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Abstract 

Atomistic simulations using classical interatomic potentials are powerful investigative tools 

linking atomic structures to dynamic properties and behaviors. It is well known that different 

interatomic potentials produce different results, thus making it necessary to characterize 

potentials based on how they predict basic properties. Doing so makes it possible to compare 

existing interatomic models in order to select those best suited for specific use cases, and to 

identify any limitations of the models that may lead to unrealistic responses. While the methods 

for obtaining many of these properties are often thought of as simple calculations, there are many 

underlying aspects that can lead to variability in the reported property values. For instance, 

multiple methods may exist for computing the same property and values may be sensitive to 

certain simulation parameters. Here, we introduce a new high-throughput computational 

framework that encodes various simulation methodologies as Python calculation scripts. Three 

distinct methods for evaluating the lattice and elastic constants of bulk crystal structures are 

implemented and used to evaluate the properties across 120 interatomic potentials, 18 crystal 

prototypes, and all possible combinations of unique lattice site and elemental model pairings. 

Analysis of the results reveals which potentials and crystal prototypes are sensitive to the 

calculation methods and parameters, and it assists with the verification of potentials, methods, 

and molecular dynamics software. The results, calculation scripts, and computational 

infrastructure are self-contained and openly available to support researchers in performing 

meaningful simulations. 

 

1. Introduction 

Calculations and simulations using so-called classical interatomic potentials occupy a 

unique place in materials research. Classical molecular dynamics (MD) and Monte Carlo (MC) 

simulations are considerably less computationally expensive than comparable quantum-based 

calculations, and will likely remain so as the classical methods typically scale with the number of 
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atoms, while density functional theory (DFT), the most used quantum-based calculation method, 

scales with the number of atoms cubed. However, this computational efficiency comes at the cost 

of accuracy and adaptability in what the classical potentials can realistically represent. In 

practice, this tradeoff between computation and accuracy means that classical atomistic 

simulations are best suited for revealing how atomic-level structures and interactions influence 

the complex, dynamic behaviors and reactions of collections of atoms, molecules, and crystalline 

defects. 

Appropriately performing atomistic simulations and reporting meaningful results requires 

understanding the strengths and limitations associated with the empirical potentials used. Most 

classical potentials have functional forms that provide good representations for certain atomic 

bonds and poor representations of others. Developers fit the parameters of the models to capture 

specific materials properties, atomic configurations, and energy barriers that they consider most 

important. The accuracy of these fitted properties depends on the accuracy of the underlying 

reference information, and the weights that the potential creators placed on capturing each 

property. The resulting potentials can only be expected to give realistic predictions for 

simulations that operate within their fitted phase space. However, scientifically interesting 

simulations often involve complex, dynamically evolving configurations that may explore 

conditions outside the fitted regime. Characterizing simulation results as realistic or artificial 

requires an understanding of how the potential behaves under all explored conditions.  

Further complications arise from the fact that there are often numerous interatomic 

potentials available for a given material system. For example, the National Institute of Standards 

and Technology (NIST) Interatomic Potentials Repository [1] currently lists entries for 22 

potentials capable of simulating nickel. These models encompass multiple functional forms, and 

were fit with different applications and properties in mind. Some even were fit solely for 

compounds and provide poor representations of elemental nickel. Anyone planning on 

performing simulations of nickel would need to be able to determine which, if any, of the 

existing potentials is most likely to provide realistic predictions for their area of study.  

The nature of atomistic simulations makes it difficult, if not impossible, to evaluate the 

quality of potentials based on their mathematical forms alone. Instead, it is only through 

adequate characterization and consideration of the potentials’ predicted properties that one can 

realistically compare different potentials [2, 3], and to properly analyze simulation results. There 
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have been numerous comparison studies of potentials published in the literature, often 

accompanying the release of a new potential [4-8]. While useful, the static nature of the 

publications limits the comparisons to only a handful of currently existing models. Additionally, 

there is no consistency across the works in terms of the properties considered, and commonly 

reported properties may have been evaluated using different methodologies. It is also not 

uncommon for the description of the methodologies to be lacking or non-existent for many of the 

so-called basic properties. Clear methodology is important in model verification as it allows for 

consistent tests and can help identify the source of variations in reported values across different 

works. 

