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Plasmomechanical systems are an emerging class of device that hold great promise for manipulating light-
matter interactions with high speed and sub-diffraction spatial resolution.  However, realizing their potential 
requires developing active plasmomechanical systems that can localize their functionality to the level of an 
individual sub-wavelength plasmonic resonator. Here, we present an active, electrically tunable 
plasmomechanical system that uses a localized-gap plasmonic resonator to mediate optical, thermal, and 
mechanical interactions within a subwavelength footprint. Our device enables facile electromechanical 
modulation of localized plasmons, selective sub-diffraction transduction of nanomechanical motion, and 
functions as a plasmomechanical oscillator that can be injection locked to and thus amplify weak external 
stimuli. These functionalities benefit applications in nanomechanical sensing, spatial light modulators, and 
reconfigurable metasurfaces.  

 
Introduction 
Controlling the interaction of light with matter leads to fundamental advances and fosters technological 
breakthroughs in many fields [1]. Plasmonic systems are particularly attractive for manipulating these 
interactions – they enable extreme confinement of optical wavelengths 𝜆𝜆, producing mode volumes that 
can be thousands of times smaller than 𝜆𝜆3. Sub-diffraction localization both enhances light-matter 
interactions and renders plasmonic modes highly sensitive to their local environment.  As a 
consequence, plasmonic devices have driven advances in diverse areas including nanoscale laser 
sources  [2], bio-chemical detection  [3], particle trapping and manipulation  [4,5], energy harvesting [6], 
nonlinear optics  [7], and quantum devices  [8].  Nevertheless, realizing the full potential of plasmonics 
requires platforms that allow flexible and reversible tuning of localized modes.  A new class of 
plasmomechanical systems, which introduce mechanical freedom into otherwise static structures, is 
emerging in response to this demand for more versatile control of light-matter interaction and greater 
device functionality  [9–13]. 
 
Plasmomechanical devices introduce mechanical freedom into otherwise static plasmonic structures.  
When two plasmonic structures (“meta-atoms”) are brought in close proximity, their surface plasmons 
interact and hybridize  [14]. Hybridization lowers the energy of the fundamental localized mode, 
analogous to atomic orbitals, inducing a strongly gap-dependent frequency shift in the resulting 
plasmonic resonator; sometimes referred to as a “metamolecule”  [15]. As a result of tight energy 
confinement and gap-dependent hybridization, plasmomechanical devices can generate extremely large 
resonance frequency shifts for small displacements, viz. large optomechanical coupling constants.  
Furthermore, the localization phenomenon is fundamentally linked with optical losses  [16], which 
together enables plasmonic resonators to function as nanoscale heat sources. Combining 
plasmomechanics with an actuation scheme opens the possibility to strongly localize, enhance, and tune 
interactions between distinct physical domains – optical, mechanical, thermal, acoustic, and more  [17].  
The importance of plasmomechanical systems thus lies not only in their technological relevance, for 
example, to randomly addressable metasurfaces and  high-spatial-resolution spatial light 
modulators  [17], but also in their potential for studying optomechanics at unprecedented small length 
scales, potentially leading to new fundamental advances in transduction, amplification, and modulation.  
Accessing these possibilities requires creation of plasmomechanical systems that are tunable at the level 
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of individual, nanometer-sized structures. However, this ability is challenging to realize in existing 
systems.  
 
In this article, we introduce a new active plasmomechanical system based on electrically tunable 
localized-gap plasmon resonators (LGPRs), which can effectively localize and control the interactions 
between optical, thermal, and mechanical degrees of freedom within a subwavelength footprint.  
Specifically, we use electrostatic actuation to drive the mechanics, engaging large optomechanical 
coupling constants to attain both high-contrast modulation of individual LGP resonances and, inversely, 
localized plasmonic transduction of nanomechanical motion. Absorption from the LGPR locally couples 
the optics and mechanics to the thermal modes of the system.  Making use of bimorph actuation, we 
demonstrate that this thermo-mechanical coupling can induce self-oscillation of a nanomechanical 
device, forming a plasmomechanical oscillator (PMO).  Finally, we show that the PMO, whose dynamics 
are analogous to radiation pressure-driven optomechanical oscillators  [18,19], can be injection-locked 
to a small-amplitude mechanical stimulus. This feature allows the PMO to function as a high-bandwidth 
amplifier of mechanically addressable perturbations with a priori unknown frequency.  
 
Device concept and design 
Our active plasmomechanical system is obtained by embedding a point-like LGPR into a fully-functional 
nano-electro-mechanical system (NEMS) capable of electrostatic and thermal actuation  [20]. The shape 
and the gap size of a given LGPR defines its resonances (optical modes) and their corresponding 
frequencies, intrinsic losses and radiation coupling rates. While the LGPRs support multiple optical 
modes, their energies are widely separated and only a single mode will be relevant for each of the 
described experiments. The functionality of the plasmomechanical system derives from localized 
coupling of these optical modes to mechanical motion, which is engaged via electrical actuation, 
changing both the optical frequency and the radiation coupling rate.  Additionally, plasmonic losses 
convert optical energy into heat, and thus provide dynamic thermal excitation to the NEMS via thermo-
mechanical coupling.   
 
The mechanical and thermal responses of the NEMS can each be described by their modes.  The static 
deformation and dynamic mechanical motion can be represented as a superposition of mechanical 
modes, whose shapes, resonance frequencies, damping, and stiffness all depend on the NEMS geometry 
and materials. Similarly, the time-dependent temperature distribution in the structure can be described 
by thermal modes  [21]. The thermal modes are driven by the heat generated from plasmonic 
absorption and have distinct geometry and material-dependent shapes and decay time constants. 
Differential thermal expansion of an engineered metal-dielectric bimorph structure produces thermo-
mechanical coupling, allowing the thermal modes to drive the mechanical.  Crucially, the point-like 
nature of the LGPR enables selective coupling with spatially-extended thermal and mechanical modes 
based on the resonator location.  This feature, along with electrostatic actuation, can be used to 
electrically tune the LGP resonances, to selectively transduce mechanical modes, and to produce self-
oscillations of the NEMS. We demonstrate this explicitly for the mechanical modes. We note that while 
accounting for only the fundamental thermal mode is sufficient to quantitatively describe our results, 
higher-order thermal modes may be engineered to play an important role in future systems  [21,22]. 
 
For our plasmomechanical system, illustrated in Fig. 1a, we choose a simple cantilever design comprising 
a ≈ 165 nm SiNx thickness and a ≈ 15 nm gold layer on top, patterned separately to create the desired 
thermal bimorph shape. Each cantilever is suspended above an underlying stationary gold pad and can 
be electrostatically actuated by applying a voltage between the top gold layer and the pad.  Multiple 
cantilevers, fashioned into arrays on a single wirebonded chip, are either ≈ 500 nm or ≈ 2 µm wide and 



vary in length from ≈ 1.5 µm to ≈ 6 µm. A nanoscale, ≈ 40 nm thick gold cuboid is embedded in the 
cantilever’s underside at varying positions along the length. The LGPR is defined by the embedded 
cuboid, the gold pad, and the gap (𝑔𝑔) separating the two gold surfaces (Fig. 1a, inset).  This gap, 
nominally 20 nm, increases quadratically along the cantilever length due to residual stress gradients 
from the fabrication process (Supplement 1, Section 1), which cause the cantilever to curl away from the 
pad, as seen in atomic force microscope  (AFM) images and data (Fig. 1b, Supplement 1, Section 2).  The 
placement of the LGPR relative to the cantilever base therefore determines its initial gap and thus the 
optomechanical behavior of each device. 
 
