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The electronic structure of hexagonal boron nitride (h-BN) is explored using measurements of
x-ray absorption and resonant inelastic x-ray scattering (RIXS) at the nitrogen K edge (1s) in
tandem with calculations using many-body perturbation theory within the GW and Bethe-Salpeter
equation (BSE) approximations. Our calculations include the effects of lattice disorder from phonons
activated thermally and from zero point energy. They highlight the influence of disorder on near-edge
x-ray spectra.

I. INTRODUCTION

Boron nitride commonly occurs in two crystalline
phases: sp3-bonded cubic (diamond-like) and sp2-bonded
hexagonal (graphitic). It can also exist in wurtzite and
amorphous bulk phases, and hexagonal boron nitride (h-
BN) can be synthesized both as a single layer (graphene-
like) and in nanotubes [1, 2]. Bulk and single-layer h-
BN are of great physical interest, as, unlike graphite and
graphene, h-BN is a large band gap semiconductor. Many
aspects of both the h-BN structure and electronic behav-
ior are still not settled. The value of the electronic band
gap [3, 4], and the exact stacking order and prevalence
of faults remain areas of interest [5].

The electronic structure of boron nitride has been stud-
ied computationally now for 40 years, starting with tight-
binding models [6, 7], progressing to density functional
theory methods [8, 9], and more recently including self-
energy effects by way of the GW approximation [10, 11].
Experimentally, boron nitride has also been the focus of
x-ray absorption and non-resonant emission studies [12–
15]. Resonant inelastic x-ray scattering (RIXS) experi-
ments on h-BN have also been carried out at both the
boron edge [15, 16] and later the nitrogen edge [17, 18].

Two competing theoretical frameworks have been used
in previous works to model and understand RIXS in
h-BN. One originated with the work of Ma et al. [19, 20]
and was later picked up by Jia et al. [16] and Shirley et
al. [21–23]. These papers advanced the view that RIXS
should be modeled as a coherent process, conserving crys-
tal momentum k. A second approach, outlined in the
works of Yanagihara et al. [24], Noba et al. [25], and
Miyata et al. [17], focuses on the importance of the spec-
tator electron on the emission spectra when the initial
x-ray energy is tuned down to the absorption edge. This
second method assumed that coherence is lost through
phonon interactions. It relies upon a local framework to
model the RIXS process, inherently excluding the conse-
quences of momentum conservation and coherence.

Here we extend the former, coherent approach for mod-
eling RIXS spectra. We assume that the excitation and
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deexcitation occurs too fast to involve phonon interac-
tions with the exciton. However, unlike the aforemen-
tioned previous studies, we allow the RIXS process to
take place in a crystal lattice that is continuously disor-
dered on a slower time scale by the presence of phonons.
The disorder includes both thermal and zero-point mo-
tion of the atoms. Consequently, the observed spectrum
is an incoherent sum of coherent spectra, each generated
from a disordered snapshot. Furthermore, we show that
the dispersion of the valence bands in h-BN is not well
described by standard density-functional theory, but this
shortcoming can be remedied through self-energy cor-
rections. Both disorder and self-energy corrections are
shown to improve the fidelity of the calculated x-ray spec-
tra.

We begin this paper by calculating ground-state prop-
erties of h-BN in section II. In section II A we investigate
the phonon band structure of h-BN and evaluate the vi-
brational disorder in the crystal. We present the elec-
tronic quasi-particle band structure in section II B and
evaluate the effect of self-energy corrections. We outline
the procedures for the experimentally measured and the-
oretically calculated x-ray spectra in sections III A and
III B respectively, and compare calculated and measured
x-ray absorption spectra (XAS) and RIXS in III C.

II. GROUND-STATE PROPERTIES

Individual sheets of h-BN are isostructural to
graphene, but, in contrast to graphite, the layers of
bulk h-BN stack directly on top of each other, so-called
AA′ stacking, alternating B and N atoms and giving a
P63/mmc space group. For all of the calculations we
use the experimentally determined lattice constants of
a = 0.2504 nm and c = 0.6661 nm [26].

