000. “A taxonomy of visualization techniques
using the data state reference model”. In Proc. of the IEEE
Symp. on InfoVis, IEEE, pp. 69–75.

[39] Keim, D., et al., 2002. “Information visualization and visual
data mining”. IEEE Trans Vis Comput Graph, 8(1), pp. 1–8.

[40] Ramanujan, D., Bernstein, W. Z., Benjamin, W., Ramani, K.,
Elmqvist, N., Kulkarni, D., and Tew, J., 2015. “A framework
for visualization-driven eco-conscious design exploration”.
J Comput Inf Sci Eng, 15(4), p. 041010.

[41] Russo, D., Serafini, M., and Rizzi, C., 2016. “Triz based
computer aided lca for ecodesign”. Comput Aided Des Appl,
13(6), pp. 816–826.

[42] Uchil, P., and Chakrabarti, A., 2015. “An interface between
life cycle assessment and design”. In ICoRD’15–Research
into Design Across Boundaries Volume 2, A. Chakrabarti,
ed. Springer, pp. 251–259.

[43] Greenberg, D., Pratt, K., Hencey, B., Jones, N., Schumann,
L., Dobbs, J., Dong, Z., Bosworth, D., and Walter, B., 2013.
“Sustain: An experimental test bed for building energy sim-
ulation”. Energy and Buildings, 58, pp. 44–57.

[44] Rio, M., Reyes, T., and Roucoules, L., 2013. “Toward proac-
tive (eco) design process: modeling information transforma-
tions among designers activities”. J Clean Prod, 39, pp. 105–
116.

[45] Ramanujan, D., Benjamin, W., Bernstein, W. Z., Elmqvist,
N., and Ramani, K., 2013. “ShapeSIFT: Suggesting sus-
tainable options in design reuse from part repositories”. In
ASME 2013 IDETC & CIE, ASME, p. V004T05A041.

[46] Ramanujan, D., Bernstein, W. Z., Kulkarni, D., Tew, J., and
Ramani, K., 2016. “Shapesift: Evaluating infovis tools for
eco-conscious design”. In Proc. of the ASME 2016 IDETC
& CIE, ASME, p. V004T05A045.

[47] Kunze, A., Burkhard, R., Gebhardt, S., and Tuncer, B., 2012.
“Visualization and decision support tools in urban plan-
ning”. In Digital Urban Modeling and Simulation. Springer,

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 08/07/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



pp. 279–298.
[48] Trubka, R., Glackin, S., Lade, O., and Pettit, C., 2016. “A

web-based 3d visualisation and assessment system for urban
precinct scenario modelling”. ISPRS Journal of Photogram-
metry and Remote Sensing, 117, pp. 175–186.
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tila, M., Sillanpää, J., and Jokinen, T., 2010. “Develop-
ing simulation-based decision support systems for customer-
driven manufacturing operation planning”. In Proc. of the
2010 Winter Simulation Conference, IEEE, pp. 3363–3375.

[85] Wörner, M., Ertl, T., Miksch, S., and Santucci, G., 2011.
“Visual analysis of advanced manufacturing simulations”. In
EuroVA 2011: International Workshop on Visual Analytics,
The Eurographics Association, pp. 29–32.

[86] Albert, M., 2012. “MTConnect: Two shops share their ex-
perience”. Modern Machine Shop, August.

[87] Waurzyniak, P., 2015. “Why manufacturing needs real-time
data collection”. Manufacturing Engineering, pp. 53–61.

[88] Groger, C., and Stach, C., 2014. “The mobile manufacturing
dashboard”. In Proc. of the 2014 IEEE International Confer-
ence on Pervasive Computing and Communications Work-
shops, IEEE, pp. 138–140.

[89] Groh, R., and Heße, S., 2014. “Towards a model for the in-
tegration of time into a graph-based key performance indica-
tor analysis”. In Proc. of SIGRAD 2014, Visual Computing,
Linköping University Electronic Press, pp. 17–23.