The optical-frequency resonance of the LGPR can be understood by viewing it as a truncated metal-
insulator-metal waveguide, wherein propagating gap plasmons confined to the narrow gap area are 
reflected from the edges of the top cuboid, forming a standing wave parallel to the gold surfaces with a 
round-trip phase of 2𝜋𝜋 𝑚𝑚  [23].  We utilize an 𝑚𝑚 = 3 LGP mode, in order to enhance the plasmonic 
quality factor 𝑄𝑄LGP  [10], by designing a cuboid nominally measuring (350×160×40) nm3 in length, width, 
and height, respectively. The LGP mode manifests as a pronounced Lorentzian-shaped dip in the optical 
reflectance spectrum, 𝑅𝑅(𝜆𝜆), centered at wavelength (frequency) 𝜆𝜆LGP (𝜔𝜔LGP = 2𝜋𝜋𝜋𝜋/𝜆𝜆LGP, 𝜋𝜋 being the 
vacuum speed of light) in the wavelength range from ≈ 760 nm to ≈ 820 nm. Similarly, an 𝑚𝑚 = 1 mode 
can be produced in this wavelength range using a (90×75×40) nm3 cuboid. The calculated 𝑅𝑅(𝜆𝜆) curves in 
Fig. 2a (Supplement 1, Section 3) reveal that decreasing the initial gap from 50 nm to 10 nm causes a 
pronounced shift in 𝜆𝜆LGP toward longer wavelengths (lower frequencies).  The constant 𝐺𝐺om =
𝜕𝜕𝜔𝜔LGP/𝜕𝜕𝜕𝜕 (where the coordinate 𝜕𝜕 ≡ −𝑔𝑔) associated with this dispersive optomechanical coupling can 
reach remarkably large values up to 2π ⋅ 7 THz nm-1 at small gaps, but drops by more than an order of 
magnitude for 𝑔𝑔 > 35 nm (Fig. 2b); the equivalent vacuum coupling rate is 𝑔𝑔0 = 𝐺𝐺om ∙ 𝜕𝜕zpf ≈ 2π ⋅ 225 
MHz, where 𝜕𝜕zpf = �ℏ (2 𝑚𝑚eff 𝜔𝜔m)−1 ≈ 30 fm is the amplitude of the zero-point fluctuation of the 
cantilever with effective mass 𝑚𝑚eff and frequency 𝜔𝜔m at the LGPR location.  Additionally, reactive 
optomechanical coupling, characterized by changes in the resonance coupling depth and 𝑄𝑄LGP with 
gap  [24], is also present in our system.  For gaps above 35 nm, the LGPR responds purely reactively, 
such that the absorbance 𝐴𝐴 ≈ 1 − 𝑅𝑅 obeys 𝜕𝜕𝐴𝐴/𝜕𝜕𝜕𝜕 < 0 for all wavelengths in the range considered.  
Based on the deflected cantilever shape determined from AFM data (Fig. 1b), the transition to purely 
reactive coupling is expected to occur for LGPRs placed greater than 1.5 µm from the base. The increase 
in coupling depth is a result of additional losses in the system occurring at larger gaps. In particular, 
incident radiation couples more strongly to the LGP mode resulting in larger absorptive losses, as well as 
larger scattering outside the collection NA. This continuum of reactive to dispersive coupling can be 
tuned by judicious LGPR placement, and is therefore useful for shaping the overall performance of our 
plasmomechanical system.  
 
Electro-optic modulation by actuated plasmonic resonators 
We make use of the large dispersive optomechanical coupling to demonstrate low-voltage, high-
contrast modulation of incident light reflected from individual LGPRs.  The modulation experiments, 
conducted with the apparatus shown in Fig. 3a, are performed in ambient air conditions.  In this 
application, an applied voltage induces an electrostatic force that closes the gap and thereby modifies 
the LGP resonance. The voltage is switched at 2 Hz with a maximum amplitude of 0 V to 2.75 V. 
Application of larger voltages for an extended time leads to  the cantilever coming into close mechanical 
contact  with the pad over a large area,  causing irreversible collapse of the device due to stiction.  
Figure 3b shows experimentally measured reflectance spectra for increasing applied voltages with a 
LGPR located ≈ 1.5 µm from the base of a ≈ 4 µm cantilever.  These data are collected using a confocal 
spectroscopy setup with a broadband supercontinuum laser (Fig. 3a). The reflectance is measured by 



first collecting a reference spectrum 𝐵𝐵(𝜆𝜆) of the supercontinuum laser by placing the focused spot on 
the cantilever, displaced from the LGPR by ≈ 1 µm. Then, we focus on the LGPR and collect the spectrum 
𝑅𝑅0(𝜆𝜆). The plotted reflectance is 𝑅𝑅(𝜆𝜆)= 𝑅𝑅0(𝜆𝜆)/𝐵𝐵(𝜆𝜆). Optical power delivered to the LGPR is ≈ 2.5 mW in 
this experiment. The reference reflectance 𝐵𝐵(𝜆𝜆) is indistinguishable from the bare gold pad reflectance 
within the LGPR wavelength range (Supplement 1, Section 6).  
 
Continuous, voltage-controlled shifts in the LGP resonance are measured up to a maximum of 𝛿𝛿𝜆𝜆LGP = 
(42 ± 1.8) nm from its original wavelength of 𝜆𝜆LGP = (763 ± 0.1) nm (Fig. 3c); uncertainties are derived 
from Lorentzian fits.  Given the native linewidth Δ𝜆𝜆 = (39 ± 0.5) nm, the relative shift is 𝛿𝛿𝜆𝜆LGP/Δ𝜆𝜆 = 1.07 
± 0.05 (Fig. 3d).  For a similar device having a LGPR closer to the cantilever base (≈ 0.5 µm), the same 
voltage induces a smaller motion and thus a smaller shift 𝛿𝛿𝜆𝜆LGP/Δ𝜆𝜆 = 0.35 ± 0.04.  Achieving 𝛿𝛿𝜆𝜆LGP/Δ𝜆𝜆 
> 1 at a CMOS (complementary metal-oxide semiconductor) compatible voltage of 2.75 V (Supplement 
2) means that the phase of the light re-radiated into the far-field by the device is tuned by more than 𝜋𝜋 
rad, representing a technologically important milestone necessary for implementing efficient phase and 
high-contrast amplitude modulators. This LGPR optical modulator can be compared to other systems by 

deriving its effective electro-optical Kerr coefficient, given by 𝒦𝒦 = Δ𝜑𝜑 �2𝜋𝜋𝐿𝐿opt �𝐸𝐸∆𝜑𝜑 �2�
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≈
𝑑𝑑V(4 𝑉𝑉π2)−1, where 𝑑𝑑V is the effective electrical thickness of the cantilever with gap 𝑔𝑔 ≈ 30 nm, 
thickness 𝑡𝑡cant ≈ 165 nm, 𝐿𝐿opt ≈ 2 𝑑𝑑V is the optical thickness of the modulator, and 𝑉𝑉π = 𝐸𝐸𝜋𝜋 𝑑𝑑V is the 
applied voltage required to induce a phase shift of 𝜋𝜋 rad  [25].  Using experimentally measured 
parameters, we find 𝒦𝒦 ≈ 2 × 10-8 m V-2.  This value is extremely large compared to natural Kerr materials 
and comparable to state-of-the art systems based on two-dimensional materials [26]. The large 𝒦𝒦, in 
combination with the measured intensity modulation of up to 40 % (Fig. 3b, inset), shows that a single 
tunable LGPR can act as an effective far-field optical modulator, notwithstanding its sub-wavelength 
size.  
 
The effectiveness of the modulator draws from the fact that the LGPR’s mode has an optical cross 
section larger than its physical size, and that it can be tuned by more than its linewidth by only a few 
nanometers of mechanical motion. Nanoelectromechanical devices can induce such motion within tens 
of nanoseconds at low voltage, enabling high-speed switching.  This modulation principle is applicable 
across a wide range of optical frequencies, from the visible into mid- and long-wavelength infrared.  
Despite intrinsic limitations imposed by plasmonic losses, such devices open interesting possibilities for 
electrically controlled optical switches, spatial light modulators, and fast-tunable metasurfaces, 
particularly in the longer-wavelength regimes. 
 
 
Selective transduction by localized plasmomechanical coupling 
The plasmomechanical coupling is localized to the sub-wavelength footprint of the LGPR, and its location 
within the mechanical structure can be chosen to selectively couple to various nanomechanical modes.  
The ability to distinguish between mode shapes represents a key advantage of plasmomechanical 
systems for transducing nanomechanical dynamics, yet it has not been demonstrated to date. We 
demonstrate selective transduction of the mechanical modes using two separate, 4 µm cantilevers (Fig. 
4), with LGPRs placed at ≈ 0.5 µm (left panel) or ≈ 2.0 µm (right panel) from their base.  A vector 
network analyzer supplies a weak ≈ 40 mV harmonic stimulus of varying frequency to each cantilever, 
while its motion is optomechanically read out with a wavelength-tunable probe laser focused on the 
LGPR.  The optical power delivered to the LGPR is ≈ 2 mW in this experiment. An intrinsic DC voltage bias 
exists in our devices, allowing electrostatic AC driving of the devices (Supplement 1, Section 4). The 
normalized magnitudes (Fig. 4a) reveal that both devices have similar mechanical responses 



characterized by a ≈ 10 MHz fundamental and a ≈ 55 MHz second-order flexural mode. However, for the 
LGPR at 0.5 µm, the second order mode dominates the response, whereas at 2.0 µm, transduction is 
dominated by the fundamental mode. The reversal of measured motion power from these devices 
under identical mechanical excitation clearly indicates that transduction occurs localized to the footprint 
of the point-like LGPR.  
 
