
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Cloud Security Automation Framework

Cihan Tunc1,2, Salim Hariri1, Mheni Merzouki2, Charif Mahmoudi2, Frederic J. de Vaulx2, Jaafar Chbili2, Robert Bohn2, Abdella Battou2
1 The University of Arizona, Tucson, Arizona, USA

2 National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA
1{cihantunc, hariri}@email.arizona.edu

2{cihan.tunc, mheni.merzouki, charif.mahmoudi, fdevaulx, jaafar.chbili, robert.bohn, abdella.battou}@nist.gov

Abstract—Cloud services have gained tremendous attention as

a utility paradigm and have been deployed extensively across a

wide range of fields. However, Cloud security is not catching up to

the fast adoption of its services and remains one of the biggest

challenges for Cloud Service Providers (CSPs) and Cloud Service

Consumers from the industry, government and academia. These

institutions are increasingly faced with threats affecting the

confidentiality, integrity and availability of the cloud resources

such as DoS/DDoS attacks, ransomware attacks, and data

breaches to name a few. In the current cloud systems, security

requires manual translation of security requirements into

controls. Such an approach can be for the most part labor

intensive, tedious and error-prone leading to inevitable

misconfigurations rendering the system at hand vulnerable to

misuse be it malicious or unintentional. Therefore, it is of utmost

importance to automate the configuration of the cloud systems per

the client’s security requirements steering clear from the caveats

of the manual approach. Furthermore, cloud systems need to be

continuously monitored for any misconfiguration, and therefore

lack of the required security controls. In this paper, we present a

methodology allowing for cloud security automation and

demonstrate how a cloud environment can be automatically

configured to implement the required NIST SP 800-53 security

controls. Also, we show how the implementation of these controls

in the cloud systems can be continuously monitored and validated.

Keywords—cloud computing, cybersecurity, automation,

security controls

I. INTRODUCTION

Cloud services have been one of the most important
paradigms of today’s IT world due to its salient features of on-
demand, flexible, scalable, ubiquitous computing with minimal
resource management effort for the end-users. The National
Institute of Standards and Technology (NIST) defines the cloud
computing as a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and
released with minimal management effort or service provider
interaction [1]. The sheer fact that cloud services offer an on-
demand model and therefore promote efficient spending on IT
departments is reason enough for the ongoing movement to
deploy cloud systems in both government and non-government
institutions. Thus, per International Data Corporation (IDC), by
2018, at least half of the IT expenses will be cloud-based with a
reach of 60% of all IT infrastructures and 60-70% of all software
services by 2020 [2]. And, Wikibon predicts that by 2022,
Amazon AWS platform by itself will be approximately $43

billion revenue per year, providing 8.2% of all cloud business
[3].

Even though cloud computing is considered a major IT
movement, the cloud security remains a plaguing challenge,
according to a RightScale report (25% of respondents cited
cloud security, lack of resources/expertise, and managing cloud
spending as the main challenges) [4]. The cumulative cost of
cyberattacks to an organization averages $3.5 million annually
[5], which gives an economic illustration of the importance of
cloud security. Stakeholders from all fields steadily realize that
Cloud services face numerous threats: data breaches,
compromised credentials, account hijacking, permanent data
loss and DoS/DDoS attacks just to name a few [6]. Add to that
the lagging CSPs security default capabilities which do not meet
the organization’s security and privacy requirements [7]. From
the customer’s perspective, more institutions from the private
sector are developing interest in the NIST Cyber Security
Framework (CSF) and Risk Management Framework (RMF) to
address and manage security risk, define requirements and
security controls implementing them. However, to the best of
our knowledge, one cannot find a well-defined practical
approach translating the said security controls into actionable
items running on the cloud environments. Therefore, in this
paper, we present a methodology to automatically create a cloud
computing environment implementing NIST SP800-53 security
controls to satisfy cybersecurity requirements of the cloud
systems at hand.

In summary, this paper aims at answering the following
questions: (a) What are the security requirements from both the
user side and the CSP side? (b) How can a user specify the
security requirements? (c) How can we automate the
deployment of cloud systems that meet user security
requirements? and (d) How can we validate that the cloud
systems meet the security needs and provide a comprehensive
compliance report to support?

The rest of the paper is organized as follows. In Section II,
we present the background information on the cloud security and
standards domains. We present a cloud computing security
taxonomy in Section III to be used for better understanding and
categorizing each aspect of cloud security. The proposed
methodology is presented in Section IV. Next, we present a
proof-of-concept implementation in Section V. Finally, Section
VI concludes the paper.