A. Phonon Band Structure and Disorder

As a crystalline system, h-BN has long-range order in
the average positions of its constituent atoms, but the in-
stantaneous disorder from thermal and zero-point motion
can have a significant effect on the optical and x-ray spec-
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FIG. 1. The phonon band structure of h-BN in meV as a
function of q-vector. High-symmetry points in the Brillioun
zone are labeled. Large discontinuities exist at Γ, reflecting
differences between in-plane and out-of-plane behavior.

tra. This effect can be modeled by summing calculated
absorption and RIXS spectra over a representative en-
semble of structures. Previously it was shown that such
structures can be generated by considering the phonon
modes of the system within a harmonic approximation
[27, 28], and this technique has since been independently
adopted elsewhere [29]. The advantage of the phonon-
mode approach is that the quantum nature of the nu-
clear wave functions, i.e., zero-point motion, is included
automatically, whereas in standard molecular dynamics
simulations the nuclei are classical particles. However,
unlike molecular dynamics, the phonon-mode approach
is limited by the assumption that the nuclei move in har-
monic potentials.

We calculated the phonon band structure of h-BN us-
ing density functional perturbation theory within the
Quantum ESPRESSO code [30, 31]. The phonon
calculation was carried out on a 20× 20× 6 k-point
mesh using ultrasoft pseudopotentials [32] and the local-
density approximation (LDA) exchange-correlation po-
tential [33]. Using Fourier interpolation we constructed
the band structure shown in Fig. 1. Our calculation
agrees well with previous work and measurements [34–
36]. The phonon modes span an energy range up to
200 meV. For our experiments, at a temperature of 25 ◦C,
kBT = 26 meV. Note that along A – Γ, corresponding to
propagation along the c-axis, half of the phonon bands
are well below kBT .

The phonon-mode approach constructs a disordered
supercell by considering the phonon modes of a commen-
surate grid in reciprocal space, or, equivalently, the Γ-
point phonon modes of that supercell. This requirement
arises from the periodic boundary conditions. An incom-
mensurate phonon wavevector would lead to discontinu-
ities across the boundaries of the supercell. The phonon-
mode approach, therefore, necessarily reduces the disor-

der of the system that can be sampled by including only
a limited number of modes. Discounting at present the
harmonic approximation, which eliminates higher-order
terms in the potential energy surface (cubic, quartic, etc.)
as well as phonon-phonon terms, the effect of a finite-
sized supercell should be similar between phonon-mode
and molecular dynamics approaches.

To investigate the effect of supercell size on disorder we
turn to the pair distribution function gAB(r) which is the
probability that an atom of type A is a distance r from
an atom of type B. For a given phonon mode with index
λ and crystal momentum q, each atom will travel along

a one-dimensional path given by ~ξi, where the full 3N
dimensional vector ξ is an eigenvector of the dynamical
matrix (see Ref 31) and N is the number of atoms in the
cell. Within the harmonic approximation the probability
distribution function for the displacement ∆τ of atom i
due to a single phonon mode λ,q with frequency ω takes
on the form of a Gaussian

Pi,λ,q(∆τ ;T ) =
1√

2π ui;λq(T )
e−∆τ2/2u2

i;λq(T ) (1)

u2
i;λq(T ) =

|~ξi,λ,q|2

Miωλ,q
[1/2 + n(ωλ,q;T )]

n(ωλ,q;T ) =
[
eωλ,q/kBT − 1

]−1

.

The variance u2 depends on the magnitude of ξ, the mass
of the atom Mi, and the phonon mode’s occupation num-
ber n. The phonons follow Bose statistics; n varies with
temperature T scaled by Boltzman’s constant kB. Al-
ternatively we can also formulate the probability distri-
butions P̃ from treating the phonon modes as classical
harmonic oscillators,

P̃i,λ,q(∆τ ;T ) = π−1 1(
∆τ2 −A2

i,λ,q(T )
)1/2

(2)

A2
i,λ,q(T ) =

2kBT |~ξi,λ,q|2

Miω2
λ,q

,

where now each atom is confined by the classical turning
points A, and, unlike the quantum distribution which
has a factor of 1⁄2 added to the occupation number, the
atomic displacements go to zero at zero temperature.