The LGPR location not only changes its coupling to the mechanical modes, but also changes the 
plasmonic gap – due to the upward curvature of the cantilever (Fig. 1b), the gap is larger farther from 
the base. This switches the optomechanical coupling regime from dispersive for the LGPR at 0.5 µm to 
reactive for the LGPR at 2 µm, as evident from simulated (Fig. 2a) and experimental (Fig. 3b) results, and 
qualitatively changes the dependence of the transduced signal on the probe laser wavelength. Figure 4 
shows that for the 0.5 µm case, transduction vanishes for zero detuning relative to 𝜆𝜆LGP (gray data 
points) and the phase response (Fig. 4b, the phase delay between the harmonic excitation signal and the 
resulting optically-transduced harmonic mechanical response is measured with the network analyzer) 
experiences a 𝜋𝜋-phase shift as the laser is tuned through the LGP resonance.  The transduction signal, 
proportional to 𝜕𝜕𝑅𝑅/𝜕𝜕𝜕𝜕, changes sign with detuning, indicating dispersive optomechanical 
coupling  [24,27].  In the 2.0 µm case, we observe a clear motion signal for any detuning, with the largest 
signal on resonance and no phase reversal.  The detuning-independent phase responses and non-zero 
𝜕𝜕𝑅𝑅/𝜕𝜕𝜕𝜕 on resonance indicate that this LGPR is reactively coupled, responding primarily by changing its 
coupling rate to free-space radiation, with minimal wavelength shift.  
 
The locality of the optomechanical interaction is particularly useful for motion readout of sub-
wavelength nanomechanical structures.  To demonstrate this capability, we further miniaturize the 
plasmomechanical system using even smaller (90×75×40) nm3 LGPRs and 500 nm wide cantilevers.  This 
LGPR size supports an 𝑚𝑚 = 1 resonance with 𝜆𝜆LGP ≈ 760 nm, 𝑄𝑄LGP ≈ 10 and a deep modulation (Fig. 5c).  
Figures 5a and 5b show false-color scanning electron micrographs of 2 µm length (Fig. 5a) and 1.5 µm 
length (Fig. 5b) cantilevers. The normalized magnitudes of the LGPR frequency-dependent displacement 
responses to electrostatic actuation (measured with the network analyzer) show fundamental 
mechanical modes at ≈ 44 MHz and ≈ 66 MHz, which agree well with finite-element calculations. The 
motion signals appear only when the probe laser is focused directly on the LGPR, indicating that they 
derive from the sub-wavelength optomechanical interactions facilitated by LGPR (Supplement 1, Section 
6).  
 
The plasmomechanical oscillator  
In systems where optical absorption is coupled to mechanical motion, a suitably engineered thermo-
mechanical coupling is a well-studied mechanism for inducing damping, as well as mechanical line 
narrowing and regenerative mechanical oscillations  [28–33]. We observe these effects in our 
plasmomechanical system using the bimorph actuator, which produces thermo-mechanical coupling 
from the heat produced by LGPR absorption and the thermal expansion mismatch between the top gold 
electrode and the silicon nitride cantilever.  Thermo-mechanical coupling enriches our system’s 
behavior, allowing an individual LGPR to induce optically powered self-oscillation of the NEMS – a 
plasmomechanical oscillator (PMO). This PMO is the smallest device of its type, and can be optically 
driven using a broad range of wavelengths. Further, localized plasmonic absorption creates large 
thermal gradients, opening interesting possibilities for engineered optical excitation of higher-order 
thermal modes of nanomechanical devices  [21,22]. The non-uniform temperature distributions and 
faster relaxation times of these thermal modes can potentially facilitate selective dynamic coupling to 
high order mechanical modes.  
 



To demonstrate the PMO, we place our devices in vacuum primarily to reduce the effects of squeeze-
film damping from ambient air (Fig. 6a).  We use a 6 µm long cantilever that has a fundamental 
mechanical mode frequency of ≈ 4 MHz, with a dispersively coupled LGPR located ≈ 0.5 µm from the 
base.  Figure 6b shows motion spectra of the cantilever’s fundamental mode, transduced by the LGPR 
with a blue-detuned laser; calibration is performed using equipartition at low laser power  [34] 
(Supplement 1, section 5). The measured motion amplitude (Fig. 6c) increases gradually up to a pump 
power of approximately 1100 µW, beyond which a sharp transition occurs, whereby the amplitude 
increases by more than 50 dB and saturates at high power. Associated with this transition is a reduction 
of the measured linewidth (Fig. 6c inset). In contrast, when using a red-detuned pump, increasing the 
optical power dampens the mechanical motion and broadens the linewidth, in agreement with 
expectations for a dispersively coupled device [35]. We verified that excitation of the LGP resonances is 
required both to transduce the motion and observe self-oscillation through a series of control 
experiments (Supplement 1, Section 6). These experiments show that motion signals measured both in 
ambient conditions (Fig. 3a) and in vacuum (Fig. 6a) abruptly disappear when displacing the laser spot by 
≈ 1 µm in either direction along the cantilever from its focused position on the LGPR.  Furthermore, they 
show that the input polarization must be oriented along the cuboid long axis (exciting the LGP 
resonance) to observe transduction and self-oscillation.  Thus, for conditions under which the LGP mode 
is not excited, we observe no optomechanical effects for input optical powers up to a maximum of ≈ 3 
mW in our setup.  
 
For pump power just above threshold, the free-running PMO frequency 𝑓𝑓0 and its amplitude are stable 
and characterized by a narrow linewidth (dark red curve, Fig. 6b).  Similarly, for pump power above ≈ 
1500 µW the PMO frequency is stable and displays a narrow linewidth on top of a broad background 
(gold curve, Fig. 6b) with saturated amplitude.  However, pumping near the high end of the transition 
region, but below saturation, produces apparently chaotic behavior characterized by rapid variations in 
frequency and amplitude, consistent with previous observations  [36].  The red curve in Fig. 6b 
represents one such example of chaotic behavior, averaged with 100 Hz bandwidth (Supplement 1, 
Section 7).  
 
The PMO is driven by time-delayed thermal feedback between the gap-size dependent absorption in the 
LGPR and thermal bimorph actuation of the cantilever. For a given temperature increase Δ𝑇𝑇, the 
bimorph closes the gap with gain 𝑔𝑔B ≡ 𝜕𝜕𝜕𝜕/𝜕𝜕Δ𝑇𝑇 ≈ 45 pm K-1 at the location of the LGPR (Supplement 1, 
Section 3).  The finite time constant 𝜏𝜏t ≈ 1.5 µs of the thermal response causes a phase-delay between 
motion and bimorph actuation, resulting in a complex-valued effective photothermal spring that applies 
a force component proportional to velocity  [30,31,37].  For blue-detuned pumping of the dispersive 
LGPR, the absorbance gain 𝑔𝑔A ≡ 𝜕𝜕𝐴𝐴/𝜕𝜕𝜕𝜕 is negative and the photothermal spring contributes negative 
damping to the system, adding energy to the mechanical oscillation each cycle. Self-oscillation occurs 
when the overall photothermal gain exceeds intrinsic mechanical losses, occurring for a threshold pump 
power  

 𝑃𝑃0 ≥
𝑚𝑚th 𝑐𝑐p

|𝑔𝑔A|
𝜔𝜔m
2 +𝜏𝜏t−2

𝑄𝑄m 𝜔𝜔m 𝑔𝑔B
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where 𝑚𝑚th ≈ 4.6 pg is the cantilever thermal mass, 𝑄𝑄m= 1655 ± 35 is the native, cold-cavity mechanical 
quality factor, and 𝜔𝜔m = 2𝜋𝜋 · 4030 kHz is the resonant mechanical frequency; a mass-specific heat of 𝜋𝜋p 
= 1100 J kg-1 K-1 is assumed (Supplement 1, Section 8)  [33]. 
 
Figure 7 shows the numerically calculated optical absorbance gain landscape for our system, with the 
blue and red-detuned experimental conditions used for Fig. 6b indicated as white and black data points, 
respectively.  For the blue detuned case, we expect 𝑔𝑔A = (-1.6 ± 0.2) pm-1, based on the value of the 



gap from the atomic force micrograph (Fig. 1b) of a test device on the same chip and its propagated 
uncertainty.  AFM deflection measurements of several additional test devices show that the change in 
curvature from device-to-device on the same chip is minimal (Supplement 1, Section 2). We therefore 
expect the AFM measurement in Fig. 1b to be a reliable predictor of the curvature of the experimentally 
measured devices, as this test device appeared on the same chip.   Using the expected values of 𝑔𝑔A, 𝑔𝑔B, 
parameters from our system, and Eq. (1), we find a predicted lasing threshold power of (1080 ± 23) µW, 
in good agreement with observations.  
 