II. BACKGROUND

A. Cloud Computing and Security Appraoches

Cloud computing involves the delivery of services through
different models such as Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service
(IaaS). While this paper mainly focuses on the IaaS model, it can
be extended to other service models as well. For the IaaS, the
users are offered virtual machines (VMs) residing through a
hyper vision technology such as Xen or VMware among others.
Due to the complex structure of the cloud services, cloud
computing suffers from multiple security issues [8]. All cyber-
attacks targeting physical machines in the physical domain exist
on virtual machines running on the cloud environment, with
added burden from the hypervisor. As the cloud offers a pool of
resources that users share, the importance of the hypervisor
security increases. The dependency of cloud computing on the
virtualized environment raises more security issues, like
hypervisor exploitations [9]. One instance of these attacks is the
injection of malware in the publicly available virtual machine
image, which subsequently affects the services of the cloud.
Another major security issue for cloud computing systems is the
insider attacks [10].

Many solutions have been proposed to solve security issues
[11-14] in cloud computing. Some cloud security systems
implemented a recovery-based intrusion tolerant algorithm that
enhances the availability and resilience of cloud services or
focused on hiding the data as a method to increase services’
resilience to attacks [13]. Many of the security solutions
developed for the cloud focus on efficiently protecting the cloud
storage against diverse range of attacks including roll-back
attacks [15]. Some of the proposed security solutions use
innovative risk-based analysis for the security testing of the
cloud environment. This risk-based analysis reduces the number
of possible misuse cases of the cloud [14].

B. Autonomic Computing

By definition, cloud computing should have dynamic
management and self-organization [1, 16, 17]. Nevertheless,
most of the current cloud implementations are missing those two
essential attributes. Understanding the functional requirements
of cloud services is an essential key in defining the architecture
of the system providing those services [18]. Applying software
design approaches to the development of autonomic
management systems provides a solid ground to maintain the
service level agreement, protect against external attacks, prevent
failures and enables recovery [19]. Proactively managing
failures and providing self-healing is an important attribute of
the cloud [20]. Self-configuration allows the cloud to adapt to
changes by tuning the allocation of virtual resources and the
applications parameters, thereby achieving self-optimization
[21].

C. Cloud Standards

As cloud computing is being used ubiquitously, there are
multiple cloud standards works in the literature such as the one
from the Cloud Standards Customer Council (CSCC) aiming at
cloud systems’ successful adoption and solving the security and
interoperability issues [22]. Hence, in terms of security, CSCC
presented a reference for the organizations adopting the cloud

computing and its security impacts [23]. Organization for the
Advancement of Structured Information Standards (OASIS)
provides open standards for the IT world in collaboration with
the industry and academia [24]. Topology and Orchestration
Specification for Cloud Applications (TOSCA) is one of OASIS
standards intended to define services and applications, and their
relationships, especially for cloud systems with a focus on
automated management, portability and deployment [24]. For
this purpose, TOSCA introduces a grammar for describing
service templates, requirements, capabilities, and policies with
the help of YAML. While TOSCA is a standard model, there are
multiple implementations such as OpenTOSCA [25], Cloudify
[26] in and OpenStack Heat [27]. However, current
implementations of this standard do not address the cloud
security challenges and only focus on the management and
automation of the application deployment.

D. Discussion

In summary, the current efforts on cloud automation focus
heavily on performance and predominantly overlook the vital
security aspect. Also, to the best of our knowledge there have
not been any studies with focus on automation of security
mechanisms implementation in cloud systems. Therefore, this
paper is the first attempt in this direction.

III. CLOUD COMPUTING SECURITY TAXONOMY

To fully understand the cloud computing security issues, we
first developed a cloud security taxonomy based on NIST SP
800-53 [28] and Federal Risk and Authorization Management
Program (FedRAMP) [29] security assessment framework.
Next, we utilized the taxonomy to implement the required
security controls and their management processes. Our security
taxonomy has three sub-categories: Security components,
privacy, and compliance, as shown in Figure 1.

Figure 1. Cloud security taxonomy used for identifying the security controls.

Securing cloud systems involve securing the infrastructure,
network, hosts, applications and data through a wide range of
mechanisms such as Identity, Credentials and Access
Management (ICAM), Data Segregation and Regulatory
Compliance (Figure 2).