We generated N-N and N-B pair-distribution functions
g(r) within the phonon mode approach for an 8 × 8 × 4
(1024-atom) supercell using both the classical and quan-
tum distributions (Fig. 2). As expected there is more
structure, sharper peaks in g(r), when the atoms follow
classical trajectories, but the inter-plane distributions
are similar using quantum or classical statistics due to
the presence of low-energy modes corresponding to inter-
layer breathing or sliding motions. We also constructed
a smaller, 4×4×1 (64-atom) supercell. As can be seen in
Fig. 2, the 64- and 1024-atom supercells give almost iden-
tical g(r) within the first 10 a.u. which includes the first
nine nearest neighbors. From this we conclude that the
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FIG. 2. (color online) The N-B and N-N (inset) pair-
distribution functions calculated with the phonon-mode ap-
proach using a classical distribution (red, solid) compared to
the quantum distribution for both a 8×8×4 supercell (light-
blue, dashed) and a 4 × 4 × 1 supercell (dark-blue, dotted).
Cell size has almost no effect through the first 9 nearest neigh-
bors (10 a.u). For the N-N distributions there are artifacts
whenever r is equal to the supercell dimension because the
central nitrogen atom will always be the same distance from
its images. These have been removed from the plot.

64-atom supercell allows sufficient disorder for near-edge
x-ray simulations of h-BN.

For h-BN (and many systems) a challenge emerges at
the Γ-point where the phonon modes are discontinuous
and depend on the direction of approach in k-space (see
Fig. 1). We can therefore generate the phonon modes at
the Γ-point approaching from in-plane, along M or K, or
out-of-plane, along A. Alternatively, both in-plane and
out-of-plane derived modes can be considered and aver-
aged appropriately (2:1 ratio). Regardless of how the ap-
proach towards Γ is handled, the effect will diminish with
increasing supercell size, i.e., as the density of of k-space
sampling increases the relative weight of an individual
k-point decreases. We found that for an 8× 8× 4 super-
cell the differences in pair distribution functions between
methods were small, ∆g(r) < 0.012 a.u.−2. The best
agreement for gNB(r) and gNN (r) between the 8× 8× 4
and 4× 4× 1 supercells was achieved by neglecting LO-
TO splitting at Γ, though approaching in-plane (along
M→ Γ) yields similar results.

B. Electron Band Structure and Self-energy

Green’s function methods, such as the Bethe-Salpeter
equation (BSE) approach adopted here for calculating
XAS and RIXS, hinge upon an accurate approximation
to the single-particle Green’s function for the electrons
in the system. To that end we use density functional
theory (DFT) to generate a basis of electron states, but
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FIG. 3. (color online) The GW band structure of h-BN in
eV as a function of k-vector. High-symmetry points in the
Brillioun zone are labeled. The color of the bands reflects the
magnitude of the difference ∆EGW between the GW and LDA
energies (Eq. 4). Bands are universally shifted away from the
Fermi level (1.14 eV) by the GW corrections. The valence
bands shown differ in their GW corrections by ≈ 0.8 eV – the
two π bands (energy minima near Γ) have a smaller correction
than the four σ bands (energy maxima near Γ).

DFT, especially within the LDA, is known to have several
shortcomings. Specifically band widths and band gaps
tend to be underestimated. To assess the reliability of
DFT, we first consider many-body self-energy corrections
by way of Hedin’s GW method [37].

The one-electron Green’s functionG is written in terms
of the non-interacting one-electron Green’s function G0

and the frequency-dependent self-energy Σ,

G(ω,k) = G0(ω,k) +G0(ω,k)Σ(ω,k)G(ω,k) . (3)

In Hedin’s formulation, Σ, and hence G, is determined
self-consistently via a set of five equations including the
screened Coulomb interaction W , the polarizability P ,
and the vertex Γ. Here we neglect the vertex corrections
and only carry out a single iteration (Σ ≈ iG0W 0). This
assumes that the LDA eigenfunctions are “good” rep-
resentations of the interacting single-particle wave func-
tions (〈ψLDA

nk |ψGW
nk 〉 ≈ 1), and only the eigenenergies are

modified by the self-energy operator

EGW
nk = ELDA

nk + 〈ψLDA
nk |Σ̂(EGW

nk )− V̂XC|ψLDA
nk 〉

∆EGW
nk = 〈ψLDA

nk |Σ̂(EGW
nk )− V̂XC|ψLDA

nk 〉 , (4)

where the single-particle wave functions are labeled by
band n and crystal momentum k. Note that the self-
energy operator Σ̂ depends on the quasiparticle energy
(and not the DFT energy), and therefore must be self-
consistently determined.

