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Abstract 

In graphene and other massless two-dimensional Dirac materials, Klein tunneling 

compromises electron confinement, and momentum-space contours can be assigned a Berry phase 

which is either zero or π. Consequently, in such systems the energy spectrum of circular potential 

wells exhibits an interesting discontinuity as a function of magnetic field 𝐵: for a given angular 

momentum the ladder of eigen-resonances is split at an energy-dependent critical field 𝐵c. Here 

we show that introducing a mass term Δ in the Hamiltonian bridges this discontinuity in such a 

way that states below 𝐵c are adiabatically connected to states above 𝐵c whose principal quantum 

number differs by unity depending on the sign of Δ. In the 𝐵-Δ plane, the spectrum of these circular 

resonators resembles a spiral staircase, in which a particle prepared in the |𝑛, 𝑚⟩ resonance state 

can be promoted to the |𝑛 ± 1, 𝑚⟩ state by an adiabatic circuit of the Hamiltonian about 𝐵c, the 

sign depending on the direction of the circuit. We explain the phenomenon in terms of the evolving 

Berry phase of the orbit, which in such a circuit changes adiabatically by 2𝜋. 
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Introduction. The lightlike carriers in graphene allow optics-inspired analogies such as 

reflection, refraction, and resonators, to be realized using confining electrostatic potentials and 

magnetic fields. Tailoring electrostatic p-n junctions have demonstrated geometries with linear 

boundaries mimicking Fabry-Perot etalons  [1] and circular p-n junctions have demonstrated the 

classical analogy of whispering gallery modes [2–4]. A key difference between the wave 

properties of graphene carriers, and the carriers of conventional two-dimensional electron gases, 

is the associated chirality and nontrivial Berry phase of the graphene wavefunctions. Chirality and 

Berry phase in the massless Dirac Hamiltonian describing graphene was recognized in the first 

experimental papers describing the graphene quantum Hall effect  [5,6], and date back to the work 

in carbon nanotubes  [7]. In the Fabry-Pèrot geometry it was shown that the transport conductance 

underwent a phase shift with the application of a magnetic field, which is traceable to the graphene 

π Berry phase [8].  More recently, it has been shown that in circular p-n junction geometries, 

resembling quantum dots (QDs), the graphene eigenstates show a discontinuity at a weak critical 

magnetic field,  𝐵c, which was predicted by theory and confirmed in recent measurements  [4,9].  

This spectral discontinuity, and its resolution with the addition of a mass term, Δ, is the focus of 

this work. We show in detail that in the three-dimensional space of B, Δ and energy, the spectrum 

resembles a continuous helical sheet, the successive energy levels of which can be accessed by 

adiabatic circuits about the discontinuity in the 𝐵-Δ plane.   

The electronic structure of graphene or two-dimensional (2D) Dirac quantum dots has been 

extensively studied in a wide range of models  [10–18]. The arguments given here are applicable 

to any radially symmetric, monotonic, smoothly varying potential. For concreteness, in the 

calculations we use a quadratic confining potential, which has been shown to adequately capture 

the experimental spectrum of graphene QDs measured by scanning tunneling spectroscopy [2,19], 
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including the Berry phase discontinuity [4]. The helical connectivity of the eigenstate structure is 

first shown using classical arguments, combined with a consideration of Berry phase. Then, we 

exhibit the helical spectrum using quantum-mechanical calculations along cuts through the 𝐵-Δ 

plane. Finally, we calculate the eigenresonances along an elliptical loop surrounding 𝐵𝑐, showing 

how a picked quantum state would evolve from |𝑛, 𝑚⟩ to |𝑛 − 1, 𝑚⟩ along an adiabatic circuit.  

Semiclassical analysis. The classical 2D relativistic Hamiltonian for a central potential 

𝑈(𝑟) can be expressed in polar coordinates as 

                           𝐻(𝑟, 𝑝𝑟 , 𝜙, 𝑝𝜙) = ±𝑣𝐹√𝑝𝑟
2 + (

𝑝𝜙

𝑟
−

𝑒𝐵

2
𝑟)

2

+ (
Δ

𝑣𝐹
)

2

+ 𝑈(𝑟),                          (1) 

where 𝑣𝐹 is the Fermi velocity, Δ/𝑣𝐹
2 is the mass, 𝑈 is the potential energy, and 𝑒 is the elementary 

charge. The angular momentum 𝑝𝜙 is conserved. For calculations, we take 𝑣𝐹 = 106 m/s, and 𝑈 =

𝜅𝑟2where 𝜅 = 4 eV/μm2. The trajectories of Eq. (1) twist at a critical field  𝐵𝑐 [9], as shown in 

Figs. 1(a)-1(c). The transition between the left-turning particle [Fig. 1(a)] and the right-turning, 

looping particle [Fig. 1(c)] involves an intermediate state in which the particle must stop 

completely and turn back [Fig. 1(b)]. If ∆ = 0, we encounter the result that backscattering is 

forbidden for massless Dirac particles: they do not orbit, but escape the well by Klein 

tunneling  [17,20–22] [Fig. 1(d)]. With finite ∆, however, the classical orbit continues [Fig. 1(e)], 

and the corresponding quantum states acquire a nonzero lifetime, which can be estimated from the 

transmission coefficient for Klein-tunneling through a sloped potential barrier. This being 

𝑒−𝐶Δ2
  [22,23] (where 𝐶 is a constant that depends on the barrier slope), we see that while at 

(𝐵𝑐, ∆= 0) the eigenstate spectrum must be discontinuous, for finite ∆ the discontinuity is bridged 
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by quasi-bound states [9], whose stability increases super-exponentially with |Δ|. (Hereafter, the 

∆= 0 singular point is denoted simply by 𝐵𝑐.) 

The helical eigenstate structure reported here arises from the fact that these finite-Δ 

“bridges” connect different eigenstates depending on the sign of Δ. This is shown directly in Fig. 

3, but can be motived classically by combining the adiabatic theorem  [24] with a semiclassical 

consideration of the Berry phase [9]. Let us start the classical particle in some Hamiltonian [Eq. 