Please note that we only consider the security of the VMs in
this work rather than the underlying physical hosts.

Figure 2. Cloud components security taxonomy.

One of the main goals of securing the cloud is ensuring
users’ data privacy. Figure 3 depicts a breakdown of data

privacy concerns and governing principals which can be used to
define the users’ privacy requirements.

Figure 3. Privacy of the cloud can be described by the concerns and principles.

For these systems to be secured, cloud service customers, be
it from the government or the private sector, need to make sure
the cloud service providers satisfy a given set of security
requirements. This is where FedRAMP comes into play as it
assists government agencies in meeting the mandated FISMA
requirements for cloud systems, and may be used by cloud
service customers from the private sector as guidance when
implementing their cloud security requirements. This paper does
not intend to discuss the specifics or FedRAMP but rather use
its security controls based on the NIST SP 800-53. The
categorization (Low, Moderate, High) of the system at hand is
done through FIPS PUB 199. Then the set of security controls
corresponding to the baseline need to be implemented. The
security controls can be grouped into three categories:
Technical, Operational, and Management. In this paper, we do
not address all the security controls but only the technical ones
which need to be implemented on the VMs.

Figure 4. For the compliance, FedRAMP based taxonomy [29] can be used.

IV. CLOUD SECURITY MANAGEMENT AUTOMATION

In our cloud security management approach, we focus on the
security automation for the Infrastructure-as-a-Service (IaaS)
services offered by CSPs where users create, operate, and
manage VMs with the requested virtual resources (e.g., number
of cores, amount of memory, storage requirements, co-
processors such as GPU) with full access in most cases using a

dashboard since manual security management of the
environment is improper.

The proposed cloud security management approach is shown
in Figure 5. In our architecture, the user specifies the security
requirements of the needed cloud environment and the VM
definitions (e.g., the VM required resources) through an editor.
Through a communication channel (e.g., Secure Shell (SSH), or
Secure Sockets Layer (SSL)), the user’s requirements are passed
to the configuration engine. Next, the configuration engine
interfaces with the CSP to create the requested cloud
environment that satisfies the user security requirements. Once
the system is set-up, the configuration engine interfaces with the
CSP to continuously monitor the cloud environment and to
notify the users if any abnormal configuration or behavior is
detected. Below, we provide further details of each step in the
form of a proof of concept.

As an example, a user wants to create a cloud environment
for a web application that consists of a web server and a database
(DB) server (Figure 6). In this example, the user wishes to
specify the ports which will be used for communications among
VMs, administrators, and the users of the web application. In
addition to the required VM deployment information (such as
the VM name, VM size), the user also needs to implement the
selected security controls to satisfy the security requirements.

Figure 5. Cloud security management architecture.

Figure 6. An example of a web application deployment.

One of the main questions that needs to be answered is how
the users will specify their security requirements. NIST SP 800-
53 revision 4 is a comprehensive catalog of security controls for
all U.S. federal information systems except those related to
national security. Therefore, we suggest using NIST SP 800-53
to implement the user requirements. Please note that not all the
requirements can be met by the CSP due to lack of capabilities,
which can create some gaps initially. In other scenarios, during
the lifecycle of a cloud environment, the CSP capabilities may

change (and cannot provide the previous capabilities anymore).
In such cases, the user may seek other providers.

For the security control selection, we define the parameters
based on the taxonomy we have presented in Section III. Like
TOSCA standard, we believe that a user-friendly data
serialization standard with an easy to read and edit syntax should
be used; therefore, we chose to encode the requirements in
YAML [24].

Figure 7 depicts the YAML based definition for the given
example. The user encodes the VM deployment information as
well as required security controls. The user defines the VM
resource requirements (flavors) as m1.large and m1.medium (1
core, 2GB memory, and 20GB storage size), respectively (line 3
and 10). Then, based on the already implemented security
controls by the CSP, the configuration engine gets the lists of the
remaining security controls, script name and parameters, to be
applied to satisfy the user’s requirements. For the given
example, the user selects “AC-2 Account Management” that
requires monitoring the use of information system accounts,
“AC-7 Unsuccessful Logon Attempts” that limits unsuccessful
logon attempts, and finally “SC-7 Boundary Protection Control
Enhancement (5) Boundary Protection | Deny By Default /
Allow By Exception” that blocks all the network ports by default
unless they are specified to be open. CSP offers a security
control mechanism that checks the logged in accounts to verify
if the account management is being fulfilled (line 6 and line 14).
To control which users are valid, the script requires a list of users
(comma separated) in this scenario. Hence, the user defines that
the web server needs to have only user1 and user2 logged in to
the system and any other user would be considered as a
malicious user. Similarly, only user3 is accepted for the DB
server.

