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Abstract 
 

The current trend in manufacturing industry is from mass production towards 
adaptive manufacturing systems and cloud manufacturing. Self-learning machines 
and robot systems can play an essential role in the development of intelligent 
manufacturing systems and can be deployed to deal with a variety of tasks that can 
require flexibility and accuracy. However, in order for the machine tool (physical and 
control system) to deal with the desired task in a cognitive and efficient manner, the 
system must be “aware” of its capability in order to adjust itself to the desired task. 
Thus, characterization of machine tool accuracy and capability is necessary to realize 
this goal.  

In this study, data from a machine-embedded inertial measurement unit (IMU), 
consisting of accelerometers and rate gyroscopes, was used for identification of 
changes in linear and angular error motions due to changes in operational conditions 
or component degradation. The IMU-based results were validated against laser-based 
measurement results, demonstrating that the IMU-based method is capable of 
detecting micrometer-level and microradian-level degradation of machine tool linear 
axes. Thus, manufacturers could use the method to efficiently and robustly diagnose 
the condition of their machine tool linear axes with minimal disruptions to 
production. 



 
 
1 Introduction 
 

Precision manufacturing has steadily evolved over the past decades to cope with 
the complexity of components and the requirements for high quality and low cost 
production. A typical machine tool has multiple linear axes whose accuracies directly 
impact the quality of manufactured parts. Yet over a machine tool’s lifetime, various 
faults lead to performance degradation, lowering accuracy and repeatability [1]. 
Typical sources of errors within linear axes are due to pitting, wear, corrosion, and 
cracks of the system components such as guideways and recirculating balls [2]. As 
degradation increases, tool-to-workpiece errors increase, which eventually may 
result in a loss of production quality and/or a failure [3]. Yet knowledge of 
degradation is elusive; proper assessment of axis degradation is often a manual, time-
consuming, and potentially cost-prohibitive process. 

While direct methods for machine tool performance evaluation are well-
established [4] and reliable for position-dependent error quantification, such 
measurements typically interrupt production [5]. An online condition monitoring 
system for linear axes is needed to help reduce machine downtime, increase 
productivity and product quality, and improve knowledge about manufacturing 
processes [6]. Efforts to monitor the condition of linear axes components have 
utilized various sensors, e.g., built-in rotary encoders [7], current sensors [3], and 
accelerometers [8, 9]. These attempts at condition monitoring of linear axes have had 
limited success, partly because of the lack of robustness and defined relationships of 
signals to axis degradation composed of a wide range of spatial frequencies. 

Consequently, efficient quantitative measures are needed to monitor the 
degradation of linear axes. Recently, accelerometers have been used for dynamic 
metrology of machine tools [10, 11] and six-degree-of-freedom motion sensors exist 
within integrated circuit (IC) components [12]. Thus, the use of an inertial 
measurement unit (IMU) is attractive for on-machine condition monitoring. 
 
 
2 Methodology 

 
One potential solution for online monitoring of linear axis degradation is the use 

of an IMU [13]. As seen in the schematic of Figure 1, an IMU is mounted to a moving 
machine tool component. To diagnose axis degradation, the axis is moved back and 
forth at various speeds to capture data for different frequency bandwidths. This data 
is then integrated, filtered, and fused to estimate the changes in the 6-degree-of-
freedom (DOF) geometric errors of the axis. Because the linear axes are stacked, 
coordinate transformations may be used with all 6-DOF errors to estimate the errors 
at the functional point [4]. Ideally, data would be collected periodically to track axis 



degradation with minimal disruptions to production. With robust diagnostics and 
prognostics algorithms, incipient faults may be detected and future failures may be 
avoided. In essence, IMU data can be used to help optimize maintenance, production 
planning, and ultimately improve part quality. 
 

 
 

Figure 1. IMU-based method utilizing data fusion for diagnostics of machine tool 
performance degradation. 
 

Figure 2 and Figure 3 provide details of the data fusion schemes outlined in Figure 
1 for estimation of translational and angular error motions using data corresponding 
to three speed regimes (the fast speed is 0.5 m/s, the moderate speed is 0.1 m/s, and 
the slow speed is 0.02 m/s). As seen in Figure 2, the accelerometer data is integrated 
twice, low- or band-pass filtered, processed, and summed to yield the net translational 
motions. As seen in Figure 3(b), the rate gyroscope data is integrated once, low- or 
band-pass filtered, processed, and summed to yield the net angular motions. 
However, if the measurement axis is nominally orthogonal to the gravitational vector, 
then the high-speed rate gyroscope data in Figure 3(b) may be replaced by the slow-
speed accelerometer data, as shown in Figure 3(a). The schemes in Figure 2 and 
Figure 3 rely upon the matching of spatial cutoff frequencies and the exclusion of 
significant modal excitations. 
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Figure 2. Data fusion scheme for translational motions via use of accelerometer 
data. Filter cutoff frequencies are shown in parentheses. 
 