(1)] defined by (𝐵0, Δ0), with arbitrary initial coordinates and momenta, and adiabatically vary 𝐵 

and Δ. In the volume defined by 𝐵, Δ,  and the energy 𝐸, the particle is constrained to move on a 

sheet defined by the condition 𝐽𝑟(𝐸) ≡ ∮ 𝑝𝑟(𝑟)𝑑𝑟 = constant. The Berry phase 𝜑𝐵 is included via 

the modified Bohr-Sommerfeld quantization condition: 

                                                       𝐽𝑟(𝐸) = 2𝜋ℏ (𝑛 −
𝜑𝐵

2𝜋
+ 𝛾),                                            (2) 

where 𝑛 is the radial quantum number and 𝛾 is a constant, here equal to ½ [25,26]. A consistent 

semiclassical method for calculating 𝜑𝐵 in this system is given in Ref.  [9], and summarized below: 

The quantum Hamiltonian 𝐻 = 𝑣𝐹𝚷 ⋅ 𝛔 + Δ𝜎𝑧 + 𝑈(𝑟) (where 𝚷 is the kinematic momentum and 

𝛔 the Pauli matrices) has a monopole Berry curvature field 𝛀(𝐡) =
1

2
𝐡/ℎ3, where 𝐡 =

(Πx, Πy, Δ/𝑣𝐹). To each classical orbit belongs a closed 𝐡-space loop Γ, and 𝜑𝐵 is the flux of 𝛀 

through Γ, in this case one-half the solid angle it subtends [27]. To calculate Γ, one resorts to 

Einstein-Brillouin-Keller (EBK) quantization [9,28,29]. This procedure defines the action 

variables 𝐽𝑖 as line integrals along the closed surface contours of a phase-space torus. By evaluating 

𝐡 along the same contours, a closed Γ can be consistently obtained [9]. Further, 𝐽𝑟 retains the 

definition given above, and the resulting 𝜑𝐵 can be directly applied to Eq. (2). Thus it was found 

that, taking 𝐵𝑐 positive and Δ = 0, for 𝐵 < 𝐵𝑐 Γ lies entirely to one side of the origin, subtending 
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zero solid angle and providing zero Berry phase [Fig. 2(a)], whereas for 𝐵 > 𝐵𝑐 it encircles the 

origin, providing a Berry phase of 𝜋 as in the case of pure Landau levels (LLs) [9]. At Δ = 0, the 

result is a discontinuous jump of the energy levels by half a level, which was observed 

experimentally [4]. 

From the above we see that by adiabatically varying 𝐵 and Δ, we can manipulate Γ to 

produce an unlimited tunability of 𝜑𝐵 in Eq. (2). Starting for concreteness at an initial Hamiltonian 

defined by (𝐵 < 𝐵𝑐, Δ = 0), let us see what happens as we attempt a clockwise adiabatic circuit 

about 𝐵𝑐 (Fig. 2) As we pass over [Fig. 2(b)], down around [Fig. 2(c)], and back underneath the 

critical point [Fig. 2(d)], we see that Γ (thin blue line) loops over and around the monopole source 

of Berry curvature in such a way that the solid angle (light blue membrane) increases smoothly 

from zero in Fig. 2(a) to 4𝜋 in Fig. 2(d), so that 𝜑𝐵 grows by 2𝜋. At the classical level, this 

procedure is fully reversible and repeatable: A second pass over the circuit would make the bubble 

two layers thick (8𝜋 solid angle), a reverse circuit would unwrap one layer of the bubble, and so 

on. The effect of one circuit is to change the right side of Eq. (2) by 2𝜋ℏ and, the other terms being 

constants, the same change must appear in 𝐽𝑟: an adiabatic circuit changes the “effective” radial 

quantum number by one. Thus when Berry phase is included, the constant-action sheet of the 

classical particle becomes a connected, multilevel helical manifold in the 𝐵-Δ plane, each level of 

which can be accessed from any other level by repeated circuits about the screw dislocation at 𝐵𝑐.  

Quantum simulation and results. To explore this helix structure quantitatively, we 

performed calculations based on the “spectral method” [30], adapted for 2D Dirac particles. In this 

procedure, an essentially arbitrary initial wave function Ψ(𝐫, 0) is evolved numerically under the 

time-dependent Schrödinger equation. In general, Ψ(𝐫, 0) will have matrix elements with all 
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possible solutions of the Schrödinger equation: bound or quasibound states, and continuum states. 

During evolution, the latter quickly propagate to the edge of the simulation area, where they are 

absorbed, while the former oscillate with their characteristic frequencies 𝜔𝑛 = −𝐸𝑛/ℏ. These 

frequencies are extracted post-evolution from the power spectrum of 𝐶(𝑡) ≡ ⟨Ψ(0)|Ψ(𝑡)⟩, and 

the eigenstates 𝜓(𝐫; 𝐸𝑛) are obtained by Fourier-filtering Ψ(𝐫, 𝑡) at the corresponding 

frequency [30]. This enables us to characterize the spectrum of the 2D Dirac Hamiltonian without 

any a priori assumptions, except those which govern the form of the initial wavepacket (see 

below). Moreover, the inherently dynamic nature of the method allows us to directly enact the 

adiabatic loops discussed above by evolving a particle, prepared in some eigenstate, in a slowly-

varying Hamiltonian .  

The time evolution is performed via the third-order [31] split-operator method  [32,33], 

using the 2D Dirac Hamiltonian 

𝐻(𝐤, 𝐫) = ℏ𝑣𝐹 (
0 𝑘𝑥 − 𝑖𝑘𝑦

𝑘𝑥 + 𝑖𝑘𝑦 0
) + (

𝑈 + Δ −𝑣𝐹𝑒(𝐴𝑥 − 𝑖𝐴𝑦)

−𝑣𝐹𝑒(𝐴𝑥 + 𝑖𝐴𝑦) 𝑈 − Δ
)       (3) 

where 𝐴𝑥, 𝐴𝑦, and 𝑈 are functions of 𝐫, 𝐤 = 𝐩/ℏ, and the vector potential is taken in the symmetric 

gauge. Because the helical spectrum is a property of 𝐻 at a fixed angular momentum, to obtain it 

we should choose an initial wavefunction of the form  

                                                  Ψ𝑚(𝐫, 0) = 𝑒𝑖(𝑚−
1

2
)𝜙 (

𝑢0(𝑟)

𝑒𝑖𝜙𝑢1(𝑟)
),                                              (4) 

where 𝑚ℏ is the angular momentum, 𝑚 is an odd-half integer, and 𝑢0 and 𝑢1 are arbitrary functions 

containing a broad spectrum of wavelengths. The energies of the spectral peaks are completely 

insensitive to the choice of 𝑢0 and 𝑢1 within very broad limits; their amplitudes, however, can vary 
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considerably due to matrix element effects. A “good” choice of the 𝑢𝑖 provides distinctly nonzero 

matrix elements with all |𝑛, 𝑚⟩ states up to some 𝑛𝑚𝑎𝑥, determined by the shortest wavelength in 

the 𝑢𝑖, for all (𝐵, Δ) which we wish to study; the spectra of Fig. 3 were obtained with such a 

function  [34]. 

