

An Analysis of Vulnerability Trends, 2008 - 2016
D. Richard Kuhn1, M S Raunak2, Raghu Kacker1

kuhn@nist.gov, raghu.kacker@nist.gov raunak@loyola.edu
1National Institute of Standards and Technology 2Loyola University of Maryland

Computer security has been a subject of serious study for
at least 40 years, and a steady stream of innovations has
improved our ability to protect networks and applications.
But attackers have adapted and changed methods over the
years as well. Where do we stand today in the battle
between attackers and defenders? Are attackers gaining
ground, as it often seems when reading press accounts of
the latest data exposure? This analysis seeks to answer
these questions using data from the US National
Vulnerability Database (NVD) [1], and to identify classes
of vulnerabilities where improvements will be most cost
effective.

Data. The NVD is the US government's repository of
information system security vulnerabilities. It is operated
by the US National Institute of Standards and
Technology, and is sponsored by the Department of
Homeland Security's National Cyber Security Division.
The NVD relies on publicly reported vulnerabilities from
the Common Vulnerabilities and Exposures (CVE)
dictionary. As of Spring 2017, there are more than 83000
vulnerabilities enumerated in the database. The NVD
adopted Version 2.0 of the Common Vulnerability
Scoring System (CVSS) in June 2007 to score the severity
of each reported vulnerability, prior to the period in which
this analysis begins. To ensure maximum consistency of
data scoring and definition, we have used only reports
from the period 2008 to 2016.

 Vulnerability Severity. One area in which some
progress is apparent is in the severity of vulnerabilities
that are being discovered. For the NVD, severity is rated
using the CVSS, which combines scores for impact and
exploitability. As can be seen in Table I and Fig. 1, the
proportion of high severity vulnerabilities is trending
downward, declining about 15 percentage points since
2008. About two-thirds of this fraction has shifted to
Medium severity vulnerabilities, which increased from
about 46% to 55% of the total, while Low severity
numbers increased from 3% to nearly 10% of the total.

 Vulnerability Types. Table II shows the primary
vulnerability categories used in the NVD. Each reported
CVE is assigned to one or more categories called the
Common Weakness Enumeration (CWE). Some of these
primary CWE categories may include a number of
subsidiary weaknesses. For example, CWE-119, Buffer
errors, includes 14 subsidiary CWEs, such as out of
bounds read (CWE-125), and untrusted pointer
dereference (CWE-822). NVD entries in the 2008 to 2016
period were categorized as one of these types, with the
exception of some which could not be determined because
of insufficient information.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2008 2009 2010 2011 2012 2013 2014 2015 2016

Low Med High

Fig. 1. Vulnerability Severity Trends, 2008-2016

TABLE I. VULNERABILITY SEVERITY, 2008-2016
Low Med High

2008 0.033 0.463 0.504
2009 0.034 0.477 0.489
2010 0.043 0.481 0.477
2011 0.052 0.493 0.455
2012 0.073 0.519 0.408
2013 0.086 0.544 0.369
2014 0.100 0.579 0.322
2015 0.098 0.568 0.334
2016 0.096 0.553 0.350

TABLE II. NVD VULNERABILITY CATEGORIES
CWE-ID Description Type Trend
CWE-16 Configuration C

CWE-20 Input Validation I

CWE-22 Path Traversal I

CWE-59 Link Following I ≈

CWE-78 OS Command Injections I

CWE-79 Cross-Site Scripting (XSS) I ≈

CWE-89 SQL Injection I

CWE-94 Code Injection I

CWE-119 Buffer Errors I

CWE-134 Format String Vulnerability I ≈

CWE-189 Numeric Errors I

CWE-200 Information Leak / Disclosure C

CWE-255 Credentials Management D

CWE-264 Permissions, Privileges, Access D

CWE-287 Authentication Issues D ≈

CWE-310 Cryptographic Issues D

CWE-352 Cross-Site Request Forgery I ≈

CWE-362 Race Conditions I

CWE-399 Resource Management Errors I

We grouped the NVD CWE classes into primary types
of Configuration, Design, and Implementation errors,
designated in Table II as C, D, and I respectively. Table II
also indicates whether the different vulnerability types are
increasing (), decreasing (), or approximately
unchanged (≈). In determining the type of each CWE
class, we considered the common errors in each type.
Configuration vulnerabilities result when a system is not
set up correctly with respect to security goals. A simple
example would be failure to enable password checking.
Information leak is a broader type, but in most cases,

mailto:raunak@loyola.edu
mailto:raghu.kacker@nist.gov
mailto:kuhn@nist.gov

available security controls have been neglected or set up
improperly, so this is designated as a Configuration error.
Design-related vulnerabilities are those that originate in
the planning and design of the system, such as selecting
an outdated or weak cryptographic algorithm. The third
source of vulnerabilities is typically simpler, but may
have dramatic results. One of the most common
implementation vulnerabilities is the simple buffer
overflow. Failure to check that input size is within
maximum buffer size is a simple error that should almost
never occur, but continues to be a widespread problem
(Table III). Some categories are less obvious. For instance
cross-site scripting can have several forms, but in each
case results from missing or inadequate input validation,
so this is also included in implementation errors. Most of
the other implementation-related vulnerabilities in Table
II also result from failure to properly validate input.