Figure 7. VM environment definition given to the configuration engine.

In addition, since DB server will be acting in the background
and does not need to interact with the end-users, the admin can
whitelist port 22 and 3306 (lines 12 and 13) so that the use of
any other port will be flagged as an illegal action. Finally, for
the security control AC-7 to check unsuccessful logon attempts,
the CSP requires a warning and a critical level (line 7). When
the unsuccessful login attempts exceed the given number of
warnings, the user is notified. When the number of attempts is
beyond the critical level, the remote connection can be

temporarily blocked as a security measure mitigating a brute
force attack or a dictionary attacks carried on the VMs.

Please note that each security control is an individual script
based on the user requirements and CSP capabilities that operate
as an agent on VMs.

The configuration engine is responsible for creating the
requested VMs (with the given resources requirements),
applying the specified security controls, and monitoring the
VMs continuously to see if there are any requirements which are
not met and notify the users of the current state of the
environment. In Figure 8, we present the configuration engine
algorithm. In this approach, the configuration engine reads the
configuration file given in Figure 8 (line 1) and creates the
requested VMs with the given resource set and VM names (line
2). This results in a list of created VMs with their IPs, called
VM_list. In order to upload the security controls implementation
scripts (line 4) and configure the VMs (line 5), the configuration
engine waits until the VMs are active and accessible. The
security controls the CSP is offering are uploaded to the VMs
based on the requirements and then the VMs are configured
accordingly to operate. Next, the monitoring control center (the
monitoring capabilities of the configuration engine) is
configured so that the created VMs can be monitored and their
states are logged to a database (line 6). And, during their
lifecycles, the VMs are monitored continuously (line 7). If there
is any state that does not meet the requirements (for example, if
any user other than user1 and user2 exist on the web_server), the
users are notified so that they act accordingly.

Figure 8. Configuration engine algorithm.

Furthermore, during the lifecycle of the VMs, the user’s
security requirements may change. Thus, the configuration
engine should also allow updating the security controls.

V. PROOF OF CONCEPT IMPLEMENTATION

In this section, we present the proof of concept
implementation environment, the tools used, and how they are
configured and automated. For the implementation and testing,
we have created an OpenStack based private cloud environment.
OpenStack is an open-source cloud stack for building
public/private clouds using multiple homogenous and
heterogeneous systems and managing large pools of compute,
storage, and networking resources through a dashboard or using

1. VM:
2. - name: web_server
3. flavor: m1.large
4. controls:
5. - script: check_current_users
6. parameters: "-l user1,user2"
7. - script: check_login_attempts
8. parameters: "-w 3 –c 5"
9. - name: db_server
10. flavor: m1.medium
11. controls:
12. - script: check_open_ports
13. parameters: "-p 22,3306"
14. - script: check_current_users
15. parameters: "-l user3"

1. configuration  read_yaml

2. VM_list = create _VMs(configuration["VM"])

3. wait_VMs_active(VM_list)

4. upload_security_scripts(VM_list,

configuration[“VM”])

5. configure_VMs(VM_list, configuration["VM"])

6. configure_monitoring_control_center(VM_list)

7. while(true):

8. states = monitor_VMs(VM_list,

configuration["VM"])

9. If(states not expected):

10. notify_user(states)

APIs [31]. Figure 9 shows the topology of the testbed to
experiment with and evaluate the proposed methodology. Our
OpenStack environment consists of one separate controller node
(which manages the cloud environment) and multiple compute
nodes (enabling VM operations using a hypervisor). The
controller node has the required OpenStack services such as
Glance (image service) and Keystone (the identity manager) as
well as OpenStack Python libraries for the automation (which is
shown as management middleware). For the compute nodes, we
have allocated three Dell XPS 8700 towers with i7 4770
processors and 12GB memory, running Ubuntu 16.04 Server for
the hosts operating systems. For the virtualization, we have
chosen Kernel-based Virtual Machine (KVM) hypervisor as it is
supported by the Linux kernel. For the communication of the
OpenStack services, an internal network switch is used.