In Fig. 3 we show resonance spectra of the same initial wave function, for 𝑚=5/2, as a 

function of magnetic field obtained at three characteristic masses less than [Fig. 3(a)], equal to 

[Fig. 3(b)], and greater than [Fig. 3(c)] zero. As a guide to the eye we include those regions of the 

(𝐵, 𝐸) plane in which classical periodic motion is possible (dark red) or impossible (dark blue), 

determined by analyzing the function 𝑝𝑟
2(𝑟) extracted from the Hamiltonian in Eq. (1)  [34]. For 

high positive fields [right edge of Figs. 3(a)-3(c)] the spectra resemble the well-known quantum 

Hall energy spectrum: an N=0 LL at energy Δ, which at Δ = 0 bridges the positive and negative 

LLs whose energies are proportional to √|𝑁|. Visually, the movement of this state as a function 

of Δ is the key to the helix structure. For Δ < 0 the N=0 LL attaches to the group of negative LLs, 

so that the lowest “positive energy” LL is N=1 [Fig. 3(a)], whereas for Δ > 0  the N=0 state is the 

lowest positive LL [Fig. 3(c)] [35]. Following our classical discussion, we see that for nonzero 

mass all the positive-energy states are adiabatically continuous as a function of 𝐵: we can re-enact 

the circuit of Fig. 2 by picking some initial state and sliding along the resonance curves. A brief 

inspection shows that such a circuit, beginning in state A of Fig. 3(b), passes to state B’ in Fig. 

3(c), thence to state B in Fig. 3(a) and (b); thus it descends one level of the helix. 

To make our picture more complete, we show how the wave functions evolve along a 

circuit enclosing 𝐵𝑐 (Fig. 4). We define the elliptical contour 𝐵 = 𝐵0 cos 𝜃, Δ = Δ0 sin 𝜃 [Fig. 

4(a)], and in Fig. 4(b)-(l) show how a particular resonance—𝑛 = 1, 𝑚 = 5/2 in Fig. 4(b)—
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evolves as a function of 𝜃. For convenience, we use the same adiabatic circuit as in Fig. 2, where 

𝜃 ranges from 𝜋 to -𝜋 and the state descends the helix by one level, using 𝐵0 = 4 T and Δ0 = 24 

meV. Since the radial motion for fixed 𝑚 is equivalent to one-dimensional motion in a potential 

well, let us recall that for the single-component Schrödinger equation, the 𝑛th eigenstate is a wave 

function with 𝑛+1 lobes. For these Dirac wells, 𝑛 can be defined unambiguously only if the lowest 

positive state is independent of Δ (i.e., for 𝐵 < 𝐵𝑐), and here the “Schrodinger pattern” is followed, 

in the sense that both components of the Dirac spinor have 𝑛+1 radial lobes [Figs. 4(b) and 4(l)]. 

By contrast, for 𝐵 > 𝐵𝑐 (where 𝜑𝐵 ≈ 𝜋 and 𝑛 is ill-defined) the wave functions follow the usual 

pattern of massless Dirac LLs [36], where the upper component has one more radial lobe than the 

lower component [Fig. 4(g)] [37]. These LLs can thus be regarded as “half-integer” states, midway 

between consecutive equal-lobed states with 𝜑𝐵 = 0.  

As we descend the helix, the resonance gradually sheds its outer lobes. In the first half of 

the circuit [Figs. 4(b)-4(g)], the upper spinor component becomes stronger (as expected for Δ>0), 

while the lower components’s outer lobe fades in intensity and finally disappears, leaving at 𝜃=0 

the standard LL-type eigenspinor [Fig. 4(g)]. Returning with negative Δ [Figs. 4(h)-4(l)], the upper 

component weakens and similarly loses its outer lobe, so that the resulting state [Fig. 4(l)] has one 

less lobe in each component. For the circuit shown here, the lobe-fading occupies a fairly narrow 

range of angles [Figs. 4(d),(e);(i),(j)] corresponding to the condition 𝐵 ≈ 𝐵𝑐; we find empirically 

that the more rapid the rate of “lobe shedding” (or adding) along the loop, the shorter the lifetime 

of the instantaneous resonance  [34]. 

The process depicted in Fig. 4, in which the particle passes adiabatically between what we 

would normally regard as different eigenstates, deserves some discussion in connection with the 

quantum-mechanical adiabatic theorem [38,39]. For the quadratic confining potential used here, it 
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was shown [18,34] that throughout the 𝐵-Δ plane, the “eigenstates” have the character of 

resonances with finite lifetimes, to which the theorem does not strictly apply. At high |𝐵|, however, 

the potential could be turned off, and the states would revert to the well-known LLs of the 

symmetric gauge [36,37]. Then, by turning on the confining potential temporarily together with Δ, 

we could pass adiabatically to the next higher or lower LL by encircling 𝐵𝑐. This would still not 

break the adiabatic theorem, since at 𝐵𝑐 the confining potential introduces a lifetime of the order 

𝑒Δ2
: the circuit necessarily passes through a region in which the theorem is inapplicable. The 

adiabatic timescale could be much shorter than the lifetime, however [27,40,41], and in an 

experiment (if feasible), all but an exponentially small fraction of particles might traverse the 

circuit successfully.  

 In conclusion, we have shown that the resonance manifold of the 2D Dirac equation in a 

magnetic field and a smooth central potential, instead of consisting of a series of absolutely 

separated orthonormal states, is topologically defective: It is subtly linked together so that by 

turning on a mass term and cycling the sign of the field, a particle in one state can be adiabatically 

promoted level by level up a helical ladder, or downward until it reaches at the bottom a state 

adiabatically connected to the N=0 LL. A direct experimental exploration of this helix requires a 

method to independently vary Δ and 𝐵, which is experimentally challenging. Possible methods to 

access Δ in graphene include strain engineering  [42], or utilizing moiré superlattice 

potentials  [43,44]. More exotic experimental environments might be sought in cold-atom 

systems  [45,46] or collections of mechanical oscillators [47]. Although a direct experimental 

exploration of this helix structure may be difficult, the discontinuity at Δ=0 has already been 

observed in graphene  [4], and the physics revealed here is broadly applicable to electron 

confinement in other 2D Dirac materials. 
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Figure 1: Classical trajectories near 𝑩𝒄. (a)-(c) Calculated trajectory of a massless, upward-

moving particle released at X=200 Å in magnetic fields slightly less than (a); equal to (b), and 

greater than (c) the critical magnetic field. In (b) the particle escapes by Klein tunneling. (d) and 

(e) show the role of the mass in keeping the motion periodic at 𝐵 = 𝐵𝑐: massless particles Klein-

tunnel out of the potential well (d), while massive particles remain inside and continue to orbit (e). 