The observed threshold power of our PMO is large compared to other optomechanical oscillators, which 
can have thresholds from tens to hundreds of microwatts  [32,38–40].  However, the large threshold in 
our case does not represent an inherent inefficiency of the single-LGPR transduction, and could be 
further improved by optimizing mechanical and thermal characteristics of the device and the 
experimental conditions. For instance, we have chosen a dispersive LGPR very close to the cantilever 
base to demonstrate both self-oscillation and cooling. Moving it away from the base quadratically 
increases the bimorph gain 𝑔𝑔B, while only slowly decreasing 𝑔𝑔A. Reducing the cantilever thickness also 
increases 𝑔𝑔B by lowering the bending stiffness while also reducing the frequency and the thermal mass. 
Finally, an additional 3× reduction in threshold (increase of 𝑔𝑔A) can be realized by improving the pump 
numerical aperture (NA) from 0.3, our current experimental limitation, to 0.9.  In sum, these 
improvements can bring the threshold to ≈ 50 µW or lower. Nevertheless, the ability to tune the PMO 
dynamics by adjusting the LGPR position and the ability to engineer sub-diffraction systems clearly 
distinguishes our system from the previously studied optically driven oscillators.  
 
Injection locking the PMO 
The PMO is built upon the ability of the LGPR to localize and enhance optical, thermal, and mechanical 
interactions. The electrical degree of freedom available can not only tune these interactions as we show 
above, but can also directly influence the dynamic behavior of the PMO. Specifically, the integrated 
electrostatic actuator can deliver a weak mechanical force to the oscillating PMO, whose large-
amplitude output synchronizes in phase to the applied radio-frequency (RF) tone – injection locking the 
PMO [41–46].    
 
To perform injection locking, we apply an input stimulus of slowly time-varying frequency 𝑓𝑓in to the 
device operating at a free-running frequency 𝑓𝑓0 ≈ 3980 kHz and pumped with 2 mW of optical power. 
Figure 8a shows a log-scale contour plot of the power spectral density of the transduced motion as 𝑓𝑓in is 
swept across 𝑓𝑓0; linescans at various points are given in Fig. 8b.  Within a band defined by 𝑓𝑓0 ± 𝑓𝑓L/2, the 
PMO frequency follows 𝑓𝑓in synchronously, whereas outside this band, frequency pulling of 𝑓𝑓0 toward 𝑓𝑓in 
is evident from the significant curvature in 𝑓𝑓0, as are multiple distortion sidebands.  These spectral 
signatures (locking, pulling, and sidebands) are theoretically described via  

 𝑓𝑓𝑝𝑝 = 𝑓𝑓in + (𝑝𝑝 + 1)𝛿𝛿𝑓𝑓 �1 − �𝑓𝑓L/2
𝛿𝛿𝑓𝑓

�
2

,  (2) 

where 𝛿𝛿𝑓𝑓 ≡ 𝑓𝑓in − 𝑓𝑓0 is the detuning of the injection signal, 𝑝𝑝 is the sideband order, and 𝑓𝑓L is the 
injection locking range  [46,47].  Interestingly, sonification of the PMO data clearly reveals the spectral 
signatures predicted by Eq. (2), including a clearly audible onset of locking (Supplement 1, Section 9 and 
Supplement 3).  As such, this data representation technique may prove useful for future analyses of 
time-varying data from regenerative oscillators  [48]. 
 
The locking range is governed by the ratio of the injected amplitude to the amplitude of the free running 
PMO.  In our experiments, the simple linear form of the range is given by  



 𝑓𝑓L = 𝜔𝜔m
2𝜋𝜋

1
𝑄𝑄m

𝑥𝑥inj
𝑥𝑥free

= 𝜔𝜔m
2𝜋𝜋

𝑥𝑥in
𝑥𝑥free

, (3) 

where 𝜕𝜕free is the LGPR displacement in the free-running PMO.  The commonly used  [41] injected 
displacement near resonance 𝜕𝜕inj is re-expressed through the amplitude 𝜕𝜕in = 𝜕𝜕inj/𝑄𝑄m, which is the 
experimentally observable displacement response to the stimulus applied far below the resonance 
frequency.   Dashed blue lines in Fig. 8a correspond to Eq. (2), wherein 𝑓𝑓0 and 𝑓𝑓L are used as fitting 
parameters with values of 3980 kHz and 27 kHz, respectively.   

While the major features of the injection locking behavior are captured using Eq. (2), there are 
significant deviations from this linear theory.  The total observed range (36.9 kHz) at this injection 
amplitude extends beyond the range expected from the fit of Eq. (2) (Fig. 8c); this trend is observed for 
all 𝜕𝜕in applied. The extended locking range is accompanied by the appearance of pronounced sidebands 
(green curve, Fig. 8b) indicative of oscillations that likely result from either nonlinear interaction 
between the drive amplitude and the free-running PMO, or from nonlinearities in the optomechanical 
transduction  [49].  The amplitude and number of these sidebands increases significantly with increased 
injection amplitude (Supplement 1, Section 10). Furthermore, at large injection amplitudes the total 
observed locking range is smaller than that predicted by Eq. (3), as determined from calibrated 
displacement data for 𝜕𝜕in/𝜕𝜕free.  However, the measured range approaches the linear prediction Eq. (3) 
in the low 𝜕𝜕in limit (Fig. 8d), indicating that linear injection locking theory is a valid quantitative 
description for our system at weak injection amplitude. This is expected, because the simple linear 
theory is valid only for low injection powers 𝜕𝜕inj/𝜕𝜕free < 1 or 𝜕𝜕in/𝜕𝜕free < 𝑄𝑄m−1 .       

The injection locking results (Fig. 8b) show that input displacements as small as 10 pm can be amplified 
by a large factor of 𝜕𝜕free/𝜕𝜕in ≈ 100 over a bandwidth (the locking range) of 20 kHz to 50 kHz, an order of 
magnitude larger than the cold-cavity mechanical linewidth of approximately 2 kHz. Conversely, in the 
absence of optical pumping, only the stimuli within the native linewidth will produce a strong response, 
amplified by 𝑄𝑄m. PMO locking significantly extends the frequency range over which the input signals are 
amplified, and therefore the technique is potentially useful for amplifying and reading out frequency of 
weak FM tone signals.  For instance,  the locked PMO could tracking frequency variations of another, 
coupled nanomechanical oscillator whose amplitude is otherwise too weak or inaccessible for direct 
detection. Notably, the PMO locking may be instrumental for reading out a different mechanical mode 
of the same or a coupled nanomechanical system, including nonlinear coupled modes at integer 
multiples of the oscillator fundamental frequency  [50].  The PMO can thus perform the function of a 
mechanical amplifier and phase-locked loop for frequency detection of various weak processes 
occurring at the nanoscale  [51]. 

Conclusion 

We have demonstrated a new active plasmomechanical system with integrated electrical tuning and 
excitation that successfully localizes opto-thermo-mechanical interactions to sub-diffraction volumes, 
leading to facile electro-optic modulation, selective nanomechanical motion transduction, and the first-
ever demonstration of an injection-locked plasmomechanical oscillator.  The point-like LGPRs mediate 
both optomechanical and thermo-mechanical coupling via their spatial location. Varying the plasmonic 
gap tunes devices through dispersive and reactive coupling regimes with distinct spectral responses, and 
controls the threshold power of the plasmomechanical oscillator.  Through injection locking, we have 
shown that the plasmomechanical oscillator can synchronize to and amplify weak mechanical stimuli for 
nanomechanical sensing. Electrical tuning and switching of individually addressable plasmomechanical 
systems are promising building blocks for realizing extended, high-spatial-resolution light modulator 
arrays and tunable metasurfaces with applications in light-beaming, and optical pulse and wavefront 
shaping. 
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Fig. 1.  (a) Illustration of the device architecture.  The inset shows a side view of the device structural layers and 
elements. Red color represents the 3rd order localized gap plasmon mode. While lines represent actuator electric 
field.  (b) Line scan of an atomic force micrograph (gray dashed line, inset) of a 4 µm cantilever with an integrated 
LGPR on the same chip as the devices studied in this work.  The total gap size is the sum of the nominal 20 nm 
sacrificial layer thickness and the upward deflection due to residual stress; the profile is corrected for the ≈ 130 nm 
lead thickness.  Red lines are fits that indicate the upward deflection of the structure due to tilt at the gold coated 
base (linear) and the curved shape of the free cantilever (parabolic). Regions of expected dispersive and reactive 
optomechanical coupling, based on simulation data, are indicated by the shaded region.  
 