Previous calculations of the GW-corrected band struc-
ture of h-BN have been carried out using different
plasmon-pole models for the screening [10, 11, 38, 39],
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and recently using frequency convolultion [40]. We car-
ried out full-frequency calculations of the GW correc-
tions of h-BN using the abinit package [41], and we have
plotted the GW-corrected band structure in Fig. 3 using
Wannier interpolation via the wannier90 code [42]. The
initial DFT orbitals were calculated within the LDA on
a Γ-centered 12×12×4 k-point grid. The planewave en-
ergy cut-off was set to 56 Ha but downsampled to 20 Ha
for the calculation of the polarizability and 22 Ha for the
calculation of Σ. The dielectric matrix was constructed
with a cut-off of 16 Ha giving 749 planewaves, while the
exchange part of Σ had a cut-off of 26 Ha. For the po-
larizability 648 bands were included (640 conduction),
while 640 total bands were used for the calculation of
the self-energy. The dielectric matrix was constructed at
15 imaginary frequencies and 25 real, with 1 eV spacing
along the real axis. We estimate the error in G0W 0 en-
ergies from using a finite number of plane-waves, bands,
and k-points to be less than 0.05 eV for the bands plotted
and within 0.02 eV for the band gap.

The bands in Fig. 3 are colored by the magnitude of
the difference between the LDA and GW energies (Eq. 4).
Note, the unit cell contains two formula units, doubling
the bands. The GW corrections increase the energy of
the unoccupied states and, conversely, decrease the en-
ergy of the occupied. An important difference can be seen
in the valence bands between the four σ and two π bands
between −12 eV and −2 eV. The σ bands have their max-
imum energy near Γ while the π bands are a half cycle
out of phase. The shifts for these two sets differ by about
0.8 eV with the π states undergoing a smaller correction
from the GW, indicative of their more diffuse character.
Two more tightly bound σ bands are located between
−17 eV and −21 eV with a shift of around 2.7 eV.

Our calculations show that within the G0W 0 approxi-
mation h-BN is an indirect band gap semiconductor with
a fundamental gap of 6.34(2) eV and an optical gap of
6.80(2) eV located at H (1⁄3,1⁄3,1⁄2) compared to LDA gaps
of 4.10 eV and 4.51 eV respectively. It should be stressed
that this calculation is for a system where the atoms are
all at their equilibrium positions – even approaching 0 K
a physical system would be subject to zero-point mo-
tion which generally reduces the band gap. We find that
the bottom of the conduction band is at M (1⁄2,0,0) with
an energy of 4.30(2) eV. The top of the valence band is
−2.038(20) eV located near K (1⁄3,1⁄3,0) on the path to
M, but a second point near K (along the path to Γ) the
valence band reaches −2.042(20) eV which, along with
the valence band maximum at H of −2.054(20) eV are
all indistinguishable within our estimated uncertainty.

III. X-RAY SPECTRA

A. Experimental setup

The experiments were carried out on the PTB plane
grating monochromator (PGM) U49 beamline at the

electron storage ring BESSY II [43]. A description of
the monochromator and spherical grating spectrometer
geometry has been given before [44, 45]. The spectrom-
eter was oriented in the plane of polarization of the inci-
dent beam at a scattering angle of 90◦ (p-polarization).
The energy scale of the plane grating monochromator was
again calibrated in the vicinity of the N K edge using the
absorption spectrum of an N2 gas cell as detected by a
photodiode. The energy scale of the spectrometer was
calibrated using elastic scattering of the excitation radi-
ation. The details of the monochromator and spectrom-
eter energy calibration have been previously described
[28].