If the Hamiltonian is varied adiabatically, the path (f) must avoid 𝐵𝑐.  
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Figure 2:Adiabatic circuit of the Hamiltonian about Bc. Panels (a)-(d) schematically show the 

momentum-space contour 𝛤 (thin blue ring), the monopole source of Berry curvature 𝜴 at the 

origin, and the solid angle subtended by 𝛤 (light blue sheet). During an adiabatic circuit the ring 

is pulled over the monopole, and the Berry phase increases by 2𝜋. (e), center, shows the circuit in 

the 𝐵-𝛥 plane, with the locations of panels (a)-(d) indicated by red dots. The direction of the 

adiabatic loop is indicated by green arrows. 
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Figure 3: Screw dislocation in the m=5/2 eigenstate manifold. Panels (a)-(c) show the resonance 

spectrum of an 𝑚=5/2 wavepacket (see main text) as a function of magnetic field for Δ=-24 meV, 

0, and +24 meV respectively.  Superimposed on the spectrum (dark-bright color scale) are the 

regions of phase space where classical periodic motion is possible (red) or impossible (blue) as 

determined by analysis of the classical Hamiltonian [34].  
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Figure 4: Evolution of a resonance along an adiabatic loop.  (a) In the 𝐵-Δ plane we define the 

elliptical contour 𝐵 = 𝐵0 cos 𝜃, Δ = Δ0 sin 𝜃, where 𝐵0=4 T and Δ0=24 meV (for other parameters 

of the Hamiltonian see the main text). An adiabatic circuit, identical to that schematized in Fig. 2e, 

begins at state A (b) and proceeds clockwise, arriving at state B (l). The calculated wave functions 

at intermediate angles are shown in (c)-(k). At positive mass and increasing field (c)-(f), the lower 

component loses its outer lobe; at negative mass in decreasing field (h)-(k), the upper component 

loses its outer lobe. In (b)-(l) the subpanel side length is 330 nm; the upper and lower spinor 

components are shown in the corresponding subpanels. The resonance spectrum as a function of 

𝜃 is shown in (m), with the path from A to B traced by green arrows.  

 

References: 

[1] A. V. Shytov, M. S. Rudner, and L. S. Levitov, Phys. Rev. Lett. 101, 156804 (2008). 

[2] Y. Zhao, J. Wyrick, F. D. Natterer, J. F. Rodriguez-Nieva, C. Lewandowski, K. Watanabe, 

T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. Stroscio, Science 348, 672 (2015). 

[3] N. M. Freitag, L. A. Chizhova, P. Nemes-Incze, C. R. Woods, R. V. Gorbachev, Y. Cao, A. 

K. Geim, K. S. Novoselov, J. Burgdörfer, F. Libisch, and M. Morgenstern, Nano Lett. 16, 

5798 (2016). 

[4] F. Ghahari, D. Walkup, C. Gutiérrez, J. F. Rodriguez-Nieva, Y. Zhao, J. Wyrick, F. D. 

Natterer, W. G. Cullen, K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. 

Stroscio, Science 356, 845 (2017). 

[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, 

S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). 

[6] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005). 

[7] T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998). 

[8] A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009). 

[9] J. F. Rodriguez-Nieva and L. S. Levitov, Phys. Rev. B 94, 235406 (2016). 



15 

 

[10] M. Ezawa, Phys. Rev. B 76, (2007). 

[11] H. P. Heiskanen, M. Manninen, and J. Akola, New J. Phys. 10, 103015 (2008). 

[12] M. Zarenia, A. Chaves, G. A. Farias, and F. M. Peeters, Phys. Rev. B 84, (2011). 

[13] A. Matulis and F. M. Peeters, Phys. Rev. B 77, (2008). 

[14] J. H. Bardarson, M. Titov, and P. W. Brouwer, Phys. Rev. Lett. 102, 226803 (2009). 

[15] A. Matulis, M. Ramezani Masir, and F. M. Peeters, Phys. Rev. A 86, (2012). 

[16] M. Ramezani Masir, A. Matulis, and F. M. Peeters, Phys. Rev. B 84, (2011). 

[17] H.-Y. Chen, V. Apalkov, and T. Chakraborty, Phys. Rev. Lett. 98, 186803 (2007). 

[18] G. Giavaras, P. A. Maksym, and M. Roy, J. Phys. Condens. Matter 21, 102201 (2009). 

[19] J. Lee, D. Wong, J. Velasco Jr, J. F. Rodriguez-Nieva, S. Kahn, H.-Z. Tsai, T. Taniguchi, K. 

Watanabe, A. Zettl, F. Wang, L. S. Levitov, and M. F. Crommie, Nat. Phys. 12, 1032 (2016). 

[20] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat Phys 2, 620 (2006). 

[21] V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, Science 315, 1252 (2007). 

[22] P. E. Allain and J. N. Fuchs, Eur. Phys. J. B 83, 301 (2011). 

[23] F. Sauter, Z. Für Phys. 73, 547 (1932). 

[24] L. Landau,L.D. E. M., Mechanics, 3rd ed. (Butterworth-Heinemann, 1982). 

[25] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010). 

[26] G. P. Mikitik and Y. V. Sharlai, Phys. Rev. Lett. 82, 2147 (1999). 

[27] M. V. Berry, Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 392, 45 (1984). 

[28] A. Einstein, Deutshe Phys. Ges. 19, 82 (1917). 

[29] A. D. Stone, Phys. Today 58, 37 (2005). 

[30] M. D. Feit, J. A. Fleck, and A. Steiger, J. Comput. Phys. 47, 412 (1982). 

[31] A. D. Bandrauk and H. Shen, Chem. Phys. Lett. 176, 428 (1991). 

[32] J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976). 

[33] A. Chaves, G. A. Farias, F. M. Peeters, and R. Ferreira, Commun. Comput. Phys. 17, 850 

(2015). 

[34] See Supplemental Material at [URL] for details of numerical methods and semicalssical 

analysis. 