  



 
Fig. 2.  Finite element calculations of (a) the reflectance of the LGP resonance as a function of gap, the arrows 
illustrate the direction of change of the reflectance dip with decreasing gap in the different coupling regimes. (b) 
Extracted LGP wavelength (right panel) with exponential fit and calculated dispersive optomechanical coupling 
constant (left panel).   
 
  



 
 
Fig. 3.  Optical modulation with LGPRs. (a) Experimental setup for modulation and transduction in ambient 
conditions. Components are: (P)BS – (polarizing) beam splitter, P – polarizer, PD – photodiode, VNA – vector 
network analyzer, DUT – device under test. (b) Experimentally measured spectral reflectance of a single LGPR as a 
function of applied voltage with Lorentzian fits; the inset shows the measured amplitude modulation of the 
electrically actuated LGPR. Reflectance spectra are normalized relative to the laser reference spectrum measured 
by focusing the broadband probe laser on the gold pad through the cantilever but displaced from the LGPR ≈ 1 µm. 
Reference measurements are taken within 1 second of each spectrum measurement to minimize effects of laser 
spectrum drift.  (c) Experimentally measured LGP wavelengths and (d) relative shift of the LGP resonance as a 
function of voltage; uncertainties are derived from Lorentzian fits. 

  



 
Fig. 4.  (a) Normalized magnitude of electrostatically driven motion transduced, in ambient air conditions, by a 
dispersive (left panels) and reactive (right panels) LGPR, measured with different probe laser detuning.  Black lines 
correspond to a best fit of two Lorentzian functions added coherently; inset cartoons depict the shape of the 
flexural mechanical modes.  The change in relative strength of the resonances between the left and right panels 
indicate selective mode transduction. The dispersive case illustrates that the LGPR motion is described by a 
coherent superposition of the displacement from two flexural modes: the modal displacements are cancelling each 
other out at the LGPR position near the 20 MHz excitation frequency.  (b) Motion phase near the second order 
flexural mode resonance. Dispersive coupling produces opposite phase at different signs of detuning, indicating a 
change in the sign of the reflectance derivative 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠[𝜕𝜕𝑥𝑥𝑅𝑅] with detuning.  Reactively coupled devices produce the 
same phase (𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠[𝜕𝜕𝑥𝑥𝑅𝑅]) regardless of detuning. 

  



 
Fig. 5. Scanning electron micrographs and measured motion signals for electrostatically actuated 500 nm wide 
cantilevers with (a) 2 µm length and (b) 1.5 µm length.  The ≈ (90×75×40) nm3 LGPR, embedded on the underside 
of the cantilever, forms a visible ‘bulb’ through the thickness which protrudes from the top of the silicon nitride.  
(c) Reflection spectrum from the LGPR showing the 𝑚𝑚 = 1 LGP mode.  

  



 
Fig. 6. (a) Experimental setup for vacuum conditions. Components are: VA – variable attenuator, FPC – fiber 
polarization controller, ESA – Electronic spectrum analyzer.  (b) Mechanical amplitude spectral density for optical 
pump powers in different regimes of below threshold (black, gray), above threshold (dark red), and saturated 
(gold).  There exists an apparently chaotic regime [36] for pumping near saturation (red curve, 1500 µW), whereby 
the amplitude and frequency fluctuate rapidly.  In this case, the apparent broadened linewidth is a result of rapid 
frequency variation during the instrument averaging. The reduction in noise floor with increasing pump power is a 
result of decreased imprecision noise. The inset shows the reflectance spectrum of the LGPR with negative and 
positive experimental wavelength detunings marked with blue and red lines, respectively.  (c) Mechanical 
oscillation amplitude of the LGPR on a logarithmic scale as function of pump power for negative (blue dots) and 
positive (red dots) wavelength detuning; inset shows corresponding mechanical linewidths and their uncertainties 
determined from Lorentzian fits. The shaded gray region indicates the measurement resolution limit. 

  



 
Fig. 7. Calculated plasmomechanical absorbance gain landscape (red-yellow: excitation, blue: cooling) with 
experimental measurement points for negative (white dot) and positive (black dot) detuning; gap value and 
uncertainty is from the AFM measurements.  The solid black line indicates the zero-gain contour and dotted line 
indicates the expected gap of the device. 

 

  



 
Fig. 8. (a) Log-scale contour plot of the motion power spectral density of the plasmomechanical oscillator (free-
running frequency 𝑓𝑓0) for varying injection frequency 𝑓𝑓in at an injection amplitude of 𝜕𝜕in ≈ 25 pm . The oscillator is 
locked to the input RF tone and follows 𝑓𝑓in over the interval 𝑓𝑓L. (b) Line cuts of the motion power spectra for 
unlocked (black curves, 𝑓𝑓in marked by * symbol) and locked (red, gray, blue, and green curves) operation, plotted 
on log-scale.  Numerical annotations represent the distortion sideband order up to a value of ±3. Additional 
sidebands appearing at the top of the locking range (green curve) are distinct from the distortion sidebands 
outside the locking range predicted by Eq. (2), and are likely the result of intermodulation between the applied 
actuated displacement and the oscillator. (c) Total observed locking range (red) (i.e., central rectangular band in 
(a)) and the Adler theory prediction 𝑓𝑓L = 𝜔𝜔m/2𝜋𝜋 𝜕𝜕in/𝜕𝜕free (black); these quantities agree at low injection 
amplitude. The predicted values correspond to the average ratio of the injection displacement to the free-running 
displacement 𝜕𝜕in/𝜕𝜕free measured at far-detuned 𝑓𝑓in, ranging from 3800 kHz to 3825 kHz; uncertainties are one 
standard deviation from multiple detunings. (d) Ratio of the total observed range to the theoretical predictions 
from Adler’s theory, which shows a linear relationship converging to unity for weak injected signals, for which the 
Adler theory is valid. 

 

 
  



Supplementary Information 
 
1. Fabrication Procedure 

Devices are fabricated monolithically from a bare Si chip using repeated steps of aligned electron-beam 
lithography (aEBL), as depicted in Fig. S1. Unless otherwise specified, each EBL exposure used a bilayer 
resist of 495k/950k molecular weight polymethyl methacrylate with total thickness three times greater 
than the total thickness of deposited metal layer.  In the process, metal layers are formed using 
electron-beam evaporation and liftoff (LO) in a 1:1 by volume solution of acetone and methylene 
chloride.  The first layer comprises a 5 nm Ti adhesion layer, 50 nm Au pad, and 20 nm Cr sacrificial 
layer. Cuboids with nominal dimensions of approximately (350×160×40) nm3 are then formed with an 
aligned EBL (aEBL) exposure.  The nitride device layer is deposited at 180 °C using a plasma-enhanced 
chemical vapor deposition (PECVD) process incorporating inductively-coupled plasma (ICP) during the 
deposition.  Stress in the nitride film is controlled via ICP power to fall within the range from 175 MPa to 
225 MPa.  Actuators, formed using a third aEBL+LO step, are composed of 15 nm Au atop a 3 nm Ti 
adhesion layer.  Next, electrical leads and bond pads are formed from a 10 nm Ti, 120 nm Au stack using 
a fourth aEBL+LO step.  A final aEBL step using a commercial high-resolution resist forms a dry-etch 
mask, which is transferred to the nitride using reactive-ion etching.  The exposed Cr sacrificial layer is 
etched using a solution of ceric ammonium nitrate and chips are finalized by critical point drying in liquid 
CO2.  Devices are finalized by wire-bonding chips to a printed circuit board connectorized with coaxial RF 
jacks.  

 
 

 
Fig S1. Process flow for the fabricating devices. Processes are:  (a)EBL – (aligned) electron beam lithography, LO 
– liftoff, PECVD – plasma-enhanced chemical vapor deposition, RIE – reactive-ion etching, Etch – wet-chemical 
etching of Cr, CPD – critical point drying.  The cutaway near the cuboid is included for illustration purposes and 
is not present in actual devices.  
 