For the continuous monitoring of the cloud environment,
Nagios 3 [32] has been chosen as it is the go-to tool for remote
system monitoring with flexible agent support. We have
installed and configured Nagios on an individual VM and
integrated with NDOUtils to provide database support which
will be used to query the current and previous states of the VMs.
As shown in the previous section example, multiple agents have
been created based on the NIST SP 800-53 using Nagios NRPE.
NRPE allows us to create custom scripts for the VMs’ security
controls that can be monitored by Nagios server.

Figure 9. Proof of concept testbed architecture.

In Figure 10, we present a breakdown of the configuration
time. The engine spends most of its configuration time, 33
seconds, creating the VMs and waiting for them to be accessible
(i.e., active) while uploading the scripts and configuring the
VMs (and Nagios server) take 2 seconds each. After the VMs
are configured, it only takes 0.04 seconds to get the update from
the Nagios DB. Not to mention that the agents used for the
security controls implementations are lightweight in that their
load on the system is negligible, and are checked periodically
for a configurable amount of time, 5 seconds in this case;
consequently, the agents do not introduce overhead which would
impact the users’ operations on the cloud environment.

Figure 10. Time distribution of major configuration engine operations (in
seconds).

Below, in Figure 11, we show an example of the user
notification. In Figure 11(a), the services show that there are no
unauthorized users, i.e. the logged in users are from the set of
given allowed users. In Figure 11(b), the user is notified of ports
that were not supposed to be open. Port 5666 is used by Nagios
communication (i.e., NRPE service) and since it was not
specified as an allowed port, the user is notified.

Figure 11. User notification example

VI. CONCLUSION

Even though the cloud computing systems are highly
popular for personal usage, for organizations and government
agencies, security of their cloud infrastructure is still a major
concern. Current techniques for cloud security are manual and
error prone which introduces additional vulnerabilities. Hence,
it is critically important to develop a cloud security automation
methodology that will be used to configure cloud systems that
meet user security requirements. Thus, in this paper, we
demonstrated a methodology that is based on the NIST SP 800-
53 security controls and Nagios monitoring tool to implement
the selected security controls using cloud service provider’s
capabilities. We have demonstrated a proof of concept
implementation using OpenStack in a private cloud
environment. As future work, we are planning on including
multiple cloud systems as well as the ability to launch
automated/semi-automated actions when there is a security
control violation.

ACKNOWLEDGMENT

This work is partly supported by National Science
Foundation (NSF) research project NSF CNS-1624668 and
National Institute of Standards and Technology (NIST).

DISCLAIMER

Any mention of commercial products or organizations is for
informational purposes only; it is not intended to imply
recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that the
products identified are necessarily the best available for the
purpose.

OK -- No unauthorized users
 (a) Logged in users with no security violation

CRITICAL -- Unauthorized ports open.
Unauthorized ports: 5666

(b) Unauthorized open ports are notified

The identification of any commercial product or trade name
does not imply endorsement or recommendation by the National
Institute of Standards and Technology, nor is it intended to
imply that the materials or equipment identified are necessarily
the best available for the purpose. Certain commercial entities,
equipment, or materials may be identified in this document in
order to describe an experimental procedure or concept
adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to
imply that the entities, materials, or equipment are necessarily
the best available for the purpose.

REFERENCES

[1] R. Mell, and T. Grance, “The NIST definition of cloud computing,” NIST
Special Publication 800-145, 2011.

[2] Report IDC FutureScape “Worldwide IT Industry, (2016), Leading
Digital Transformation to Scale”, New York

[3] “How Big Can AWS Get?”, [Online] URL: http://wikibon.com/how-big-
can-aws-get/, Accessed: June 2017

[4] “RightScale 2017 State of the Cloud Report” [Online] URL:
http://www.rightscale.com/blog/cloud-industry-insights/cloud-
computing-trends-2017-state-cloud-survey, Accessed: June 2017

[5] “Security Beyond the Traditional Perimeter Executive Summary”,
Ponemon Institute: July 2016, [Online] URL:
http://cdn2.hubspot.net/hubfs/30658/Ponemon_External_Threat_2016__
ExecSumm.pdf, Accessed: June 2017

[6] CSA Top Threats Working Group. "The Treacherous 12: Cloud
Computing Top Threats in 2016." Cloud Security Alliance (CSA), Feb
(2016).