[35] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988). 

[36] M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011). 

[37] Y.-S. Fu, M. Kawamura, K. Igarashi, H. Takagi, T. Hanaguri, and T. Sasagawa, Nat. Phys. 

10, 815 (2014). 

[38] T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950). 

[39] M. Born and V. Fock, Z. Für Phys. 51, 165 (1928). 

[40] M. V. Berry, J. Phys. Math. Gen. 17, 1225 (1984). 

[41] J. Hwang and P. Pechukas, J. Chem. Phys. 67, 4640 (1977). 

[42] F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat Phys 6, 30 (2010). 

[43] D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, M. Kindermann, P. N. 

First, and J. A. Stroscio, Nat. Phys 6, 811 (2010). 

[44] M. Kindermann, B. Uchoa, and D. L. Miller, Phys. Rev. B 86, 115415 (2012). 

[45] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature 483, 302 (2012). 

[46] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. 

Takahashi, Nat. Phys. 12, 296 (2016). 

[47] S. D. Huber, Nat. Phys. 12, 621 (2016). 

 



16 

 

Supplementary information for 

Helical Level Structure of Dirac Potential Wells 

Daniel Walkup1,2† and Joseph A. Stroscio1 

1Center for Nanoscale Science and Technology, National Institute of Standards and 

Technology, Gaithersburg, MD 20899, USA 
2Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA 

 

 

 

Contents 

1. Quadratic potential – possibility of classical periodic motion 

2. Generating the initial wavepacket 

3. Adiabatic circuits as a function of time 

4. Conical and cubic potentials 

5. Zero-Berry phase Landau levels 

 

  

                                                 
† To whom correspondence should be addressed. 



17 

 

1. Quadratic potential - possibility of classical periodic motion 

For the quadratic potential well, we can explicate the classical phase diagram of the 

electron motion using the mathematics of cubic functions. This allows us to generate the colored 

backgrounds of Fig. 3, and gain some other insights as well. The square of the radial momentum,  

𝑝𝑟
2(𝑟) = (

𝐸 − 𝜅𝑟2

𝑣𝐹
)

2

− (
𝑝𝜙

𝑟
−

𝑒𝐵

2
𝑟)

2

− Δ2, (𝑆1) 

can be expressed in terms of 𝑠 ≡ 𝑟2 as    

𝑓(𝑠) ≡ 𝑠𝑝𝑟
2(𝑠) = 𝑎𝑠3 + 𝑏𝑠2 + 𝑐𝑠 + 𝑑 (𝑆2) 

where 𝑎 = (𝜅/𝑣𝐹)2, 𝑏 = −(2𝐸𝜅/𝑣𝑓
2 + 𝑒2𝐵2/4), 𝑐 = (𝐸/𝑣𝐹)2 − Δ2 + 𝑒𝑝𝜙𝐵, and 𝑑 = −𝑝𝜙

2 . We 

have 𝑓(0) = −𝑝𝜙
2 , 𝑓(𝑠 → ∞) = +∞, so that 𝑓 has at least one real root for positive 𝑠. The number 

of real roots is determined by the discriminant, 𝐷 = 18𝑎𝑏𝑐𝑑 − 4𝑏3𝑑 + 𝑏2𝑐2 − 4𝑎𝑐3 − 27𝑎2𝑑2. 

A sign change of the discriminant signifies the transition from the one-root regime (𝐷 < 0) to the 

three-root regime (𝐷 > 0) with a double root occurring for 𝐷 = 0 (Fig. S1). Physically, classical 

periodic motion occurs in the three-root regime between the first two roots [1] (Fig. S1(a, d)). 

 In the three-root regime the area between the first two roots relates to the classical action 

𝐽𝑟 = ∮ 𝑝𝑟𝑑𝑟, and the area between the second two is related to the WKB tunneling integral 𝑃 =

∫ |𝑝𝑟(𝑟)|𝑑𝑟; these labels are included in Fig. S1. A sign change of 𝐷 can occur in two physically 

distinct ways, depending on which pair of roots merge together and vanish. When the first pair 

merges (Fig. S1(a-c)), the action goes to zero: we reach the bottom of a ladder of eigenstates. The 

merging of the second pair (Fig. S1(d-f)) signifies the lifetime going to zero: the particle escapes 

and the resonances line disappears. In Figs. S1,2 we label the first type of transition 𝐈, and the 

second type 𝐈𝐈.  
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 In Fig. S2 we show planar “phase diagrams” of the Hamiltonian for 𝑚 = 5/2, 𝜅= 4 

eV/𝜇m2, and Δ = 0, ±24 meV. The three-root regime is shown in red and the one-root regime in 

blue; zeroes of 𝐷, which is calculated numerically, are shown as bright curves. At finite mass Fig. 

S2(b), all such zero-curves correspond to transitions between the one-root and three-root regimes, 

except one a pair of curves labeled IV, which correspond to roots appearing unphysically at 

negative 𝑠. The three-root regime is split into regions labeled (1), (2) and (3). Region (1) is the 

region of quasi-bound orbits of the type discussed in the main text (Fig. 1), and regions (2) and (3) 

contain states corresponding to negative Landau levels. At positive field, the gap between regions 

(1) and (3) is about 2|Δ|, and disappears when Δ=0 (Fig. S1(a)). At zero mass, region (1) is bisected 

by the bright curve labeled 𝐈𝐈′, which is the cricital field: 𝐵𝑐(𝐸) = 2𝜅𝑚ℏ/𝐸. Crossing this curve 

from left to right, the lifetime goes to zero and then comes back (Fig. S1(d,e)), the Berry phase 

having switched from 0 to 𝜋. We note here that in Fig. S2(b) the equation 𝐵𝑐(𝐸) = 2𝜅𝑚ℏ/𝐸 

describes both 𝐈𝐈′ and its extension, labeled 𝐈′, which is a zero-locus of the radial action; on this 

locus sits the state L0, which corresponds to the N=0 Landau level (Fig. S2(d)).  

  To link this discussion up with the main text, in Fig. S2(c-e) we superimpose the calculated 

resonance spectra on the phase diagram. Of course, resonances only occur in the three-root regime. 

As explained in the main text, the helix structure emerges from the fact that for Δ < 0, L0 sits on 

the top of region (3) (Fig. S2(c)), whereas for Δ > 0 it is at the bottom of region (1) (Fig. S2(e)). 

2. Generating the initial wavepacket 

The spectra shown in Fig. 3 were extracted using a picked wavepacket, described below. 