To address this need for clear, repeatable atomistic property evaluations, Trautt, et al. [9] 

outlined a framework for performing calculations across different interatomic potentials, and 

demonstrated its application to producing generalized stacking fault maps for face centered cubic 

(fcc) metals. The most notable aspect of that work was that it outlined a means in which the 

calculations could be performed in a high-throughput manner, while keeping the calculation’s 

methodology transparent to the user.  

This paper introduces a new Python-based high-throughput calculation framework which 

builds upon the principles introduced in [9]. The new framework features a modular design 

better suited for creating and running a wide variety of calculations in high-throughput. An 

emphasis is placed on constructing calculation methods that are easy to use, exist in a concise 

and sharable format, and fully document and describe the underlying methodology. Additionally, 

results are produced in a structured format that is human and machine readable allowing for the 

data to be easily shared either as individual files or as part of a database. 

The new framework is utilized to compare the relaxed lattice and elastic constants using 

different computational methods. Calculations are performed across eighteen different crystal 

prototypes, one hundred twenty interatomic potentials and three different relaxation methods. 

Analysis of the results proves to be valuable in assessing not only the strengths and limitations of 

the calculation methods and interatomic models, but also assists in verification of the underlying 

algorithms and code.  
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2. Computational Methods 

 All calculations performed for this work are encoded as Python scripts within the iprPy 

computational framework (accessible at https://github.com/usnistgov/iprPy). The iprPy 

framework is focused on the design and creation of open and transparent calculation 

methodologies that can easily be integrated into high-throughput workflows. Each calculation 

script represents the full methodology of a property evaluation by setting up and performing one 

or more Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular 

dynamics [10, 11] simulations, followed by processing the simulation results to obtain values of 

interest. Simple input files provide all variable parameters to each calculation, and the results are 

exported as structured eXtensible Markup Language (XML)- or JavaScript Object Notation 

(JSON)-based data models. The high-throughput tools of the iprPy framework were used to 

prepare and run all calculations presented here. More details of the design of the iprPy 

framework can be found in Appendix A. 

 

Table 1: List of the crystal prototypes used in this study. 

ID Strukturbericht  

Prototype 

Composition Common Name 

A1--Cu--fcc A1 Cu Face-centered cubic (fcc) 

A2--W--bcc A2 W Body-centered cubic (bcc) 

A3'--alpha-La--double-hcp A3' α-La 

Double hexagonal close-packed 

(double hcp) 

A3--Mg--hcp A3 Mg Hexagonal close-packed (hcp) 

A4--C--dc A4 Cu Diamond cubic (dc) 

A5--beta-Sn A5 β-Sn   

A6--In--bct A6 In Body-centered tetragonal (bct) 

A7--alpha-As A7 α-As   

A15--beta-W A15 β-W   

Ah--alpha-Po--sc Ah α-Po Simple cubic (sc) 

B1--NaCl--rock-salt B1 NaCl Rock salt 

B2--CsCl B2 CsCl   

B3--ZnS--cubic-zinc-blende B3 ZnS Cubic zinc blende 

C1--CaF2--fluorite C1 CaF2 Fluorite 

D0_3--BiF3 D03 BiF3   

L1_0--AuCu L10 AuCu   

L1_2--AuCu3 L12 AuCu3   

L2_1--AlCu2Mn--heusler L21 AlCu2Mn Heusler 

 

https://github.com/usnistgov/iprPy
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The calculations were performed across one hundred twenty interatomic potentials, 

eighteen crystal prototypes, and all pairing combinations of each potential’s elemental models to 

each prototype’s unique lattice sites. All potentials used here are hosted on the NIST Interatomic 

Potentials Repository [1] in formats compatible with LAMMPS. Table I lists the crystal 

prototypes used. For this work, the prototypes are referred to using a unique identifier that 

combines the Strukturbericht symbol, prototype composition, and common name. Of the crystal 

prototypes investigated, nine are for elemental structures and nine are for binary or ternary 

compounds.  