 
 

Figure 3. Data fusion scheme for angular motions via use of (a) accelerometer and 
rate gyroscope data or (b) rate gyroscope data only. Filter cutoff frequencies are 
shown in parentheses. Wavelengths and frequencies correspond to 1 m of travel for 
0.5 m/s (fast speed), 0.1 m/s (moderate speed), and 0.02 m/s (slow speed). 
 
 
3  IMU for Industrial Application 

 
For industrial application, an IMU should be physically small and economical 

while still satisfying the measurement needs. Consequently, for application on 
machine tools, an ‘industrial IMU’ was created that is about 73% smaller than the 
‘testbed IMU’ used within a linear axis testbed at NIST [14]. As seen in Figure 4, the 
industrial IMU is about 9 cm long and contains a triaxial rate gyroscope and a triaxial 
accelerometer. The bandwidths and noise properties of these sensors are seen in Table 
1. 

 

Spatial Frequency (1/mm)

Accelerometer
Slow Axis Speed
(10 Hz, 40 Hz)

0 2

Wavelength (mm)
0.5∞

Accelerometer
Moderate Axis Speed

(2 Hz, 50 Hz)

0.02

50

Accelerometer
Fast Axis Speed

(10 Hz)

0.5

2

Spatial Frequency (1/mm)

Rate Gyroscope
Slow Axis Speed

(8 Hz, 40 Hz)

0 2

Wavelength (mm)
0.5∞

Rate Gyroscope
Moderate Axis Speed

(2 Hz, 40 Hz)

0.02

50
(b)

Rate Gyroscope
Fast Axis Speed

(10 Hz)

0.4

2.5

Spatial Frequency (1/mm)

Rate Gyroscope
Slow Axis Speed
(10 Hz, 40 Hz)

Wavelength (mm)

Rate Gyroscope
Moderate Axis Speed

(10 Hz, 50 Hz)

(a)

Accelerometer
Slow Axis Speed

(2 Hz)

0 2

0.5∞

0.1

10

0.5

2



 
 

Figure 4. (a) Isometric view of industrial IMU and (b) top view of industrial IMU 
without its lid. 
 

Table 1. Properties of sensors in industrial IMU 
 

Sensor Bandwidthᵃ Noise 
Accelerometer 0 Hz to 400 Hz 69 (μm/s2)/√Hz 
Rate Gyroscope 0 Hz to 200 Hz 35 (μrad/s)/√Hz 

      ᵃ frequencies correspond to half-power points, also known as 3 dB points 
 
 
4  Experimentation 

 
4.1 Setup 

 
The industrial IMU shown in Figure 4 was designed for industrial application. 

Accordingly, repeated testing of the IMU on machine is required for acceptance 
testing, to determine how well the IMU-based methodology can detect various types 
of degradation. 

Accordingly, Figure 5 shows an experimental setup of the IMU on a vertical 
milling machine at NIST. For each dataset, the IMU is attached to the worktable at 
one of three different locations (A, B, or C) and the Y-axis travels between Y = 0 m 
and Y = 0.5 m. Hence, IMU data was collected for 50 runs sequentially at each 
location with motion back and forth along the Y axis, according to the method 
outlined in Figure 1. The three speeds for data collection are 0.5 m/s (fast speed), 
0.1 m/s (moderate speed), and 0.02 m/s (slow speed). 
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Figure 5. Experimental setup of IMU on machine tool worktable: Pictures of IMU 
at (a) Location A, (b) Location B, and (c) Location C and (d) schematic of three 
IMU locations relative to center point P of worktable. 
 

Furthermore, data was collected with a commercial laser-based system 
(‘Reference’ system) for measuring the geometric errors of the axis at the three 
worktable locations. The laser-based system is used for verification and validation 
(V&V) of the IMU-based results. However, while the Reference system measures the 
motion of the worktable with respect to the base of the machine tool, the worktable-
mounted IMU measures the changes in the inertial motion of the worktable. 
 
4.2 Results 
 

The IMU data was processed to yield the estimated translational and angular error 
motions at the three worktable locations (A, B, and C). In order to estimate the 
translational error motions (𝐸𝐸XY, 𝐸𝐸YY, and 𝐸𝐸ZY) at the three locations, the IMU data 
was processed according to Figure 2. The linear term of the positioning error motion 
(𝐸𝐸YY) was determined based on an additional process, not shown in this paper for the 
sake of brevity, that utilizes only the slow-speed data. Also, the IMU data was 
processed according to Figure 3(a) or Figure 3(b) to estimate two angular error 
motions (𝐸𝐸AY and 𝐸𝐸BY) or the third angular error motion (𝐸𝐸CY), respectively. 