But the energy levels obtained from the spectral method are quite independent of the initial 

wavefunction. To show this, we first describe some methods for generating randomized 

wavepackets (Fig. S3), and show the spectral results obtained using such wavepackets (Fig. S4).    
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In constructing an initial wavepacket 𝜒0 with a given 𝑚 it is important to adhere to certain 

requirements. For the radially symmetric spinor 

𝜒𝑚(𝐫) = 𝑒𝑖(𝑚−
1
2

)𝜙 (
𝑢0(𝑟)

𝑒𝑖𝜙𝑢1(𝑟)
) = (

𝑒𝑖(𝑚−
1
2

)𝜙𝑢0(𝑟)

𝑒𝑖(𝑚+
1
2

)𝜙𝑢1(𝑟)
) , (𝑆3) 

each component will be some 𝐹𝑛(𝑟, 𝜙) =  𝑒𝑖𝑛𝜙𝑢(𝑟); these are inherently orthogonal for different 

𝑛. Because the simulation is on a Cartesian pixel grid, the orthogonality is only approximate: the 

aliasing of 𝑒𝑖𝑛𝜙 near 𝑟 = 0 creates overlap between different n unless  𝑢(𝑟) is suppressed near the 

origin.  

This necessity of suppressing 𝐹𝑛(𝑟, 𝜙) near 𝑟=0 coincides with the physical suppression of 

the wave function for orbits with large angular momentum. Naively, we can use well-known sets 

of orthonormal functions, for example associated Laguerre functions [2] 

𝑀𝑛
𝑝(𝑟, 𝜙) = 𝑒𝑖𝑛𝜙𝐿𝑛+𝑝

𝑛 (𝑥)𝑒−
𝑥
2, (𝑆4) 

where 𝑥 = (
𝑟

𝑟0
)

2

, 𝑟0 is a parameter, and 𝐿𝑛+𝑝
𝑛 (𝑥) is the associated Laguerre polynomial. We can 

then form 𝐹𝑛 as  

𝐹𝑛(𝑟, 𝜙) = ∑ 𝑐𝑝𝑀𝑛
𝑝(𝐫)

𝑝𝑚𝑎𝑥 

𝑝=0

(𝑆5) 

where the 𝑐𝑝 are chosen in some random manner, and 𝑝𝑚𝑎𝑥 is on the order of the number of linear 

pixels in the simulation area. 
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With Laguerre functions it is possible to prevent spatial aliasing, and also to explore a large 

region of momentum space, by tuning 𝑟0. To do this, we take advantage of the fact that the Fourier 

transform of the normalized Laguerre function is a re-scaled version of the same function in 

momentum space: As 𝑝 increases, the function 𝐿𝑛+𝑝
𝑛 (𝑥)𝑒−𝑥/2 expands towards the edge of the 

simulation grid, and its Fourier transform expands towards the edge of the 2D Brillouin zone. We 

choose 𝑟0 such that the real and momentum-space Laguerre functions “touch” the edge of their 

respective spaces at the same value of 𝑝, then choose a somewhat smaller 𝑝𝑚𝑎𝑥.  

We can also use the Laguerre functions as an orthonormal basis for projecting other 

wavefunctions, which we initially randomize without regard to their angular momentum. Such 

wave functions can be formed easily in momentum-space, by filling all k up to some 𝑘𝑚𝑎𝑥 with 

random phase factors: 

𝜒𝐤 = (𝑒𝑖𝑅1

𝑒𝑖𝑅2
) (𝑆6) 

where 𝑅1,2 are random numbers between zero and 2π. An example of such a wave-function 

formed in a 128x128 pixel grid is shown in Fig. S3(b). Its inverse Fourier transform—that is, the 

real space wave function—is shown in Fig. S3(c), and its projection onto the 𝑚=5/2 subspace is 

shown in Fig. S3(d). Resonance spectra as a function of field for three randomized wavepackets 

generated by this method are shown in Fig. S4(a)-(c), together with the average of the three spectra 

(Fig. S4(d)).  

The noticeable dips in the resonance intensity in Fig. S4(a)-(c) can be explained as matrix 

element effects: as the Hamiltonan changes the eigenstates change gradually, and because the 

randomized wavepacket represents only one vector of the Hilbert space, some of these eigenstates 
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sweep through a state of orthogonality or near-orthogonality to 𝜒𝑚. These dips are less common 

for the picked wavefunction. 

For the spectra shown in Fig. 3 and Fig. 4(m) we used the picked function 

𝜒𝑚(𝐫) = 𝑒𝑖(𝑚−
1
2

)𝜙 (
𝐺(𝑟)𝐹(𝑟)

𝑒𝑖𝜙+𝛼𝐺(𝑟)𝐹(𝑟)
) 𝑒𝑖𝑤𝑟2

(𝑆7) 

where 𝐺(𝑟) =
1

2
(1 + erf (

(𝑟−𝑟min)

𝐿1
)) is a Gaussian error function designed to eliminate aliasing 

effects by suppressing the wavefunction below radius 𝑟min, 𝐹(𝑟) = 1/(1 + 𝑒(𝑟−𝑟max)/𝐿2) is a 

Fermi function which cuts off the wavefunction at radius 𝑟max, 𝑤 is a constant so chosen that the 

local wavenumber 2𝑤𝑟 approaches the Brillouin zone edge by 𝑟max, and the roll-off lengths 𝐿1 

and 𝐿2 are on the order of two pixels. The constant 𝛼 influences the initial velocity distribution: 𝐹 

and 𝐺 being real functions, 𝛼=0 would correspond to an initial velocity radially outward. To obtain 

good matrix elements with circulatory resonances, we set 𝛼=π/2. This wavefunction, generated on 

a 256x256 pixel grid, is shown in Fig. S3(a). 

3. Adiabatic circuits as a function of time 

As a secondary part of our simulations we did a two-step calculaton: first, at a given point 

(𝐵𝑖, Δ𝑖), we extract the wave function of a particular resonance, and then we evolve this wave 

function in a time-dependent Hamiltonian 𝐻(𝑡) which starts from that point and slowly moves 

through the 𝐵-Δ plane. This allows us to follow a quantum state as it evolves dynamically along 

the type of adiabatic loop discussed in the main text. 