Four different calculation scripts were used for this work, referred to as E_vs_r_scan, 

LAMMPS_ELASTIC, refine_structure, and dynamic_relax. Initial rough estimates for the lattice 

parameters of stable crystal structures were first obtained using the E_vs_r_scan calculation. The 

structures corresponding to energy minima identified by the E_vs_r_scan calculation were then 

used as initial guesses for stable crystal structures that were passed on to the other calculation 

scripts, with each one providing some means of relaxing the initial guess to a more optimal 

configuration. The LAMMPS_ELASTIC, and refine_structure calculations also provide an 

estimate of the relaxed structure’s elastic constants. 

The E_vs_r_scan calculation evaluates a crystal’s cohesive energy, Ecoh, as a function of 

shortest atomic nearest neighbor distance, r0. An atomic system for a hypothetical crystal 

structure is generated by filling in the unique lattice sites of a crystal prototype with a potential’s 

elements. The dimensions of the system are uniformly scaled relative to r0. For this calculation, 

the ratio of the lattice constants is held fixed at an ideal value (e.g., c/a = 1.663 for hexagonal 

close-packed). For each value of r0, the cohesive energy is evaluated using LAMMPS without 

atomic relaxations. The analysis here used 100 steps of r0 over the range 0.2 nm ≤ r0 ≤ 0.6 nm. 

This range was found to be optimum for the potentials included in this investigation as most of 

the potentials are for metallic and semiconductor systems. 

 The refine_structure calculation statically calculates the ideal lattice constants and elastic 

constants at a specified pressure. The underlying algorithm works by having LAMMPS evaluate 

the pressure for a system as given, and at small positive and negative strains without any atomic 

relaxation. The full elastic stiffness tensor, ijC , is calculated from the change in pressures with 

respect to the change in strains. Assuming linear elasticity, the pressure of the unstrained system 
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and the elastic compliance tensor, 
1 ijij CS , are used to guess a new box size, and the system is 

uniformly scaled accordingly. This process is then repeated until the lattice constants converge.  

 The LAMMPS_ELASTIC calculation script is a wrapper around the ELASTIC example 

simulation distributed with the LAMMPS code in its Examples folder. The ELASTIC example 

script is a well-known, open source resource for LAMMPS users to statically calculate the elastic 

constants for a crystal. In the ELASTIC example, the system is first relaxed using an energy 

minimization of atomic coordinates coupled with box dimension adjustments towards zero 

pressure (i.e., minimize plus fix box_relax commands). The elastic stiffness tensor is then 

evaluated using the virial pressure of the relaxed system, and at fixed small strain values from 

the relaxed configuration. For the small strain states, each was subjected to an energy 

minimization of the atomic coordinates with fixed box dimensions prior to measuring the virial 

pressure. 

The LAMMPS_ELASTIC Python script in iprPy extends the capabilities of the original 

script by providing the same input parameter interface used by the other iprPy calculations. 

Doing so makes it possible to run the calculations in high-throughput across the interatomic 

potentials and initial crystal structure guesses. During testing, it was revealed that the relaxation 

step of the underlying method may not fully relax crystal structures that are far from a minimum 

energy state. To address this issue, the iprPy LAMMPS_ELASTIC calculation was updated such 

that it iteratively runs the underlying method until the lattice constants converge. Results are 

shown here for both the original single-run version and the newer iterative version to 

demonstrate the limitations with the original. For clarity, the updated version is referred 

throughout this paper as “iterative LAMMPS_ELASTIC”. 

 The dynamic_relax calculation script runs a molecular dynamics simulation at a specified 

temperature and pressure, allowing the system to evolve over time. Relaxations are performed 

using nph integration with a Langevin thermostat set for 0 K. This integration scheme adjusts the 

box dimensions to the given pressure, while dampening out the kinetic energy of the atoms. 

Relaxed cell parameters are obtained by averaging the instantaneous system dimensions at each 

timestep after an equilibration time. 

The calculation scripts and supporting files are integrated into iprPy, and the descriptions 

provided here are consistent with iprPy versions 0.6 and 0.7.1. The primary difference between 

the two versions is that the iterative LAMMPS_ELASTIC became standard in version 0.7.1, 
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although an option is included that allows the calculations to run without iteration. Simulations 

were performed on different computing resources using LAMMPS versions 2016-03-11, 2016-

09-02, 2016-11-17, and 2017-01-26. XML records for all calculations performed and an archival 

version of the codebase including calculation scripts, high-throughput tools, and analysis tools 

consistent with this work can be accessed from the NIST Material Measurement Laboratory data 

repository server (https://materialsdata.nist.gov/). 