 
 
 
 



2. Atomic Force Microscopy Measurements 

Residual stress and stress gradients occur in the devices as a result of the nitride deposition process.  
The stress gradient causes released cantilevers to curl away from the underlying substrate, affecting the 
final gap of the plasmonic resonator.  This curvature is approximately uniform for each device on any 
given chip, such that the atomic force micrograph of the test device in the main text gives a reliable 
predictor of the curvature of experimentally measured devices, from the same chip. To quantify the 
variation within a chip, we perform additional AFM measurements on a set of test devices fabricated on 
a separate chip.  Figure S2 shows the measurements performed on three devices selected randomly on 
this chip. Each chip is fabricated separately and due to variations in the fabrication process these devices 
have a larger intrinsic stress and stress gradient, and thus a larger deflection 𝑑𝑑 than the devices in the 
main text.  However, it is evident that there is only a small variation between devices in the overall 
deflection and in the curvature from device-to-device; we find from parabolic fits of the form 𝑑𝑑 = 𝑏𝑏𝜕𝜕 +
𝜋𝜋 𝜕𝜕2 to the linescans of the deflected shape images that the curvature varies by ≈ 10 %, which indicates 
good uniformity of the fabrication process.  This variation is calculated via 𝜎𝜎c/𝜋𝜋, where 𝜎𝜎c is the standard 
deviation of the 𝜋𝜋 parameter calculated from the fit. The standard deviation of the deflection at x = 0.5 
µm is measured to be 2.7 nm. 

3. Finite-Element Modelling 

We use a commercial finite-element solver to model electromagnetic, mechanical, and thermal 
properties of the devices.  Two model geometries are used.  The first (Fig. S3a) is used for 
electromagnetic modelling and consists of a cylindrical domain comprising a 165 nm thick, 2 µm wide 
silicon nitride beam cantilever placed over an Au pad (atop a Si substrate) separated by a variable air 
gap.  A 15 nm thick Au actuator is placed atop the beam with an approximately (2.5×1.75) µm2 opening 
filled with air and centered above a cuboid with dimensions (350×160×40) nm3; a fillet with 15 nm 
radius of curvature is applied to all edges of the cuboid to avoid spurious electrical field effects.  A 
Gaussian beam with focal point at the surface of the Au pad and spot radius of 0.6 𝜆𝜆0/NA for numerical 

 
Fig. S2. Atomic force microscopy measurements. Deflection line profiles of three test devices on the same chip 
(separate from the main text devices), which was fabricated in parallel with those studied in the main text.  
Solid lines are parabolic fits to the deflected shapes, which are extracted from the two-dimensional images 
(inset) at locations indicated by the gray-dotted lines. 
 
 
 
 
 



aperture NA = 0.3 or 0.9 and varying input wavelength 𝜆𝜆0 is introduced via a port boundary condition 
above the structure. The remaining boundary conditions include a second port at the bottom of the Si 
substrate, perfect magnetic conductors for symmetry, and perfectly matched layers along the top, 
bottom, and outer edges to prevent reflections into the computational domain.  Reflectance is 
calculated using S-parameters 𝑅𝑅 = |𝑆𝑆11|2, where 𝑆𝑆11 corresponds to the top port.  Absorption is 
calculated using a loss-integral formulation, via 

 𝐴𝐴 ≡ 1
𝑃𝑃0
∫ 1
2

Re[𝑱𝑱 ∙ 𝑬𝑬∗]d𝑉𝑉,  (S1) 

where 𝑃𝑃0 is the power launched into the domain.  The integral of the inner product of current density 𝑱𝑱 
and (complex conjugate) electric field 𝑬𝑬∗ is evaluated over the volume 𝑉𝑉 comprising all gold surfaces; all 
other materials are assumed lossless and therefore do not contribute to the integral. Optical properties 
for Au and silicon nitride are taken from ellipsometric data of experimentally deposited films.  
Absorbance gain 𝑔𝑔A is calculated as the negative gradient of the absorbance landscape −∇𝑥𝑥𝐴𝐴(𝜕𝜕, 𝜆𝜆), 
wherein a lower numerical aperture of 0.3 NA is used to match the conditions of the lasing experiments. 

The second geometry, used to compute mechanical eigenfrequencies, modal masses, static deflection 
and thermal responses of the devices, consists of a silicon nitride cantilever supporting a 15 nm thick Au 
actuator and attached to an outer frame having 1.5 µm extent (Fig. S3b).  A 130 nm thick Au lead is 
placed overhanging a portion of the frame. Fixed boundary conditions are placed on the outer edges of 
the frame and the top edge temperature of the 130 nm lead is assumed to be 300 K. A cuboid measuring 
(350×160×40) nm3 is placed within the cantilever and dissipates a heat load of 50 µW, as derived from 
the electromagnetic power loss integral. The silicon nitride has density 2200 kg∙m-3, elastic modulus 200 
GPa, and Poisson ratio 0.2. Eigenmode calculations are performed to determine the vibrational 
frequencies of the cantilever, and the computed values agree with experimentally measured results to 
within 5 %.  We evaluate the effective (modal) mass of the 6 µm cantilever by integrating the calculated 
mode shape Φ as  

 𝑚𝑚eff ≡
1
𝑞𝑞2
∫ 𝜌𝜌(𝑟𝑟)|Φ(𝑟𝑟)|2d𝑉𝑉, (S2) 

where 𝑞𝑞 is a normalization factor representing a generalized coordinate for the cantilever displacement 
at the location of the embedded localized gap plasmon resonator (LGPR), and 𝜌𝜌(𝐫𝐫) is position 𝐫𝐫 
dependent material density. A modal displacement of 0.1 times the maximum displacement at the tip as 
determined from finite element calculations.  We find a modal mass of 2.11×10-15 kg for the 
fundamental mode. 

The static downward deflection of the cantilever is produced by an elevated temperature of 
approximately 312 K, which is calculated as the average value over the free cantilever.  The maximum 
downward displacement is normalized by the temperature increase of Δ𝑇𝑇 ≈ 12 K, and the bimorph 
displacement gain 𝑔𝑔B ≡ 𝜕𝜕𝜕𝜕/𝜕𝜕Δ𝑇𝑇 is evaluated at the cuboid location. To determine the bimorph 
displacement gain corresponding to the thermal excitation of the fundamental mechanical mode, we 
compute an overlap integral between the static displacement of the cantilever generated by the average 
temperature elevation of 12 K  (50 pm K-1 at the LGPR location) and the modal displacement of the 
fundamental mode (Fig. S3c), giving a final value of 𝑔𝑔B ≈ 45 pm K-1. Figure S3d shows the thermal time 
constant of the system, evaluated by applying the heat load as a step function at 0 s. 



 

4. Intrinsic DC bias on devices 

The time-varying part of the electrostatic force applied to the cantilever from the actuators is 𝐹𝐹app ∝
2𝑉𝑉DC𝑉𝑉AC sin𝜔𝜔𝑡𝑡 + 1/2 𝑉𝑉AC2 sin 2𝜔𝜔𝑡𝑡 , where 𝜔𝜔 is the frequency and 𝑉𝑉AC is specified voltage delivered.  In 
our experiments, we set the offset voltage 𝑉𝑉DC,app to zero.  However, the fact that we observe device 
response at both 𝜔𝜔 and 2𝜔𝜔 implies that there exists an intrinsic bias voltage in our devices 𝑉𝑉DC ≡
𝑉𝑉DC,app + 𝑉𝑉DC,in = 𝑉𝑉DC,in.  We determined 𝑉𝑉DC,in by measuring the relative output voltage, as a function 
of input 𝑉𝑉AC, on an electronic spectrum analyzer at the input frequency and second harmonic, fitting 
these to linear and parabolic models, respectively, and using these fit coefficients along with the 
expression for 𝐹𝐹app to determine the relative weight of 𝑉𝑉DC and 𝑉𝑉AC. From this procedure, we estimate 
an intrinsic bias of (+0.245 ± 0.013) V, where uncertainty is derived from the voltage fits.   The intrinsic 
DC bias is likely the result of trapped charges in the nitride from the electron-beam fabrication 
processing. 

5. Thermal calibration in vacuum 

The same transduction scheme is applied to devices placed in vacuum.  In order to calibrate device 
thermal motion, the voltage power spectral density (PSD) is collected at low pump power ranging from 
300 µW  to 500 µW and fitted to Lorentzian curves, enabling extraction of the transduction gain in this 

 
Fig. S3.  Finite-element models and results. (a) Domain for electromagnetic calculations representing one half 
of a 4 µm length cantilever. The red arrow shows the incident electric field polarization (𝐸𝐸inc) whereas the 
black arrow shows the incident wavevector (𝑘𝑘). (b)  Domain for mechanical calculations. (c) Normalized 
absolute value of bimorph deflection (red) and modal deflection.   The inset shows a 3D view of the total 
bimorph deflection (magnitude exaggerated) for a 50 µW heat load resulting in a 312 K average temperature. 
(d) Transient average temperature for the cantilever with fit to a first-order system response.  Inset shows the 
temperature distribution of the cantilever after 10 µs of heating. 
 