What is most striking about the distribution of
Configuration, Design, and Implementation errors
captured in Fig. 2 is that implementation or coding errors
account for roughly two thirds of the total. We consider
the proportion of implementation vulnerabilities, rather
than absolute numbers, because the number of
vulnerabilities is partially a function of the number of
applications released, which has increased over time. The
proportion of implementation vulnerabilities for 2008 to
2016 is close to the 64% reported for 1998 to 2003 in an
analysis of an early version of NVD [2]. This suggests that
little progress has been made in reducing these
vulnerabilities that result from simple mistakes which
should be easy to prevent.

But this also means there is potential for significant
reductions in vulnerabilities. Clearly better testing could
prevent most such simple errors from making it into a
released product, and practices such as code reviews and
static analysis checks can be especially cost-effective for
simple errors. Static analysis has been shown to detect
about 20% of CVE-defined errors [3], and formal code
inspection may prevent an average of about 65% of errors
from reaching released products [4]. Thus vulnerabilities
could be reduced with broader use of such practices.

To see the potential for improving cybersecurity
through basic development practice, consider the absolute
numbers of vulnerabilities shown in Table III
(cryptographic issues adjusted for a spuriously large
number in 2014 due to multiple entries resulting from
failure to check X.509 certificates in Android apps).
Implementation errors are highlighted in bold type; they
represent a total of 27 242 of the 37 325 categorized
vulnerabilities, or 72.9% for the 2008-2016 period. Note
in particular that two of the presumably simplest errors to
prevent, basic input validation and buffer errors, account
for more than a third of the implementation flaws.

While the basic recommendations in this paper, greater
use of static analysis tools and code review, have been
made many times in the past [2], we note that progress has
been made in static analysis, notably in the reduction of
false positives and improved detection [3] [5], and code

review is consistently shown to be highly cost effective
[6]. This analysis will be extended to review trends within
the different vulnerability types and subsidiary
weaknesses, with a goal of identifying practices that may
have the strongest impact on reducing vulnerabilities.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2008 2009 2010 2011 2012 2013 2014 2015 2016

Design, Implementation, Config Errors

Design (% of Total) Impl (% of Total)

Config (% of Total)

Fig. 2. Vulnerability Class Trends, 2008-2016

TABLE III. VULNERABILITY COUNTS FOR 2008-2016
Format String Vulnerability 110

Configuration 195
OS Command Injections 208

Race Conditions 377
Link Following 389

Credentials Management 589
Cryptographic Issues 779
Authentication Issues 920

Cross-Site Request Forgery (CSRF) 1161
Numeric Errors 1199
Code Injection 1545
Path Traversal 1686

Information Leak / Disclosure 2939
Input Validation 3763

SQL Injection 3828
Permissions, Privileges, and Access 4661

Cross-Site Scripting (XSS) 6220
Buffer Errors 6756

Total 37325
Products may be identified in this document, but such identification does
not imply recommendation by the US National Institute of Standards and
Technology or the US Government, nor that the products identified are
necessarily the best available for the purpose.

[1] National Vulnerability Database, http://nvd.nist.gov 2017
[2] Heffley, Jon, and Pascal Meunier. "Can source code

auditing software identify common vulnerabilities and be
used to evaluate software security?" System Sciences, 37th
Annual Hawaii Intl Conf, IEEE, 2004.

[3] Okun, Vadim, Aurelien Delaitre, and Paul E. Black.
"Report on the static analysis tool exposition (SATE) IV"
NIST Special Publication 500 (2013): 297.

[4] Jones, C, "Measuring Defect Potentials and Defect
Removal Efficiency", Crosstalk, Journal of Defense
Software Engineering (June 2008).

[5] Medeiros, I., Neves, N. and Correia, M., 2016. Detecting
and removing web application vulnerabilities with static
analysis and data mining. IEEE Trans. Reliability, 65(1),
pp.54-69.

[6] Balachandran, V., 2013, May. Reducing human effort and
improving quality in peer code reviews using automatic
static analysis and reviewer recommendation. In Software
Engineering (ICSE), 2013 35th International Conference
on (pp. 931-940). IEEE.

http:http://nvd.nist.gov