[90] Brundage, M. P., Bernstein, W. Z., Morris, K. C., and Horst,
J. A., 2017. “Using graph-based visualizations to explore
key performance indicator relationships for manufacturing
production systems”. Procedia CIRP, 61, pp. 451–456.

[91] Helu, M., and Hedberg, T., 2015. “Enabling smart manufac-
turing research and development using a product lifecycle
test bed”. Procedia Manufacturing, 1, pp. 86–97.

[92] MTConnect Institute, 2015. Version 1.3.1 – Part 1: Protocol
and Overview. http://mtconnect.org.

[93] MTConnect Institute, 2015. Version 1.3.1 – Part 2: Compo-
nents and Data Items. http://mtconnect.org.

[94] MTConnect Institute, 2015. Version 1.3.1 – Part 3: Streams,
Samples, and Events. http://mtconnect.org.

[95] ISO 14649-1:2003, 2003. Industrial automation systems and
integration – Physical device control – Data model for com-
puterized numerical controllers – Part 1: Overview and fun-
damental principles. ISO.

[96] Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker,
D., de Amicis, R., Pinto, E. B., Eisert, P., Döllner, J., and
Vallarino, I., 2015. “Visual computing as a key enabling
technology for industrie 4.0 and industrial internet”. IEEE
Comput Graph Appl, 35(2), pp. 26–40.

[97] Thiede, S., Seow, Y., Andersson, J., and Johansson, B., 2013.
“Environmental aspects in manufacturing system modelling
and simulation—state of the art and research perspectives”.
CIRP J Manuf Sci Technol, 6(1), pp. 78–87.

[98] Bhanot, N., Bhanot, N., Rao, P. V., Rao, P. V., Deshmukh,
S., and Deshmukh, S., 2016. “Identifying the perspectives
for sustainability enhancement: A text mining approach for
a machining process”. Journal of Advances in Management
Research, 13(3), pp. 244–270.

[99] Doyle, F., Duarte, M.-J. R., and Cosgrove, J., 2015. “Design
of an embedded sensor network for application in energy

monitoring of commercial and industrial facilities”. Energy
Procedia, 83, pp. 504–514.

[100] Park, J., Law, K. H., Bhinge, R., Biswas, N., Srinivasan, A.,
Dornfeld, D. A., Helu, M., and Rachuri, S., 2015. “A gener-
alized data-driven energy prediction model with uncertainty
for a milling machine tool using gaussian process”. In Proc.
of the ASME 2015 MSEC, ASME, p. V002T05A010.

[101] Minegishi, S., and Thiel, D., 2000. “System dynamics mod-
eling and simulation of a particular food supply chain”. Sim-
ulation Practice and Theory, 8(5), pp. 321–339.

[102] Greer, J., et al., 2013. “Gis: The missing tool for supply-
chain design”. Foresight: The International Journal of Ap-
plied Forecasting(28), pp. 44–49.

[103] Hu, Z.-H., Yang, B., Huang, Y.-F., and Meng, Y.-P., 2010.
“Visualization framework for container supply chain by in-
formation acquisition and presentation technologies”. Jour-
nal of Software, 5(11), pp. 1236–1242.

[104] Kamath, M., Srivathsan, S., Ingalls, R. G., Shen, G., and Pu-
lat, P. S., 2011. “Tiscsoft: A decision support system for
transportation infrastructure and supply chain system plan-
ning”. In Proc. of the 44th Hawaii Internal Conference on
System Sciences (HICSS), IEEE, pp. 1–9.

[105] Lin, G., et al., 2000. “Extended-enterprise supply-chain
management at ibm personal systems group and other divi-
sions”. Interfaces, 30(1), pp. 7–25.

[106] Hesse, S., Spehr, M., Gumhold, S., and Groh, R., 2014.
“Visualizing time-dependent key performance indicator in a
graph-based analysis”. In Proc. of the IEEE ETFA, IEEE,
pp. 1–7.