The sample consisted of a layer of polycrystalline h-
BN deposited on a glass substrate, and mounted at 45◦

from both the incident beam and the spectrometer take-
off. All measurements were carried out at room temper-
ature. Absorption spectra were obtained by monitoring
the N K line fluorescence intensity with a silicon drift
detector (SDD) normal to the sample plane. The fluo-
rescence intensities were corrected for self-absorption in
order to have a true x-ray absorption spectrum (XAS).
This was done by using a previously obtained, experi-
mental ratio for the same compound of electron escape
(short mean free path) vs. total fluorescence (long mean
free path) as a function of energy. X-ray emission spectra
were accumulated at each excitation energy for 1800 s or
3600 s (normalized to 1800 s).

B. X-ray calculation details

For the x-ray calculations we used both the unit cell
as well as 64-atom 4 × 4 × 1 supercells, using the pre-
viously stated lattice constants of a = 0.2504 nm and
c = 0.6661 nm [26]. We generated 8 disordered snapshots
using the method outlined in section II A. As shown in
Fig. 2 this size cell provides sufficient degrees of free-
dom for disorder. For both the calculated absorption
and emission spectra we generate statistical uncertainty
estimates, ∆σ(ω) = (

∑
i[σ(ω) − σi(ω)]2)

1/2/N , where σi
is the spectrum from a single configuration and N is the
number of configurations averaged together to generate
the average spectrum σ. Because the sample was disor-
dered and not a single crystal, the calculated x-ray ab-
sorption is an average over three perpendicular polariza-
tions, x̂, ŷ, and ẑ (in the absence of disorder x̂ and ŷ
would be equivalent). To calculate the RIXS, a total of
nine incoming polarizations were used: the three previous
plus (±1, 1, 0), (±1, 0, 1), and (0,±1, 1). Note that for the
polarization the anti-parallel direction is equivalent, e.g.,
(1, 1, 0) is the same as (−1,−1, 0). To match the experi-
mental setup, the emission polarization is constrained to
be perpendicular to the incoming polarization. For each
of the nine initial polarizations emission was calculated
for four outgoing polarizations, making for a total of 36
combinations.

We carried out x-ray calculations using the ocean
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code [46, 47]. Further details on the extension to RIXS
with ocean can be found in Ref. 28. Norm-conserving
pseudopotentials were generated for both boron and ni-
trogen using the opium code [48]. Where numerical val-
ues differ between the disordered supercells and the unit
cell we denote the unit-cell values within parentheses ().
For the x-ray calculations we sampled the orbitals on a
6 × 6 × 10 (16 × 16 × 4) k-point mesh and included 512
(72) conduction bands. The DFT orbitals were generated
with QuantumESPRESSO [30] using the LDA with a
110 Ry. energy cutoff. The orbitals were downsampled
onto a 16 × 16 × 12 (8 × 8 × 20) real-space grid for the
BSE calculation. The core-hole screening is calculated
with a 23 k-point grid and 2000 (300) bands. An average
optical dielectric constant ε∞ of 4.41 is calculated from
the RPA screening at vanishing q, and is in reasonable
agreement to the directionally-weighted average of exper-
imental measurements 4.67: 4.10 (4.95) for E ‖ c (E⊥c)
[49].

Carrying out GW calculations on the disordered su-
percells was not feasible. The disorder of the super-
cells reduced the fundamental LDA gap to approximately
3.6(2) eV. Including the approximate GW band-gap cor-
rection from the ordered cell gives 5.9(2) eV which com-
pares well with a recent measurement which estimated
the single-particle band gap to be 6.08 eV [3], albeit
with significant uncertainties in our calculation. Previ-
ous optical measurements estimated single-particle gaps
of 5.96 eV and 5.971 eV [50, 51]. However, photo-current
measurements point to a larger 6.42 eV gap [4], and are
consistent with valence BSE calculations that suggested
an excitonic binding of 0.7 eV [52], significantly stronger
than the values determined in the aforementioned optical
measurements.

