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Abstract—Cloud services have gained tremendous attention as 

a utility paradigm and have been deployed extensively across a 

wide range of fields. However, Cloud security is not catching up to 

the fast adoption of its services and remains one of the biggest 

challenges for Cloud Service Providers (CSPs) and Cloud Service 

Consumers from the industry, government and academia. These 

institutions are increasingly faced with threats affecting the 

confidentiality, integrity and availability of the cloud resources 

such as DoS/DDoS attacks, ransomware attacks, and data 

breaches to name a few. In the current cloud systems, security 

requires manual translation of security requirements into 

controls. Such an approach can be for the most part labor 

intensive, tedious and error-prone leading to inevitable 

misconfigurations rendering the system at hand vulnerable to 

misuse be it malicious or unintentional. Therefore, it is of utmost 

importance to automate the configuration of the cloud systems per 

the client’s security requirements steering clear from the caveats 

of the manual approach. Furthermore, cloud systems need to be 

continuously monitored for any misconfiguration, and therefore 

lack of the required security controls. In this paper, we present a 

methodology allowing for cloud security automation and 

demonstrate how a cloud environment can be automatically 

configured to implement the required NIST SP 800-53 security 

controls. Also, we show how the implementation of these controls 

in the cloud systems can be continuously monitored and validated. 
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I. INTRODUCTION 

Cloud services have been one of the most important 
paradigms of today’s IT world due to its salient features of on-
demand, flexible, scalable, ubiquitous computing with minimal 
resource management effort for the end-users. The National 
Institute of Standards and Technology (NIST) defines the cloud 
computing as a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable 
computing resources that can be rapidly provisioned and 
released with minimal management effort or service provider 
interaction [1]. The sheer fact that cloud services offer an on-
demand model and therefore promote efficient spending on IT 
departments is reason enough for the ongoing movement to 
deploy cloud systems in both government and non-government 
institutions. Thus, per International Data Corporation (IDC), by 
2018, at least half of the IT expenses will be cloud-based with a 
reach of 60% of all IT infrastructures and 60-70% of all software 
services by 2020 [2]. And, Wikibon predicts that by 2022, 
Amazon AWS platform by itself will be approximately $43 

billion revenue per year, providing 8.2% of all cloud business 
[3].  

Even though cloud computing is considered a major IT 
movement, the cloud security remains a plaguing challenge, 
according to a RightScale report (25% of respondents cited 
cloud security, lack of resources/expertise, and managing cloud 
spending as the main challenges) [4]. The cumulative cost of 
cyberattacks to an organization averages $3.5 million annually 
[5], which gives an economic illustration of the importance of 
cloud security. Stakeholders from all fields steadily realize that 
Cloud services face numerous threats: data breaches, 
compromised credentials, account hijacking, permanent data 
loss and DoS/DDoS attacks just to name a few [6]. Add to that 
the lagging CSPs security default capabilities which do not meet 
the organization’s security and privacy requirements [7]. From 
the customer’s perspective, more institutions from the private 
sector are developing interest in the NIST Cyber Security 
Framework (CSF) and Risk Management Framework (RMF) to 
address and manage security risk, define requirements and 
security controls implementing them. However, to the best of 
our knowledge, one cannot find a well-defined practical 
approach translating the said security controls into actionable 
items running on the cloud environments. Therefore, in this 
paper, we present a methodology to automatically create a cloud 
computing environment implementing NIST SP800-53 security 
controls to satisfy cybersecurity requirements of the cloud 
systems at hand.  

In summary, this paper aims at answering the following 
questions: (a) What are the security requirements from both the 
user side and the CSP side? (b) How can a user specify the 
security requirements? (c) How can we automate the 
deployment of cloud systems that meet user security 
requirements? and (d) How can we validate that the cloud 
systems meet the security needs and provide a comprehensive 
compliance report to support?  

The rest of the paper is organized as follows. In Section II, 
we present the background information on the cloud security and 
standards domains. We present a cloud computing security 
taxonomy in Section III to be used for better understanding and 
categorizing each aspect of cloud security. The proposed 
methodology is presented in Section IV. Next, we present a 
proof-of-concept implementation in Section V. Finally, Section 
VI concludes the paper.   