3.  Results and Discussion 

3.1 Initial scan 

Figure 1 shows some example plots of cohesive energy versus interatomic spacing as 

obtained from the E_vs_r_scan calculation method. Out of the 5570 E_vs_r_scan calculations 

performed, 98 found no energy minima within the scanned range, 4416 found one minimum, and 

1056 found multiple minima resulting in a total of 7427 possible crystal structures being 

identified. It should be noted that this calculation method by itself is insufficient for determining 

the stability of the possible structures and that many will likely be revealed as unstable upon 

further refinement. The identification of multiple minima with some of the calculations may 

seem concerning, but does not necessarily mean that a given potential is of questionable quality. 

The multiple minima may correspond to unstable configurations, or configurations only 

accessible under extreme conditions far from the ideal equilibrium.  

 

Figure 1: Cohesive energy versus ideal interatomic spacing of A1—Cu—fcc crystal structure for elemental aluminum using (A) 

2003--Zope-R-R--Al [6] and (B) 2000--Sturgeon-J-B--Al [12] interatomic potentials. For (B), note the shallow secondary minima 

around r = 0.51 nm. 

3.2 Lattice constant estimates  

https://materialsdata.nist.gov/
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Twelve different relaxation calculations were performed per possible crystal structure 

identified from the E_vs_r_scan calculations: one dynamic_relax calculation, five of each of 

refine_structure and LAMMPS_ELASTIC corresponding to small strain values of 10-4, 10-5, 10-

6, 10-7 and 10-8, and one iterative LAMMPS_ELASTIC with a small strain value of 10-8. Despite 

there being more than ten times the number of static calculations as dynamic calculations, 

performing the dynamic calculations required noticeably more computational hours than 

performing the static calculations.  

Not all of the relaxation calculations finished successfully. For the dynamic_relax 

method, 124 calculations issued LAMMPS simulation errors consistent with highly unfavorable 

configurations being explored, resulting in unstable simulations. With LAMMPS_ELASTIC, 

roughly 30 calculations per strain range issued errors indicative of extremely unstable 

configurations being explored. The iterative LAMMPS_ELASTIC additionally had around 350 

errors associated with a failure of the lattice constants to converge after 100 cycles.  The 

refine_structure method had the most errors by far with between 556 and 832 errors per strain 

range. Out of the refine_structure errors, roughly half were consistent with a failure to converge 

the lattice parameters, and the other half being unable to compute the elastic compliance at a 

given state due to the measured elastic stiffness matrix being singular and non-invertible. Closer 

examination showed that most of the refine_structure errors were associated with crystal 

structures likely to be unstable with the explored potentials, e.g. nearly three-quarters of the α-As 

calculations failed. 

Analyzing the lattice parameter results across all the methods, potentials and crystal 

structures poses a challenging endeavor. For this work, it was realized that the simplest means to 

identify possible issues is to compare the results obtained with the calculation methods for a 

specific crystal structure and potential to each other. Any noticeable disagreements in the relaxed 

lattice constants and cohesive energy values would indicate which calculations warrant a closer 

examination. For every crystal structure and composition, a plot was made comparing the 

measured values versus the interatomic potential using every initial configuration, method and 

strain range. These plots provide a convenient means to compare the predicted properties across 

both methods and potentials, and assist in discovering trends. 

Comparisons of values for a given crystal structure across the different potentials reveals 

some interesting trends and behaviors (Figures 2-4). With elemental crystals that are expected to 
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be stable, the measured lattice constants across the potentials mostly fall into unimodal or 

bimodal distributions, where the bimodal distributions arise from differing reference values used 

in fitting the potentials. Figure 2 shows the computed lattice constants for body-centered cubic 

iron, where most potentials predict lattice constants near either the 0 K experimental value of 

0.2855 nm or the 300 K experimental value of 0.2866 nm. Observed outliers are associated with 

potentials where the element was designed only for use in alloys and compounds, potentials 

where the focus of the fits was on properties other than the lattice constants, and initial states 

corresponding to alternate energy minima identified along the cohesive energy versus 

interatomic spacing plots. For the three largest outliers in Figure 2, the 2011—Bonny-G—Fe-Ni-

Cr [13] and 2013--Henriksson-K-O-E--Fe-C [14] primarily designed for fcc steels rather than 

pure bcc iron, and 2012—Proville-L—Fe [15] placed less of a fitting weight on the lattice 

constants to better capture dislocation properties.  