C. Results

1. X-ray absorption

We show the XAS of h-BN in Fig. 4, including calcula-
tions of the ordered unit cell and the average of our disor-
dered 4× 4× 1 supercells. The changes in the calculated
spectra from introducing disorder are significant. While
both the ordered and disordered spectra include 0.1 eV
Lorentzian broadening to account for the core-hole life-
time, the unit cell spectrum has been convoluted with
a 0.5 eV full-width half-maximum Gaussian to reduce
unphysical structure. The 64-atom supercell was convo-
luted with only a 0.1 eV Gaussian, estimated to match
experimental broadening sources separate from the core-
hole lifetime effect. Despite this artificial smoothing, the
unit-cell spectrum remains much more structured than
the spectrum calculated with disorder or the one mea-
sured. Additionally, the feature intensities of the ordered
cell calculation are much stronger than for the disordered
calculation, especially at 407 eV, but this discrepancy is
also present at the exciton at 401 eV and higher peak at
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FIG. 4. (color online) The nitrogen K-edge XAS of h-BN cal-
culated using disordered 4 × 4 × 1 supercells (red, solid) and
the ordered unit cell (light-blue, dotted), compared against
the measured spectrum (dark blue, dashed). Black, vertical
lines mark the locations at which emission spectra were taken
(see Fig. 5). The orange shaded region around the super-
cell curve denotes a 95 % confidence interval (±2∆σ) for the
uncertainty in the mean from averaging over only 8 configu-
rations.

415 eV. This we attribute to plentiful p-type empty states
on the nitrogen atoms, which, due to disorder in the
atomic positions, rehybridize slightly, shifting weight to
dipole-forbidden s-type. Importantly, while small shifts
in atomic position may not strongly change the character
of extended, conduction-band electron states, the initial
core-level orbitals, and hence the origin for the transition
matrix elements, remain centered on the atoms. This can
dramatically change the effective character of unoccupied
states as seen by dipole-limited x-ray absorption, reduc-
ing the spectral weight of allowed states or allowing the
observation of previously dark ones. The addition of dis-
order is seen to improve the agreement with experiment.

Overall the agreement between theory and experiment
is quite good for both feature location and intensity. The
pre-edge feature at 398 eV, present only in the measured
spectrum, is likely molecular N2 or some other impu-
rity on the sample. There is a significant discrepancy
in the spectral weight of the first major feature 401 eV
to 404 eV. Further, our measurements are in contrast to
the spectra of Ref. 18, but that work was carried out
on single crystals and may not have been fully direction-
ally averaged. XAS [53], x-ray Raman [54], and electron
energy loss [55] experiments have all shown the sensitiv-
ity of this peak to orientation. There is, however, some
uncertainty in the correction of our XAS to account for
self-absorption effects.
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FIG. 5. (color online) The nitrogen K-edge RIXS of h-BN
as measured (blue, dotted) and BSE calculations using LDA
energies (light-blue, solid) and G0W 0 energies (red, solid).
(All of the BSE calculations use the LDA electron orbitals.)
Plots are labeled sequentially by letter (Fig. 4) and by incident
photon energy, and they are offset vertically for clarity. The
experimental spectra have been normalized to correct for self-
absorption effects, and experimental spectra b and d have
been scaled by factors of 1.5x and 1.9x.

2. RIXS

X-ray emission spectra were taken at each of the en-
ergies marked in Fig. 4. Additional spectra were taken
between point d (407.25 eV) and point e (425.30 eV),
but those emission spectra were nearly indistinguishable
from the spectrum at e except for changes in total count
rate proportional to the changes in absorption. At ener-
gies well above the edge, x-ray emission spectra do not
change shape with respect to changes in incident pho-
ton energy. This is called the non-resonant limit. We
attribute the relatively quick transition to non-resonant
x-ray emission in h-BN, within 8 eV of the absorption
onset, to strong phonon coupling to the exciton, which

is well-known in h-BN from valence spectroscopy, e.g.,
[3, 56].