 

II. BACKGROUND 

A. Cloud Computing and Security Appraoches  

Cloud computing involves the delivery of services through 
different models such as Software-as-a-Service (SaaS), 
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service 
(IaaS). While this paper mainly focuses on the IaaS model, it can 
be extended to other service models as well. For the IaaS, the 
users are offered virtual machines (VMs) residing through a 
hyper vision technology such as Xen or VMware among others. 
Due to the complex structure of the cloud services, cloud 
computing suffers from multiple security issues [8]. All cyber-
attacks targeting physical machines in the physical domain exist 
on virtual machines running on the cloud environment, with 
added burden from the hypervisor. As the cloud offers a pool of 
resources that users share, the importance of the hypervisor 
security increases. The dependency of cloud computing on the 
virtualized environment raises more security issues, like 
hypervisor exploitations [9]. One instance of these attacks is the 
injection of malware in the publicly available virtual machine 
image, which subsequently affects the services of the cloud. 
Another major security issue for cloud computing systems is the 
insider attacks [10]. 

Many solutions have been proposed to solve security issues 
[11-14] in cloud computing. Some cloud security systems 
implemented a recovery-based intrusion tolerant algorithm that 
enhances the availability and resilience of cloud services or 
focused on hiding the data as a method to increase services’ 
resilience to attacks [13]. Many of the security solutions 
developed for the cloud focus on efficiently protecting the cloud 
storage against diverse range of attacks including roll-back 
attacks [15]. Some of the proposed security solutions use 
innovative risk-based analysis for the security testing of the 
cloud environment. This risk-based analysis reduces the number 
of possible misuse cases of the cloud [14].  

B. Autonomic Computing 

By definition, cloud computing should have dynamic 
management and self-organization [1, 16, 17]. Nevertheless, 
most of the current cloud implementations are missing those two 
essential attributes. Understanding the functional requirements 
of cloud services is an essential key in defining the architecture 
of the system providing those services [18]. Applying software 
design approaches to the development of autonomic 
management systems provides a solid ground to maintain the 
service level agreement, protect against external attacks, prevent 
failures and enables recovery [19]. Proactively managing 
failures and providing self-healing is an important attribute of 
the cloud [20]. Self-configuration allows the cloud to adapt to 
changes by tuning the allocation of virtual resources and the 
applications parameters, thereby achieving self-optimization 
[21]. 

C. Cloud Standards  

As cloud computing is being used ubiquitously, there are 
multiple cloud standards works in the literature such as the one 
from the Cloud Standards Customer Council (CSCC) aiming at 
cloud systems’ successful adoption and solving the security and 
interoperability issues [22]. Hence, in terms of security, CSCC 
presented a reference for the organizations adopting the cloud 

computing and its security impacts [23]. Organization for the 
Advancement of Structured Information Standards (OASIS) 
provides open standards for the IT world in collaboration with 
the industry and academia [24]. Topology and Orchestration 
Specification for Cloud Applications (TOSCA) is one of OASIS 
standards intended to define services and applications, and their 
relationships, especially for cloud systems with a focus on 
automated management, portability and deployment [24]. For 
this purpose, TOSCA introduces a grammar for describing 
service templates, requirements, capabilities, and policies with 
the help of YAML. While TOSCA is a standard model, there are 
multiple implementations such as OpenTOSCA [25], Cloudify 
[26] in and OpenStack Heat [27]. However, current 
implementations of this standard do not address the cloud 
security challenges and only focus on the management and 
automation of the application deployment.  

D. Discussion 

In summary, the current efforts on cloud automation focus 
heavily on performance and predominantly overlook the vital 
security aspect. Also, to the best of our knowledge there have 
not been any studies with focus on automation of security 
mechanisms implementation in cloud systems. Therefore, this 
paper is the first attempt in this direction.  

III. CLOUD COMPUTING SECURITY TAXONOMY  

To fully understand the cloud computing security issues, we 
first developed a cloud security taxonomy based on NIST SP 
800-53 [28] and Federal Risk and Authorization Management 
Program (FedRAMP) [29] security assessment framework. 
Next, we utilized the taxonomy to implement the required 
security controls and their management processes. Our security 
taxonomy has three sub-categories: Security components, 
privacy, and compliance, as shown in Figure 1.  