Assuming that the worktable is sufficiently rigid, the estimated error motions are 
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translated via homogeneous transformations from each of the three worktable 
locations (A, B, and C) to the center point P of the worktable. In theory, the estimated 
error motions at the center point P should be independent of which of the three sets 
is used for the homogeneous transformation. Figure 6 shows the translational errors 
estimated at the center point P of the worktable, based on data collected at three 
locations (A, B, and C). The data from the Reference system is also shown in the 
figures (as thinner lines) for comparison purposes. At each worktable location, 
Reference data was collected for five runs, which were averaged to produce the 
curves seen in Figure 6. The standard deviations of each set of five runs was also 
used to produce the shaded 95 %-confidence zones in Figure 6. Thus, the shaded 
zones represent a contribution towards, but not the total of, the measurement 
uncertainty. 
 

 
 

Figure 6. Translational errors (a) 𝐸𝐸XY, (a) 𝐸𝐸YY, and (a) 𝐸𝐸ZY estimated at center 
point P of worktable based on data collected at three locations (A, B, and C) with 
the IMU and a commercial Reference system. The Reference data has shaded areas 
representing measurement expanded uncertainties (k = 2) at 95 % confidence based 
on 5 runs. 
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As seen in Figure 6, the estimated translational errors from the IMU data match 
each other respectively to within 5 µm for the three worktable locations (A, B, and 
C). Also, the estimated error motions from the IMU match those from the reference 
system to within about 5 µm. The slight differences may be due to differences in error 
type (inertial for IMU, while relative for the Reference system) as well as to sources 
of uncertainty. 
 
4.3 Factors affecting measurement uncertainty 
 

For any type of measurement analysis, it is required that uncertainty and/or factors 
affecting uncertainty are identified and specified. Measurement uncertainty is a 
combination of uncertainties due to instrumentation, application of the instrument 
(e.g., erroneous alignment), environmental influences (e.g., floor vibration), and the 
object (e.g., repeatability of machine tool). 

The most significant contributors to the measurement uncertainty u [15] in this 
study are the IMU, the reference laser system (ulaser = 0.7 µm or 3.0 µrad), and the 
environmental conditions of the measurement runs. The IMU box was rigidly 
attached to the machine tool table and the condition of the machine tool operation 
was such that results are repeatable. The laser-based measurement device was applied 
for five runs according to manufacturer instructions, in order to compute the standard 
deviation and indicate repeatable results, as seen by the shaded 95 % confidence 
intervals in Figure 6. Furthermore, environmental conditions were within normal 
shop conditions (temperature range, floor vibration limit, etc.). 

According to simulations of the data fusion process, the accelerometer used in the 
industrial IMU will result in uncertainties that could be sufficiently low for machine 
tool purposes. As seen in Figure 7, an accelerometer noise of 69 (μm/s2)/√Hz (for the 
industrial IMU) should result in a straightness uncertainty of about 5 μm when the 
results of ten runs are averaged. 
 

 
Figure 7. Simulated uncertainty for straightness error motions due to only data fusion 
process with uncertainty sources of accelerometer noise, data acquisition noise, and 
number of runs used for averaging. 
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These simulations include only influences from accelerometer noise, data 

acquisition noise, and the method itself, while excluding uncertainties from other 
sources such as sensor misalignment, crosstalk, and system vibrations. Figure 7 
shows that as the accelerometer noise decreases, the uncertainty decreases to a limit 
caused by noise of the data acquisition equipment. Thus, smaller uncertainties are 
possible with a more expensive and accurate IMU [14]. 
 
 
5  Conclusions 

 
An ‘industrial IMU’ was developed to test the effectiveness of a new IMU-based 

method for on-machine application. The industrial IMU includes a triaxial 
accelerometer and a triaxial rate gyroscope. An experiment was conducted in which 
data was collected from the IMU at three different locations on a worktable for the 
same Y-axis motion. 

The IMU-based results were validated through comparison with the laser-based 
measurement results, showing that the IMU could perhaps be used to track the 
changes of error motions due to linear axis degradation. The IMU-based method is 
capable of detecting micrometer-level and microradian-level degradation of linear 
axes. Although the results are promising, the IMU-based method must be improved 
for robustness due to sensor drift. Concerning the uncertainty of the IMU-based 
method, further investigations are also needed to fully certify the system for online 
measurement. Nonetheless, verified and validated data from an ‘industrial IMU’ 
could provide manufacturers and machine tool operators with near-real-time 
equipment health, diagnostic, and prognostic intelligence to significantly enhance 
asset availability and minimize unscheduled maintenance. 
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