This transition is affected by several factors, but all
of them serve to reduce the coherence of the excita-
tion or the k-space localization of the core hole in the
intermediate excited state. Far above the Fermi level
the conduction band states behave like nearly free elec-
trons, and therefore the transition matrix elements from
the initial core-level orbital will be nearly independent
of k. Additionally, lifetime broadening of the conduc-
tion band states will increase with distance from the
Fermi level, generally becoming significant above the
plasmon energy. This lifetime broadening (along with
the core-hole broadening) yields an intermediate excited
state that, depending on the amount of broadening, can
mix together many conduction-electron–core-hole exci-
tons with possibly very different k-space distributions.
Lastly, phonon scattering during RIXS, between absorp-
tion and emission, can both decouple the electron and
hole momenta, normally constrained to conserve the mo-
mentum of the absorbed photon, and also destroy the
coherence of the process. Ordinarily, if the final state
of the system is a conduction-band–valence-hole exciton,
without any changes to the vibrational states, intermedi-
ate states containing all possible core holes are summed
over coherently. Conversely, if the final state contains
some site-specific evidence of the intermediate state core-
hole, such as localized vibrational excitations, then this
requirement is lifted.

Continuing the investigation of section II B we calcu-
lated RIXS of the unit cell both using the LDA energies
and then incorporating G0W 0 corrections to the LDA en-
ergies of the occupied states (Fig. 5). Incorporating the
G0W 0 energies into the BSE calculation substantially im-
proves the agreement of the highest energy RIXS spectra
d and e. In e the spacing of the four main emission fea-
tures closely matches the experiment An apparent fifth
feature in the LDA spectrum at 391.5 eV is not visible
when GW corrections are included. The stronger GW
correction to the σ bands is responsible for merging this
feature into the lower π peak.

In the measured emission spectra b and c we see that
the highest-energy feature near 394 eV is suppressed with
respect to the d or e. This feature is associated with the
π bands, and its absence in near-threshold RIXS of h-BN
has been previously observed at both the boron [24, 25]
and nitrogen edges [17]. The calculated spectra are more
extreme, with the 394 eV peak completely absent for both
b and c. The lowest peak at 385 eV, clearly visible in the
calculated spectra of the other three energies are is also
absent for b and c, while in the measured spectra it is
slightly reduced in strength. The behavior of the calcu-
lated spectra at these two energies broadly matches the
trend of the measured spectra, with a reduction in spec-
tral weight at both the 394 eV and 385 eV as compared
to the non-resonant limit.

We carried out the same set of RIXS calculations on
our ensemble of 8 disordered 64-atom supercells as for
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the XAS, but due to the increased size we did not in-
clude GW corrections. In Fig. 6 we compare the ordered
and disordered RIXS (using LDA energies) to the mea-
sured spectra. Unsurprisingly, the spectra from the dis-
ordered cells are generally broader than those from the
ordered cell. Spectra b and c show very dramatic changes
with the inclusion of initial-state disorder. The previ-
ously absent peaks at 394 eV and 386 eV (using LDA
energies) are filled in. The same effect is present in dis-
ordered calculation of spectrum a, where spectral weight
is filled in around 392 eV. The variation in emission spec-
tra with incident photon energy is reduced by the disor-
der in the system, but the calculated spectra continue
to show a much stronger excitation-energy dependence
than the measured emission. The emission spectra show
a large proportion of non-resonant x-ray emission, over
which small changes are visible.

IV. CONCLUDING REMARKS

We can align valence band energies accurately once
we include the GW corrections, improving the calcu-
lated RIXS spectra of h-BN. The incoporation of dis-
order clearly produces a more realistic representation of
the x-ray emission. Combining the two corrections is cur-
rently too expensive computationally, but points the way
to the necessary treatment. Further work is needed to ex-
pand the ocean framework to include intermediate-state
phonon scattering.

Electronic structure calculations using DFT within the
LDA adequately represent the dispersion of the valence
bands in h-BN, as compared to GW calculations, but fail
to correctly space them. Including self-energy corrections
lowers the bonding σ bands by 0.8 eV as compared to
the π bands, whereas the deeper non-bonding σ bands
are lowered further by around 1.5 eV. Combining G0W 0

corrections from the unit cell with the effects of atomic
disorder yielded a band-gap correction consistent with
experiment, but we did not account for how the presence
of disorder might modify the self-energy corrections.