[107] Childerhouse, P., and Towill, D. R., 2002. “Analysis of the
factors affecting real-world value stream performance”. INT
J PROD RES, 40(15), pp. 3499–3518.

[108] Khaswala, Z. N., and Irani, S. A., 2001. “Value net-
work mapping (VNM): visualization and analysis of multiple
flows in value stream maps”. In Proc. of the Conference on
Lean Management Solutions, pp. 1–18.

[109] Solding, P., and Gullander, P., 2009. “Concepts for simula-
tion based value stream mapping”. In Proc. of the Confer-
ence on Winter Simulation, IEEE, pp. 2231–2237.

[110] Lian, Y.-H., and Van Landeghem, H., 2002. “An application
of simulation and value stream mapping in lean manufactur-
ing”. In Proc. of the 14th Symp. on European Simulation, c)
SCS Europe BVBA, pp. 1–8.

[111] Basole, R. C., and Bellamy, M. A., 2014. “Visual analysis
of supply network risks: Insights from the electronics indus-
try”. Decision Support Systems, 67, pp. 109–120.

[112] Willems, S. P., 2008. “Data set—real-world multiechelon
supply chains used for inventory optimization”. Manuf Serv
Oper Manag, 10(1), pp. 19–23.

[113] Isaksson, R., Johansson, P., and Fischer, K., 2010. “Detect-
ing supply chain innovation potential for sustainable devel-
opment”. Journal of Business Ethics, 97(3), pp. 425–442.

[114] Sundarakani, B., De Souza, R., Goh, M., Wagner, S. M., and
Manikandan, S., 2010. “Modeling carbon footprints across
the supply chain”. INT J PROD ECON, 128(1), pp. 43–50.

[115] Faulkner, W., and Badurdeen, F., 2014. “Sustainable value
stream mapping (sus-vsm): methodology to visualize and
assess manufacturing sustainability performance”. J Clean
Prod, 85, pp. 8–18.

[116] Bonanni, L., Hockenberry, M., Zwarg, D., Csikszentmiha-
lyi, C., and Ishii, H., 2010. “Small business applications
of sourcemap: a web tool for sustainable design and supply
chain transparency”. In Proc. of the ACM CHI Conference

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 08/07/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



on Human Factors in Computing Systems, ACM, pp. 937–
946.

[117] Bonanni, L., 2011. “Sourcemap: eco-design, sustainable
supply chains, and radical transparency.”. ACM Crossroads,
17(4), pp. 22–26.

[118] Bernstein, W. Z., Ramanujan, D., Elmqvist, N., Zhao, F.,
and Ramani, K., 2014. “ViSER: Visualizing supply chains
for eco-conscious redesign”. In Proc. of the ASME 2014
IDETC & CIE, ASME, p. V004T06A049.

[119] Bernstein, W. Z., Ramanujan, D., Kulkarni, D. M., Tew, J.,
Elmqvist, N., Zhao, F., and Ramani, K., 2015. “Mutually co-
ordinated visualization of product and supply chain metadata
for sustainable design”. J Mech Design, 137(12), p. 121101.

[120] Fuge, M., McKinstry, K., and Ninomiya, K., 2013. “Im-
pactmap: Designing sustainable supply chains by incorpo-
rating data uncertainty”. In Proc. of the International Sym-
posium of Sustainable Systems and Technology, Vol. 1.

[121] Bendoly, E., 2016. “Fit, bias, and enacted sensemaking in
data visualization: Frameworks for continuous development
in operations and supply chain management analytics”. Jour-
nal of Business Logistics, 37(1), pp. 6–17.

[122] Beynon-Davies, P., and Lederman, R., 2017. “Making sense
of visual management through affordance theory”. Produc-
tion Planning & Control, 28(2), pp. 142–157.

[123] DiSalvo, C., Sengers, P., and Brynjarsdóttir, H., 2010. “Map-
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