[7] R. Chandramouli, S. Garfinkel, S. Nightingale, S. Rose, “Trustworthy
Email,” NIST Special Publication 800-177, Sep. 2016.

[8] B.P. Rimal, E. Choi, and I. Lumb, “A Taxonomy and Survey of Cloud
Computing Systems,” NCM 9, 2009, pp. 44-51.

[9] M. Schmidt, L. Baumgartner, P. Graubner, D. Bock and B. Freisleben,
“Malware Detection and Kernel Rootkit Prevention in Cloud Computing
Environments,” 19th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, 2011.

[10] C. Modi, D. Patel, B. Borisaniya, A. Patel and M. Rajarajan, “A survey
on security issues and solutions at different layers of Cloud computing,”
The Journal of Supercomputing, pp. 1-32, 2012

[11] M. Abbasy and B. Shanmugam, “Enabling Data Hiding for Resource
Sharing in Cloud Computing Environments Based on DNA Sequences,”
IEEE World Congress, 2011.

[12] J. Feng, Y. Chen, D. Summerville, W. Ku, and Z. Su, “Enhancing cloud
storage security against roll-back attacks with a new fair multi-party non-
repudiation protocol,” Consumer Communications and Networking
Conference, 2011.

[13] Q. Nguyen and A. Sood, “Designing SCIT architecture pattern in a Cloud-
based environment,” IEEE/IFIP 41st International Conference on
Dependable Systems and Networks Workshops, 2011.

[14] P. Zech, “Risk-Based Security Testing in Cloud Computing
Environments,” IEEE Fourth International Conference on Software
Testing, Verification and Validation, 2011.

[15] L. Kaufman, “Data security in the world of cloud computing,” IEEE
Security and Privacy Journal, vol. 7, no. 4, pp. 61-64, 2009

[16] F. Heylighen, and C. Gershenson, “The Meaning of Self-organization in
Computing,” IEEE Intelligent Systems, 18(4), 2003, pp. 72-75.

[17] M. Parashar, and Salim Hariri, “Autonomic computing: An overview,”
Unconventional Programming Paradigms, 2005, pp. 97-97.

[18] H. Takabi, J. BD Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Security & Privacy 8, no. 6,
2010, pp. 24-31.

[19] C. Tunc, F. Fargo, Y. Al-Nashif, S. Hariri, and J. Hughes, “Autonomic
Resilient Cloud Management (ARCM) Design and Evaluation,”
International Conference on Cloud and Autonomic Computing, London,
2014, pp. 44-49.

[20] P.K. Patra, H. Singh, and G. Singh, “Fault tolerance techniques and
comparative implementation in cloud computing,” International Journal
of Computer Applications, 2013, 64(14).

[21] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G.
Zhang, L. Zhen, M. Parashar, B. Khargharia, and S. Hariri, “Automate:
Enabling autonomic applications on the grid,” IEEE Autonomic
Computing Workshop, 2003, pp. 48-57.

[22] “The Cloud Standards Customer Council” URL: http://www.cloud-
council.org

[23] “Security for Cloud Computing Ten Steps to Ensure Success Version
2.0,” URL: http://www.cloud-council.org/deliverables/CSCC-Security-
for-Cloud-Computing-10-Steps-to-Ensure-Success.pdf

[24] “OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA)”, URL: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca

[25] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S. Wagner, “OpenTOSCA–a runtime for TOSCA-based cloud
applications,” Springer International Conference on Service-Oriented
Computing, 2013, pp. 692-695

[26] L. Trammell, “TOSCA Cloud Orchestration for Beginners” URL:
http://cloudify.co/2015/07/21/what-is-TOSCA-cloud-application-
orchestration-tutorial-cloudify.html, Accessed: June 2017

[27] OpenStack Heat-Translator, [Online] URL:
https://wiki.openstack.org/wiki/Heat-Translator

[28] Security and Privacy Controls for Federal Information Systems and
Organizations, NIST Special Publication 800-53 Revision 4

[29] “FedRAMP Security Controls Baseline”, Accessable:
https://www.fedramp.gov/resources/documents-2016/

[30] CloudFlare DDoS protection, URL: www.cloudflare.com/lp/ddos-a/

[31] “OpenStack: Open source software for creating private and public
clouds”, URL: https://www.openstack.org

[32] “Nagios: The Industry Standard in IT Infrasturecture Monitoring”,
https://www.nagios.com