The BSE calculations of the x-ray absorption are in
much improved agreement with the experimental mea-
surement once disorder is taken into account via the
phonon-mode method. However, the BSE calculations
of RIXS show significantly more variation with incident
energy than the measured emission spectra. Shifts in
spectral weight are consistent between theory and exper-
iment, with the measured RIXS including a large compo-
nent of non-resonant emission, resulting in the reduced
variation. This points to strong phonon coupling in the
intermediate core-hole excited state which is currently
neglected in our calculations. This phenomenon is well
known [57, 58], but difficult to calculate in extended sys-
tems with many electronic and vibrational states. Several
studies of x-ray emission have included the response of
the nuclei to a core excitation, falling broadly into two
categories.
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FIG. 6. (color online) The nitrogen K-edge RIXS of h-BN
as measured (blue, dotted) and calculated with the BSE on
top of LDA energies for the unit cell (light blue, solid) and
an ensemble of 8 disordered 4 × 4 × 1 (64-atom) supercells
(red, solid). Statistical uncertainty (±2∆σ) in the average of
the disordered spectra are shown in orange shading. Plots are
labeled by letter (see Fig. 4) and by incident photon energy,
and they are offset vertically for clarity. Experimental spectra
b and d have been scaled by factors of 1.5x and 1.9x.

In the first, liquids, both H2O [59] and aqueous NH3

[60, 61], have been investigated using ab initio molecular
dynamics simulations. Briefly a 1s core-hole is created
on the absorbing atom (O or N) and the excited elec-
tron can either be included or removed from the system
entirely, representing near-edge RIXS and non-resonant
XES, respectively. The nuclei and electronic states are
allowed to follow the Born-Oppenheimer potential energy
surface for a short time (20 fs), and x-ray emission spec-
tra are calculated for each snapshot and weighted against
the core-hole lifetime to determine the total x-ray emis-
sion spectrum. This approach necessarily neglects the
coherent sum over possible core holes, instead choosing
a single absorbing atom. Given both the initial disorder
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of liquids and the large atomic motion induced by the
core hole, this approximation is valid. Currently, this
method is limited to treating the movement of the nuclei
classically.

A second class of approaches has gained traction for
calculating indirect RIXS of cuprates and related materi-
als [62–64]. In contrast to direct RIXS (the subject of this
paper), indirect RIXS probes low-loss excitations such
as phonon scattering or dd-excitations. While differing
in their details, this class of approaches treat electron-
phonon interactions via explicit coupling between enu-
merated electron and vibrational states. Limitations
are placed on the number of important electron bands
and phonon modes to ensure this enumeration remains
tractable. For indirect RIXS, with the initial XAS ex-
citation detuned below the exciton, a model containing
only a few conduction bands or impurity levels is likely
sufficient. Importantly, for highly correlated materials,
the electron-phonon coupling constants are not available
from ab initio calculations like DFT, but are instead
extracted by comparing RIXS measurements to calcu-
lations. Improving non-parametrized approaches like the
BSE method to include phonon scattering, albeit on less
highly-correlated systems, may provide a useful critique
for improving these models.

As a rough approximation, the ratio of incoherent

emission to RIXS is dependent on the relation between
the exciton lifetime and the phonon relaxation time [20].
At threshold the exciton lifetime is equal to the core-hole
lifetime, and the phonon relaxation time is given by the
Debye temperature. Using this ratio, the XES and RIXS
can be averaged together [65]. However, this neglects any
state-dependence or directionality of the electron-phonon
coupling.

To adequately simulate phonon effects in RIXS with
ocean it will be necessary to extend the current, co-
herent momentum-space approach to allow for the elec-
tron or hole to scatter. One option would be to consider
the phonon excitations by way of a spectral function.
The quasiparticles in the BSE, both electrons and holes,
could be dressed to include phonon effects through the
self-energy [66] or electron-phonon cumulant [67]. Al-
ternatively, by exploiting the local nature of near-edge
x-ray absorption, we could explicitly include a few lo-
cal vibrational modes in the excited-state Hamiltonian
[68]. A brute force expansion of the BSE basis to include
phonons will increase the dimension of the Hamiltonian
by the number of modes times the number of vibrational
occupation levels required, which is too large to be prac-
tical at present. Balancing the trade off between accu-
racy and feasibility for including phonon contributions to
RIXS in extended systems requires further study.
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