Fig. S5 and S6 show results obtained using the elliptical loop defined by B = B0 cos θ, 

Δ = Δ0 sin θ, where B0=1 T and Δ0 = 64 meV. (See also supplementary movies 2 and 3). In Fig. 
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S7 we ascend the eigenstate spiral by putting θ = 𝜔𝑡; in Fig. S5 we put θ = −𝜔𝑡 to descend the 

spiral. In both simulations the wavepacket is started in the state analogous to the positive-field 

N=3 LL (i.e. at θ = 0), and the simulation is run for 40 ps with 𝜔 =2𝜋/10 ps. The gradual addition 

(Fig. S5) or subtraction (Fig. S6) of outer lobes of the wave function is consistent with the picture 

of Fig. 4. On the descending path (Fig. S5), the state finally delocalizes after slightly more than 

three circuits. The point of delocalization is, schematically, the “apex” of region (3) of the 

semiclassical phase diagram (labeled III in Fig. S2(e)). 

We also computed stationary states along this loop as a function of θ, as in Fig. 4. (Fig. 

S7). For the parameters B0=4 T and Δ0 = 24 meV used in the main text, the lifetime was noticeably 

shorter near θ=𝜋/2 or 3𝜋/2 than θ=0 or 𝜋. In this loop however, the lifetime is more uniform and 

the growth of the outer lobe proceeds more evenly as a function of θ (Fig. S7(b)-(q),(r)-(aa)). 

4. Conical and cubic potentials  

For completeness, we performed calculations like those of Fig. 3 (with 𝑚 = 5/2) in a 

conical potential 𝑈 = 𝐹𝑟 where 𝐹=800 meV/𝜇m (Fig. S8(a)-(g)), the already-shown quadratic 

potential with 𝜅= 4 eV/ 𝜇m2 (Fig. S8(h)-(n)), and a cubic potential 𝑈 = 𝐾𝑟3 where 𝐾 = 20 eV/ 

𝜇m3 (Fig. S8(o)-(u)) as a function of Δ and 𝐵. As expected, the same helical resonance spectrum 

is present in all cases. This is expected theoretically, and in Ref.  [3] the zero-mass delocalization 

at 𝐵𝑐 was derived for a generic power-law potential.  

5. Zero-Berry phase Landau levels 

For 𝐵 < 𝐵𝑐 the Berry phase is zero, and the resonances have equal numbers of radial lobes 

in their two components (e.g. Fig. 4(b),(l)). If we turn off the confining potential, these go into 
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negative-field LLs with the same property (Fig. S9(e),(f)). Because these states are the time-

reversal conjugates of negative-𝑚 LLs [4,5], we have the seemingly new result that such LLs have 

zero Berry phase. This can be seen from a semiclassical analysis of the Hamiltonian (following 

section 1). Taking Eq. (S1) and setting 𝜅 = Δ = 0 we obtain 

𝑝𝑟
2(𝑟) = (

𝐸

𝑣𝐹
)

2

− (
𝑚ℏ

𝑟
−

𝑒𝐵

2
𝑟)

2

. (𝑆8) 

Again defining  𝑠 = 𝑟2 and 𝑓(𝑠) ≡ 𝑠𝑝𝑟
2(𝑠), we have  

𝑓(𝑠) = 𝑎𝑠2 + 𝑏𝑠 + 𝑐 (𝑆9) 

where 𝑎 = −𝑒2𝐵2/4, 𝑏 = 𝑒𝐵𝑚ℏ + 𝜂, 𝑐 = −(𝑚ℏ)2,and  𝜂 = 𝐸2/𝑣𝑓
2. This 𝑓 is a downward-

curving parabola, and the zero-Jr locus, which is the bottom of the eigenstate ladder, will occur at 

those energies where the discriminant D ≡ 𝑏2 − 4𝑎𝑐 = 0. This yields 𝜂2 + 2𝜂𝑒𝐵𝑚ℏ = 0, with 

solutions 𝜂 = 0 and −𝜂 = 2𝑒𝐵𝑚ℏ. The latter root yields real 𝐸 if 𝑒𝐵𝑚 < 0, in which case  

𝐸0 = ±√2𝑣𝑓
2𝑒ℏ|𝑚|𝐵. (𝑆10) 

Since 𝑚 is a half-integer, the allowed Landau levels are at 𝑁 = |𝑚| + 𝑛 +
1

2
, which 

corresponds to the zero-Berry phase rule 𝐽𝑟 = (𝑛 +
1

2
) ℎ.  

It is interesting to note that the qualitative difference in the classical velocity distribution 

across 𝐵𝑐 is reflected in the quantum-mechanical probability current density. To show this, we 

calculate 𝐉(𝐫) = 𝑣𝐹𝜓†(𝐫)𝛔𝜓(𝐫)  [6] for the states A,B,A’,B’ (Fig. S9(g)-(j)). At negative fields 

the classical particle (Fig. S10(b)) has the same sign of azimuthal velocity at both turning points, 

and the quantum particle’s current density has the same sign on its inner and outer lobes (Fig. S9 
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(i),(j)). At positive 𝐵 the classical azimuthal velocity is inverted at the outer turning point (Fig. 

S10(a)), while the quantum velocity distribution has an inverted outer lobe (Fig. S9(g),(h)). For 

completeness, in the classical case we include the classical momentum-space contours from which 

𝜑𝐵would be calculated (Fig. S10(c)). 
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Fig. S1: Transitions from quasibound to unbound states. Panels (a)-(c) show the dwindling of the radial 

action, labeled 𝐽𝑟 in (a), to zero: the bottom of a ladder of quantum states, the transition is labeled 𝑰. Panels (d)-(f) 

show the shrinking of the Klein tunneling barrier 𝑃 to zero, labeled 𝑰𝑰. The “turn-around” behaviors 𝑰′ and 𝑰𝑰′ are 

shown in dark green. The curve 𝑓(𝑠) is related to the square of the radial momentum: 𝑓(𝑠) = 𝑠𝑝
𝑟
2(𝑠) where 𝑠=𝑟2.  
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Fig. S2: Semiclassical m=5/2 phase diagram at zero and finite mass. Panels (a) and (b) show the number 

of positive roots of 𝑓(𝑠) for 𝑚 = 5/2, and the types of transitions between them, (a) for 𝛥 = 0 and (b) 𝛥 = 24 meV, 

respectively. The foreground is a semitransparent image which is red if 𝑓(𝑠) has three positive roots and blue 

otherwise; divided into regions labeled with Arabic numerals. Zeroes of the discriminant 𝐷 appear as bright lines. The 

disconnected red regions for finite 𝛥 (a) are labeled (1),(2),(3); at 𝛥 = 0 (b) region (3) joins region (1), which is split 

by 𝐵𝑐 into regions (1a) and (1b). Classical periodic motion requires 3 real roots. In panels (c)-(e) we include also the 

power spectrum of a picked wavepacket at corresponding masses less than (c), equal to (d), and greater than zero (e); 

compare Fig. 3 of the main text. 
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Fig. S3: Initial wavefunctions. (a) shows the “picked” 𝑚 = 5/2 wavefunction used for the dataset of Figs. 