 

Figure 1. Cloud security taxonomy used for identifying the security controls.  

Securing cloud systems involve securing the infrastructure, 
network, hosts, applications and data through a wide range of 
mechanisms such as Identity, Credentials and Access 
Management (ICAM), Data Segregation and Regulatory 
Compliance (Figure 2).  

Please note that we only consider the security of the VMs in 
this work rather than the underlying physical hosts.  

 

Figure 2. Cloud components security taxonomy.  

One of the main goals of securing the cloud is ensuring 
users’ data privacy. Figure 3 depicts a breakdown of data 



 

privacy concerns and governing principals which can be used to 
define the users’ privacy requirements. 

 

Figure 3. Privacy of the cloud can be described by the concerns and principles. 

For these systems to be secured, cloud service customers, be 
it from the government or the private sector, need to make sure 
the cloud service providers satisfy a given set of security 
requirements. This is where FedRAMP comes into play as it 
assists government agencies in meeting the mandated FISMA 
requirements for cloud systems, and may be used by cloud 
service customers from the private sector as guidance when 
implementing their cloud security requirements. This paper does 
not intend to discuss the specifics or FedRAMP but rather use 
its security controls based on the NIST SP 800-53. The 
categorization (Low, Moderate, High) of the system at hand is 
done through FIPS PUB 199. Then the set of security controls 
corresponding to the baseline need to be implemented. The 
security controls can be grouped into three categories: 
Technical, Operational, and Management. In this paper, we do 
not address all the security controls but only the technical ones 
which need to be implemented on the VMs.   

 

Figure 4. For the compliance, FedRAMP based taxonomy [29] can be used. 

IV. CLOUD SECURITY MANAGEMENT AUTOMATION  

In our cloud security management approach, we focus on the 
security automation for the Infrastructure-as-a-Service (IaaS) 
services offered by CSPs where users create, operate, and 
manage VMs with the requested virtual resources (e.g., number 
of cores, amount of memory, storage requirements, co-
processors such as GPU) with full access in most cases using a 

dashboard since manual security management of the 
environment is improper.  

The proposed cloud security management approach is shown 
in Figure 5. In our architecture, the user specifies the security 
requirements of the needed cloud environment and the VM 
definitions (e.g., the VM required resources) through an editor. 
Through a communication channel (e.g., Secure Shell (SSH), or 
Secure Sockets Layer (SSL)), the user’s requirements are passed 
to the configuration engine. Next, the configuration engine 
interfaces with the CSP to create the requested cloud 
environment that satisfies the user security requirements. Once 
the system is set-up, the configuration engine interfaces with the 
CSP to continuously monitor the cloud environment and to 
notify the users if any abnormal configuration or behavior is 
detected. Below, we provide further details of each step in the 
form of a proof of concept. 

As an example, a user wants to create a cloud environment 
for a web application that consists of a web server and a database 
(DB) server (Figure 6). In this example, the user wishes to 
specify the ports which will be used for communications among 
VMs, administrators, and the users of the web application. In 
addition to the required VM deployment information (such as 
the VM name, VM size), the user also needs to implement the 
selected security controls to satisfy the security requirements.  

 

Figure 5. Cloud security management architecture. 

 

Figure 6. An example of a web application deployment. 

One of the main questions that needs to be answered is how 
the users will specify their security requirements. NIST SP 800-
53 revision 4 is a comprehensive catalog of security controls for 
all U.S. federal information systems except those related to 
national security. Therefore, we suggest using NIST SP 800-53 
to implement the user requirements. Please note that not all the 
requirements can be met by the CSP due to lack of capabilities, 
which can create some gaps initially. In other scenarios, during 
the lifecycle of a cloud environment, the CSP capabilities may 



 

change (and cannot provide the previous capabilities anymore). 
In such cases, the user may seek other providers.   

For the security control selection, we define the parameters 
based on the taxonomy we have presented in Section III. Like 
TOSCA standard, we believe that a user-friendly data 
serialization standard with an easy to read and edit syntax should 
be used; therefore, we chose to encode the requirements in 
YAML [24].  