 
 
 
 



linear region of device response [S1]. We find transduction gains of (4.99 ± 0.87) mV nm-1 at 300 µW 
with a linear slope of (0.035 ± 0.0012) mV nm-1 µW-1. Reported one standard deviation uncertainties of 
the transduction gain and its power-dependent slope are derived from parameter variances reported by 
the Lorentzian and linear fits, respectively.  This linear increase in transduction gain with higher optical 
intensity results in a decrease of the input-referred detector dark noise and optical shot noise or 
equivalently, reduced imprecision noise in the motion readout.  We apply linearly extrapolated 
calibration factors to lasing data over the full range of pump power.  In order to extract the 
displacement, we utilize the equipartition theorem, whereby the integral of the displacement PSD 
corresponds to the RMS displacement of the cantilever at the location of the LGPR, i.e., 
1/2𝜋𝜋∫ 𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔)𝑑𝑑𝜔𝜔 ≈ 𝜕𝜕eff2  [S1,S2]. Here, the effective displacement of the LGPR is given by 𝜕𝜕eff = 𝜋𝜋𝑖𝑖𝜕𝜕rms 
with average displacement 𝜕𝜕rms = [𝑘𝑘B𝑇𝑇eff/(𝑚𝑚eff𝜔𝜔m2 )]1/2 where 𝑘𝑘B is Boltzmann’s constant, 𝑇𝑇eff is the 
effective temperature, 𝑚𝑚eff is the modal mass, and 𝜋𝜋𝑖𝑖 ≈ 0.1 is the modal displacement coefficient of the 
LGPR relative to the maximum tip-referenced value. 

6. Control experiments 

We perform two experiments to ensure that measured motion signals and self-oscillation require the 
presence of the LGPR. In the first we translate the probe laser from directly atop the LGPR to locations ≈ 
1 µm above (toward the cantilever tip) and below (toward the base).  In both experimental 
configurations of vacuum with 0.3 NA (Fig. S4a), and air with 0.9 NA (Fig. S4b), we observe the detected 
signal dropping to that background noise level upon translation of the excitation beam.  Vacuum 
measurements correspond to transduced thermal noise of the cantilever, whereas air measurements 
correspond to electromechanically driven measurements of the device.  In the second experiment, we 
rotate the input polarization of the probe laser from parallel to the LGPR long axis, which suppresses the 
LGP resonance (Fig. S4c), and observe the signal of the plasmomechanical oscillator (PMO) dropping 
abruptly to noise for polarization angles beyond approximately 30° from parallel.  Further, we find that 

 
Fig. S4.  Control experiments for the plasmomechanical oscillator. (a) Position dependence of thermal motion 
transduction in the vacuum setup with 0.3 NA objective.  Inset shows optical micrographs of the ≈ 6 µm 
cantilever under test, with the dotted black line marking the location of the LGPR and the red arrow marking 
the focused beam centroid (located at approximately +1 µm, 0 um and –1 µm).  The spurious light above the 
cantilever in the inset is due to multiple reflections in the imaging system. Scale bar is 5 µm. (b) Position 
dependence of driven motion detection in air (0.9 NA objective setup) with a 50 kHz drive frequency for laser 
positions (top panel) 1 µm above the LGPR toward the cantilever tip and (bottom panel) atop the LGPR. (c) 
Polarization dependence experiments showing (top panel) the PMO response with polarization parallel to the 
long axis of the cuboid comprising the LGPR and perpendicular; the bottom panel shows data for perpendicular 
polarization as a function of pump power up to the system limit of ≈ 3 mW.  Data in (c) correspond to the same 
device as those in (a). 
 
 
 
 
 



for perpendicular polarization, we do not observe motion transduction at any pump power up to 
experimental limits of 2.75 mW. These data strongly indicate that the LGPR is responsible for motion 
transduction and observed self-oscillation in this work [S3,S4]. 

As a final check to ensure that the observed optomechanical effects (modulation, transduction, and the 
PMO behavior) are caused by the PMO and not from the Fabry-Perot cavity formed by the nitride 
cantilever and underlying Au surface, we measure the reflectance of the bare nitride cantilever.  Here, 
the spectrum of the supercontinuum laser source is first normalized to the reflection from the flat Au 
pad, then focused on the cantilever but displaced by ≈ 1 µm from the LGPR location.  Figure S5 shows 
the reflectance spectrum from the cantilever (red curve) alongside the normalized spectrum collected 
from the Au pad (blue curve). The background reflectance 𝐵𝐵(𝜆𝜆) is spectrally flat in the wavelength 
region from 700 nm to 850 nm and has a shallow dip near 650 nm, possibly due to the Fabry-Perot 
cavity amplifying the optical loss from the reduced gold reflectivity in that part of the spectrum.  Given 
that the background spectrum is flat and experimentally indistinguishable from that of a highly reflective 
bare gold surface in the region where the LGP resonance occurs (from ≈ 760 nm to 820 nm), it is unlikely 
that a background optomechanical effect is contributing to the observed results.  

 

7. Frequency behavior of the PMO 

The plasmomechanical oscillator (PMO) exhibits rapid frequency variations at certain pump powers. 
While the exact nature of this rapid frequency variation is not known, it is possible to measure a stable 
frequency within the resolution bandwidth filter time (FWHM data in Fig. 6c inset, main text), and thus it 
is possible that the observed behavior derives from environmental perturbations to the setup.  The ≈ 
0.25 % reduction in mechanical frequency observed below threshold does not originate from an optical 
spring, owing to the relatively low quality factor of the LGP resonance [S5].  Whereas this minute shift 
may be attributed to temperature-dependent reduction in the elastic modulus of the silicon nitride, the 
larger frequency reduction for high pump power is likely the result of an amplitude-dependent 

 
Fig. S5. Reflectance measured on the bare cantilever, displaced from the LGPR by ≈ 1 µm (red curve) alongside 
the reference reflectance normalized on the Au sheet (blue curve).  This background reflectance is 
characterized by a nearly flat response between ≈ 700 nm and 850 nm and a dip near 650 nm indicating a 
Fabry-Perot cavity resonance between the nitride cantilever and the underlying Au pad.  
 
 
 
 
 



frequency nonlinearity occurring for strong pumping. In measuring the linewidth of the PMO (Fig. 6c in 
the main text), drift and vibrations in our experimental system currently make long-term measurements 
problematic.  We therefore limit the resolution bandwidth of the ESA to 100 Hz to provide a 
compromise between resolution of the self-oscillation linewidth (higher resolution requiring longer 
sweep time) and elimination of systematic drift.  Nevertheless, this measurement setting is within an 
order of magnitude of the expected saturation value of the linewidth of ≈ 10 Hz [S6], and the observed 
narrowing (broadening) of the linewidth for blue-detuned (red-detuned) pumping is consistent with 
expectations for our system.  Furthermore, the uncertainty in the measurements is reasonably small. 

8. Threshold of the PMO 

Self-oscillations in the cantilevers are driven by optical-frequency dependent absorption in the 
plasmonic resonator.  The temperature increase due to absorption causes the bimorph to expand and 
deflect the cantilever downward from its equilibrium position, defined in the positive 𝜕𝜕-direction. An 
instability occurs, owing to the reduction in absorbed optical power with increasing 𝜕𝜕 resulting from the 
LGP resonance behavior which drives the cantilever into oscillation. The system is modeled using the 
following coupled equations  

 𝑑𝑑Δ𝑇𝑇
𝑑𝑑𝑑𝑑

= −𝛾𝛾tΔ𝑇𝑇 + 1
𝑚𝑚th𝑐𝑐p

𝑃𝑃abs(𝜕𝜕),  (S3) 

 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2

+ 𝛾𝛾m
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

+ 𝜔𝜔m2 𝜕𝜕 = 1
𝑚𝑚eff

�𝑓𝑓L + 𝑓𝑓B(𝑇𝑇) + 𝑓𝑓opt�, (S4) 

where 𝑇𝑇 is the device temperature, 𝜏𝜏t = 𝛾𝛾t−1 is the thermal time constant, 𝑃𝑃abs(𝜕𝜕) is the displacement-
dependent optical power absorbed in the device, and 𝛾𝛾m = 𝜔𝜔m/𝑄𝑄m is the mechanical bandwidth of the 
cantilever with frequency 𝜔𝜔m, quality factor 𝑄𝑄m.  The thermal mass 𝑚𝑚threpresents the full mass of the 
free cantilever and is ≈ 4.61×10-15 kg. The device is driven by the Langevin force 𝑓𝑓L due to the thermal 
bath, the bimorph actuation force 𝑓𝑓B, and the optical (radiation pressure) force 𝑓𝑓opt = 𝑔𝑔om𝑈𝑈/𝜔𝜔LGP, 
where 𝑈𝑈 is average intracavity photon energy stored in the plasmonic resonator [S5] 