3 and S2. (b)-(c) show the steps used in preparing a projected, randomized wavefunction: first the momentum space 

is filled out with random-phase eigenspinors up to some kmax (b); then we take the inverse Fourier transform (c) and 

project onto the Laguerre subspace for 𝑚 = 5/2 (d). The grids are 256 pixels = 662 nm for (a), 128 pixels = 882 nm 

for (c-d). 
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Fig. S4 Power spectra of the correlation function for several initial wavefunctions. Panels (a)-(c) show 

power spectra of 𝐶(𝑡) for three different randomized wavefunctions with 𝑚 = 5/2, prepared as described in the text 

and depicted in Fig. S3d. Panel (d) shows the average of the three power spectra (a)-(c).  
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Fig. S5 Adiabatic evolution of a wavepacket ascending the spiral Panels (a),(b),(c)…(i) show the two 

components of the wavefunction after it has evolved through 0,¼,1/2…2 counterclockwise circuits in (𝐵,Δ) space 

respectively; the time spacing is 2.5 ps. 𝐵0 = 1 T, Δ0 = 64 meV, and each subpanel of (a)-(i) has a side length of 440 

nm. In the color scale brightness represents amplitude and hue represents phase. (j) shows the energy and norm of the 

wavepacket as it evolves; for every second panel in (a)-(i) the snapshot time is indicated by the pink dotted line. The 

energy, which increases nonmonotonically, is also plotted (green curve). 
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Fig. S6 Adiabatic evolution of a wavepacket descending the spiral. Panels (a),(b),(c)…(i) show the two 

components of the wavefunction after it has evolved through 0,¼,1/2…2 clockwise circuits in (𝐵,Δ) space 

respectively; the time spacing is 2.5 ps. 𝐵0 = 1 T, Δ0 = 64 meV, and each subpanel of (a)-(i) has a side length of 440 

nm. In the color scale brightness represents amplitude and hue represents phase. (j) shows the energy and norm of the 

wavepacket as it evolves; for every second panel in (a)-(i) the snapshot time is indicated by the pink dotted line. The 

energy, which increases nonmonotonically, is also plotted (green curve). 
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Fig. S7 Weak-field resonances of 𝑯(𝜽) (a) shows the m=5/2 power spectrum of a randomized wavepacket; 

for 𝐻(𝜃) we have 𝐵(𝜃) = 𝐵0 cos 𝜃, Δ(𝜃) = Δ0 sin 𝜃,  B0 = 1 T, Δ0 = 64 meV. The pink and cyan arrows point to 

the same eigenstates as the pink and cyan arrows in Fig. 3. To ascend the spiral one may follow the spectrum peak to 

the right and then zip left along the blue dashed line, and vice versa. Panels (b)-(q) show the eigenstates between these 

arrows at sixteen evenly spaced angles, extracted by Fourier filtration. Panels (r)-(aa) show ten eigenstates in a smaller 

range of angles near 𝜋/2, indicated by the green dashed lines in (a); the lobe gradually builds on the lower component. 

The index 𝑖 indicates 𝜃, using 𝜃 = 2𝜋𝑖/256. The color scale is the same for panels (b)-(aa); brightness represents 

amplitude and hue represents phase. 
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Fig. S8 Helical spectra of power-law potentials. Each panel shows power spectra averaged over a few 

randomized m=5/2 initial wavefunctions for the indicated mass and well type. Panels (a)-(g) use conic potential 𝑈 =
𝐹𝑟 where 𝐹=800 meV/𝜇m; panels (h)-(n) use a quadratic potential with 𝜅 = 4 eV/ 𝜇m2 (the same as elsewhere in the 

text); panels (o)-(u) use a cubic potential 𝑈 = 𝐾𝑟3 where 𝐾 = 20 eV/ 𝜇m3. 
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Fig. S9 m=5/2 Landau levels at positive and negative magnetic field. Panel (a) shows a spectrum as a 

function of magnetic field for m=5/2; the mass and confining potential are zero. The Fourier-extracted wavefunctions 

corresponding to the states A,B, A’,B’,L0 at |𝐵| = 1 T are shown in panels (b)-(f) respectively. The current density 

profile 𝐉 = 𝑣𝐹𝜓†𝛔𝜓 is shown in panels (g)-(j) for the corresponding states. The wavefunctions are extracted at 1 T, 

where 𝑙𝐵 = √ℏ/𝑒𝐵 = 25.7 nm.    
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Fig. S10 Classical Landau orbits at positive and negative field. Panels (a) and (b) show the trajectories of 

a Dirac particle with angular momentum +ℏ/2 released at x=200Å in the potential 𝑈 = 𝜅𝑟2 where 𝜅= 4meV/ 𝜇m2, 

and B = +200 mT and -200 mT respectively. (c) shows the kinematic momentum evaluated along 𝐶𝑟 for both orbits. 

The red orbit picks up a Berry phase of π; the blue crescent-shaped loop does not enclose the origin. The direction of 

the velocity at the inner and outer turning points is indicated by arrows in (a) and (b).  
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Movie: Helical spectrum of a quadratic potential well (m=5/2). A 3D slice-rendering of the resonance 

spectrum of the 2D Dirac Hamiltonian in a quadratic potential well (𝜅=4 eV/𝜇m2) in the volume defined by 𝐵, Δ, and 

energy 𝐸; resonances appear as bright curves. The orthogonal planes are: (1) the Δ-𝐸 plane, upper left; (2) the 𝐵-𝐸 

plane, initially lower left, and (3) the 𝐵-Δ plane, initially at bottom. First, the 𝐵-𝐸 plane moves from Δ=+32 meV to -

32 meV, following the evolution of Fig. 3(a)-(c) but in reverse order. Then the 𝐵-Δ plane increases in energy, showing 

the eigenstates/resonances as part of a continuous spiral, emanating from the screw dislocation at the critical field 𝐵𝑐. 

Resonances were obtained using the spectral method (Ref. 30) as described in the main text, using a randomized initial 

wave packet with m=5/2.       