Figure 7 depicts the YAML based definition for the given 
example. The user encodes the VM deployment information as 
well as required security controls. The user defines the VM 
resource requirements (flavors) as m1.large and m1.medium (1 
core, 2GB memory, and 20GB storage size), respectively (line 3 
and 10). Then, based on the already implemented security 
controls by the CSP, the configuration engine gets the lists of the 
remaining security controls, script name and parameters, to be 
applied to satisfy the user’s requirements. For the given 
example, the user selects “AC-2 Account Management” that 
requires monitoring the use of information system accounts, 
“AC-7 Unsuccessful Logon Attempts” that limits unsuccessful 
logon attempts, and finally “SC-7 Boundary Protection Control 
Enhancement (5) Boundary Protection | Deny By Default / 
Allow By Exception” that blocks all the network ports by default 
unless they are specified to be open. CSP offers a security 
control mechanism that checks the logged in accounts to verify 
if the account management is being fulfilled (line 6 and line 14). 
To control which users are valid, the script requires a list of users 
(comma separated) in this scenario. Hence, the user defines that 
the web server needs to have only user1 and user2 logged in to 
the system and any other user would be considered as a 
malicious user. Similarly, only user3 is accepted for the DB 
server.  

 

Figure 7. VM environment definition given to the configuration engine. 

In addition, since DB server will be acting in the background 
and does not need to interact with the end-users, the admin can 
whitelist port 22 and 3306 (lines 12 and 13) so that the use of 
any other port will be flagged as an illegal action. Finally, for 
the security control AC-7 to check unsuccessful logon attempts, 
the CSP requires a warning and a critical level (line 7). When 
the unsuccessful login attempts exceed the given number of 
warnings, the user is notified. When the number of attempts is 
beyond the critical level, the remote connection can be 

temporarily blocked as a security measure mitigating a brute 
force attack or a dictionary attacks carried on the VMs. 

Please note that each security control is an individual script 
based on the user requirements and CSP capabilities that operate 
as an agent on VMs.  

The configuration engine is responsible for creating the 
requested VMs (with the given resources requirements), 
applying the specified security controls, and monitoring the 
VMs continuously to see if there are any requirements which are 
not met and notify the users of the current state of the 
environment. In Figure 8, we present the configuration engine 
algorithm. In this approach, the configuration engine reads the 
configuration file given in Figure 8 (line 1) and creates the 
requested VMs with the given resource set and VM names (line 
2). This results in a list of created VMs with their IPs, called 
VM_list. In order to upload the security controls implementation 
scripts (line 4) and configure the VMs (line 5), the configuration 
engine waits until the VMs are active and accessible. The 
security controls the CSP is offering are uploaded to the VMs 
based on the requirements and then the VMs are configured 
accordingly to operate. Next, the monitoring control center (the 
monitoring capabilities of the configuration engine) is 
configured so that the created VMs can be monitored and their 
states are logged to a database (line 6). And, during their 
lifecycles, the VMs are monitored continuously (line 7). If there 
is any state that does not meet the requirements (for example, if 
any user other than user1 and user2 exist on the web_server), the 
users are notified so that they act accordingly.  

 

Figure 8. Configuration engine algorithm. 

Furthermore, during the lifecycle of the VMs, the user’s 
security requirements may change. Thus, the configuration 
engine should also allow updating the security controls.  

V. PROOF OF CONCEPT IMPLEMENTATION 

In this section, we present the proof of concept 
implementation environment, the tools used, and how they are 
configured and automated. For the implementation and testing, 
we have created an OpenStack based private cloud environment. 
OpenStack is an open-source cloud stack for building 
public/private clouds using multiple homogenous and 
heterogeneous systems and managing large pools of compute, 
storage, and networking resources through a dashboard or using 

1.  VM: 
2.    - name: web_server 
3.      flavor: m1.large 
4.      controls: 
5.        - script: check_current_users 
6.          parameters: "-l user1,user2" 
7.        - script: check_login_attempts 
8.          parameters: "-w 3 –c 5" 
9.    - name: db_server 
10.      flavor: m1.medium 
11.      controls: 
12.       - script: check_open_ports 
13.         parameters: "-p 22,3306" 
14.       - script: check_current_users 
15.         parameters: "-l user3"  

1. configuration  read_yaml  

2. VM_list = create _VMs(configuration["VM"]) 

3. wait_VMs_active(VM_list) 

4. upload_security_scripts(VM_list, 

configuration[“VM”]) 