 𝑈𝑈 = �1 −�𝑅𝑅0�
𝛾𝛾/2 𝑃𝑃0 

𝛿𝛿𝜔𝜔2+(𝛾𝛾/2)2, (S5) 

where 𝑅𝑅0 is the reflectance on resonance, 𝛾𝛾 = 𝜔𝜔LGP/𝑄𝑄LGP, 𝑃𝑃0 is the optical power incident on the 
LGPR, and 𝛿𝛿𝜔𝜔 ≈ 𝜔𝜔 − 𝜔𝜔LGP is the frequency detuning.  Given that 𝑓𝑓B derives from optical absorption in 
the LGPR, its magnitude is also proportional to  𝑈𝑈.  However, using parameters determined below, we 
estimate the ratio 𝑓𝑓B/𝑓𝑓opt > 103, indicating that radiation pressure is negligible compared to thermal 
backaction forces and can therefore be neglected.  

To derive the threshold condition, we linearize the system around the equilibrium point �̅�𝜕 such that 
𝜕𝜕(𝑡𝑡) = �̅�𝜕 + 𝜕𝜕0(𝑡𝑡) for some small displacement 𝜕𝜕0.  In this limit, the change in the absorbed power and 
the bimorph actuation force 𝑓𝑓B scale linearly with 𝜕𝜕0 and Δ𝑇𝑇  

 Δ𝑃𝑃abs ≡ 𝑃𝑃0
𝜕𝜕 𝐴𝐴(𝜆𝜆,𝑥𝑥)

𝜕𝜕𝑥𝑥
 𝜕𝜕0, (S6) 

 𝑓𝑓B ≡ 𝑚𝑚eff𝜔𝜔m2
𝜕𝜕𝑥𝑥
𝜕𝜕Δ𝑇𝑇

 Δ𝑇𝑇, (S7) 

where 𝐴𝐴(𝜆𝜆, 𝜕𝜕) is the optical-wavelength and gap-size dependent absorbance of the LGP resonance, 
𝜕𝜕𝐴𝐴/𝜕𝜕𝜕𝜕 ≡ 𝑔𝑔A is the absorbance gain, and 𝜕𝜕𝜕𝜕/𝜕𝜕Δ𝑇𝑇 ≡ 𝑔𝑔B is the bimorph displacement gain.  The system 
can then be recast as  

 𝑑𝑑Δ𝑇𝑇
𝑑𝑑𝑑𝑑

= −𝛾𝛾tΔ𝑇𝑇 + 𝑃𝑃0
𝑚𝑚th𝑐𝑐p

𝑔𝑔A𝜕𝜕0, (S8) 



 𝑑𝑑𝑥𝑥0
𝑑𝑑𝑑𝑑2

+ 𝛾𝛾m
𝑑𝑑 𝑥𝑥0
𝑑𝑑𝑑𝑑

+ 𝜔𝜔m2 (𝜕𝜕0 − 𝑔𝑔BΔ𝑇𝑇) = 1
𝑚𝑚eff

𝑓𝑓L. (S9) 

We note that the system described in Eq. (S8) and Eq. (S9) is the proper limit of other, more complete 
treatments that explicitly incorporate a third expression, describing the dynamics of the intracavity 
optical amplitude and coupling it to the mechanical coordinate [S7]. Under the adiabatic approximation 
for optical amplitude, i.e. the assumption that the thermal time 𝜏𝜏t and mechanical frequency 𝜔𝜔m are 
much smaller than optical cavity loss rate 𝛾𝛾LGP = 𝜔𝜔LGP/𝑄𝑄LGP, the optical response follows 
instantaneously with the mechanical and thermal coordinates and there is negligible phase lag, 
therefore there is no contributions to excitation or damping from optical radiation pressure backaction.  
This simplification is well-justified in our experimental case, and indeed the results for the effective 
damping derived in our model are equivalent to those appearing elsewhere [S7,S8]. 

We proceed by Fourier transformation of Eq. (S8), from which we obtain the following expression for 
the temperature increase 

 Δ𝑇𝑇(𝜔𝜔) = 𝑃𝑃0
𝑚𝑚th𝑐𝑐p

1
(𝛾𝛾t+𝑖𝑖𝜔𝜔)  𝑔𝑔A𝜕𝜕0, (S10) 

where 𝜔𝜔 is the Fourier frequency.  Applying Fourier transformation to Eq. (S9), using Eq. (S10), and 
collecting imaginary terms, we find the effective damping coefficient   

 𝛾𝛾eff = 𝛾𝛾m +𝜔𝜔m2
𝑃𝑃0

𝑚𝑚th𝑐𝑐p

𝑔𝑔A𝑔𝑔B
𝜔𝜔2+𝛾𝛾t2

, (S11) 

where the second term describes the contribution of the photothermal spring to the overall system 
damping.  Threshold is crossed when 𝛾𝛾eff passes through zero and becomes negative, which requires 
that 𝑔𝑔A < 0, leading to the expression for threshold power at the mechanical resonance 𝜔𝜔 = 𝜔𝜔m  

 𝑃𝑃thresh = 𝑚𝑚th 𝑐𝑐p
|𝑔𝑔A|𝑔𝑔B

𝜔𝜔m
2 +𝛾𝛾t2

𝑄𝑄m𝜔𝜔m
. (S12) 

As shown in Fig. 7 in the main text, the condition 𝑔𝑔A < 0 is met both for blue-detuned dispersive 
devices as well as reactive devices with any detuning.  This unique feature enables self-oscillation for a 
wide variety of device configurations.  

9. Sonification of the injection-locked PMO 

We have performed sonification [S9] of real-time injection locking data from one of our devices (Fig. S6, 
Supplement 2). We used a ≈ 6 µm device with ≈ 19  pm (100 mV) injection amplitude.  The horizontal 
axis frequencies in Fig. S6 were mapped to the audible range from approximately 200 Hz to 40000 Hz.  
We provide a string of 188 segments taken from a continuous voltage trace during the locking 
experiment.  Each sequential segment is ≈ 0.25 s in length, spaced equidistantly, and normalized in 
amplitude.  The key features of the locking experiment are evident from the audio file. The initially free-
running MPL is evident as the strong tone with frequency of ≈ 3 kHz at the beginning of the audio. The 
injected frequency, the MPL, and the generated sidebands are audible at an initial frequency of ≈ 200 Hz 
and increase in pitch until approximately 16 s into the audio. At this point, the signal abruptly changes to 
a nearly pure tone which increases in pitch with time, signifying locking. The data in Fig. S6 contains a 
stitch between two contiguous frequency sweeps at an injection frequency of ≈ 4300 kHz, resulting from 
a spurious electronic signal, which produces an audible distortion near 22 s in the audio trace. 

 

 

 



 

10. Injection locking at increased injection amplitudes 

Figure S7 shows a suite of injection locking data for increasing injection amplitudes from ≈ 10 pm to ≈ 48 
pm mechanical amplitudes.  The injection amplitude corresponds to the calibrated value of the RF tone 
peak measured far from the PMO free running frequency. Several key features are evident as the 
injected amplitude increase.  First, the locking range increases with an approximate square-root 
dependence.  Second, the distortion sidebands and the frequency pulling outside the locking range 
increase.  Finally, within the locking range, a larger number of nonlinear sidebands – those not described 
by linear locking theory – are observed.  The exact nature of the sidebands is not known, but they may 
originate from optical transduction nonlinearities or from mechanical nonlinearities induced at high 
injection amplitude.  

 
Fig. S6. Injection locking data for sonification. Contour plot of injection locking of a 6 µm cantilever device using 
19 pm (100 mV) injection amplitude. The injection frequency sweep is from the bottom left ≈ 4250 kHz to the 
top right ≈ 4325 kHz, occurring over ≈ 48 s.  The stitch in the data occurring at 4290 kHz is due to a spurious 
signal and is not representative of injection locking dynamics.  
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Fig. S7.  Injection locking at various injection amplitudes of (a) 10 pm, (b) 19 pm, and (c) 48 pm.  
 
 



 

 

 

 

 

 

 

 

 
 

 
 