5. configure_VMs(VM_list, configuration["VM"]) 

6. configure_monitoring_control_center(VM_list) 

7. while(true):  

8.     states = monitor_VMs(VM_list, 

configuration["VM"]) 

9.     If(states not expected): 

10.         notify_user(states)  

 



 

APIs [31]. Figure 9 shows the topology of the testbed to 
experiment with and evaluate the proposed methodology. Our 
OpenStack environment consists of one separate controller node 
(which manages the cloud environment) and multiple compute 
nodes (enabling VM operations using a hypervisor). The 
controller node has the required OpenStack services such as 
Glance (image service) and Keystone (the identity manager) as 
well as OpenStack Python libraries for the automation (which is 
shown as management middleware). For the compute nodes, we 
have allocated three Dell XPS 8700 towers with i7 4770 
processors and 12GB memory, running Ubuntu 16.04 Server for 
the hosts operating systems. For the virtualization, we have 
chosen Kernel-based Virtual Machine (KVM) hypervisor as it is 
supported by the Linux kernel. For the communication of the 
OpenStack services, an internal network switch is used. 

For the continuous monitoring of the cloud environment, 
Nagios 3 [32] has been chosen as it is the go-to tool for remote 
system monitoring with flexible agent support. We have 
installed and configured Nagios on an individual VM and 
integrated with NDOUtils to provide database support which 
will be used to query the current and previous states of the VMs. 
As shown in the previous section example, multiple agents have 
been created based on the NIST SP 800-53 using Nagios NRPE. 
NRPE allows us to create custom scripts for the VMs’ security 
controls that can be monitored by Nagios server. 

 

 

Figure 9. Proof of concept testbed architecture. 

In Figure 10, we present a breakdown of the configuration 
time. The engine spends most of its configuration time, 33 
seconds, creating the VMs and waiting for them to be accessible 
(i.e., active) while uploading the scripts and configuring the 
VMs (and Nagios server) take 2 seconds each. After the VMs 
are configured, it only takes 0.04 seconds to get the update from 
the Nagios DB. Not to mention that the agents used for the 
security controls implementations are lightweight in that their 
load on the system is negligible, and are checked periodically 
for a configurable amount of time, 5 seconds in this case; 
consequently, the agents do not introduce overhead which would 
impact the users’ operations on the cloud environment.  

 

Figure 10. Time distribution of major configuration engine operations (in 
seconds). 

Below, in Figure 11, we show an example of the user 
notification. In Figure 11(a), the services show that there are no 
unauthorized users, i.e. the logged in users are from the set of 
given allowed users. In Figure 11(b), the user is notified of ports 
that were not supposed to be open. Port 5666 is used by Nagios 
communication (i.e., NRPE service) and since it was not 
specified as an allowed port, the user is notified. 

 

Figure 11. User notification example  

VI. CONCLUSION 

Even though the cloud computing systems are highly 
popular for personal usage, for organizations and government 
agencies, security of their cloud infrastructure is still a major 
concern. Current techniques for cloud security are manual and 
error prone which introduces additional vulnerabilities. Hence, 
it is critically important to develop a cloud security automation 
methodology that will be used to configure cloud systems that 
meet user security requirements. Thus, in this paper, we 
demonstrated a methodology that is based on the NIST SP 800-
53 security controls and Nagios monitoring tool to implement 
the selected security controls using cloud service provider’s 
capabilities. We have demonstrated a proof of concept 
implementation using OpenStack in a private cloud 
environment. As future work, we are planning on including 
multiple cloud systems as well as the ability to launch 
automated/semi-automated actions when there is a security 
control violation.  

ACKNOWLEDGMENT  

This work is partly supported by National Science 
Foundation (NSF) research project NSF CNS-1624668 and 
National Institute of Standards and Technology (NIST).   

DISCLAIMER  

Any mention of commercial products or organizations is for 
informational purposes only; it is not intended to imply 
recommendation or endorsement by the National Institute of 
Standards and Technology, nor is it intended to imply that the 
products identified are necessarily the best available for the 
purpose. 

OK -- No unauthorized users 
 (a) Logged in users with no security violation 

CRITICAL -- Unauthorized ports open. 
Unauthorized ports: 5666 

(b) Unauthorized open ports are notified  
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