 

Figure 2: Lattice constant predictions for bcc Fe. Most potentials predict lattice constants near either the 0 K experimental value 

of 0.2855 nm or the 300 K experimental value of 0.2866 nm. For outliers, 2011—Bonny-G—Fe-Ni-Cr [13] and 2013--

Henriksson-K-O-E--Fe-C [14] were primarily designed for fcc steels not bcc iron, and 2012—Proville-L—Fe [15] placed less of 

a fitting weight on the lattice constants to better capture dislocation properties. 

By far, most of the observed disagreements between the methods are associated with the 

dynamic_relax and iterative LAMMPS_ELASTIC calculations producing lower energy 

configurations than the refine_structure and original LAMMPS_ELASTIC calculations. Figure 3 

shows results for AlNi in the unstable rock salt structure, where the final structures remain cubic 
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for refine_structure and LAMMPS_ELASTIC, but not for dynamic_relax and iterative 

LAMMPS_ELASTIC. The reason for this is that the relaxation algorithms for dynamic_relax 

and LAMMPS_ELASTIC often retain the symmetry conditions of the original system box. If 

two or three of the dimensions are the same size, the algorithms apply equal adjustments along 

those box dimensions. The iterative LAMMPS_ELASTIC appears to avoid this issue for many 

structures, such as the AlNi rock salt structure in Figure 3 where the final relaxed configurations 

across all potentials are non-cubic.  

It should be noted that the general inability of refine_structure and LAMMPS_ELASTIC 

to break the symmetry of the system may be preferable for certain investigations. They allow for 

the relative energies of ideal structures to be measured regardless of whether the structure is 

stable or unstable. This can be useful for comparing the predictions from classical potentials with 

predictions from quantum potentials where full relaxations may be challenging to obtain. 

 

Figure 3: Predictions of B1 AlNi crystal structures. For all potentials, the refine_structure and LAMMPS_ELASTIC methods 

predict the same stable cubic structures (horizontal and vertical lines form a plus). The dynamic_relax and iterative 

LAMMPS_ELASTIC methods reveal all potentials relax the structure to non-cubic configurations (multiple ‘x’ and ‘o’ markers). 

While the iterative LAMMPS_ELASTIC method does a better job at identifying unstable 

structures than the other static methods, it is still unable to capture some relaxations seen with 

the dynamic_relax calculations. An example of this is in Figure 2 for the 2011--Bonny-G--Fe-Ni-

Cr potential. Two possible body-centered cubic configurations were identified with lattice 

constants around 0.269 nm and 0.287 nm. With iterative LAMMPS_ELASTIC, the smaller 
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configuration remains bcc, while the larger relaxes into a tetragonal structure. In contrast, the 

dynamic_relax method transforms both initial configurations into a distorted bcc structure with 

lattice constants of 0.274 nm. 

Other disagreements are observed that are specific to the static method used. The original 

LAMMPS_ELASTIC method is seen to have trouble with systems where the initial ideal b/a and 

c/a ratios are far from the relaxed ratios. Most notably, this is observed with hcp structures of Al 

and Ti, and with nearly all the bct structures (Figure 4). This is associated with the underlying 

minimization algorithm, which the LAMMPS documentation notes “is not a mathematically 

well-defined minimization problem” [16]. It can have issues if the initial dimensions are far from 

the fully relaxed dimensions. The iterative LAMMPS_ELASTIC corrects this issue and gives 

lattice constants consistent with the refine_structure and dynamic_relax methods for these 

structures. 

Interesting observations are also made for the refine_structure method. A 

disproportionately high number of errors (roughly 1/5) are issued for calculations using the α-As 

prototype. While the other methods do not issue errors, they do show the α-As crystals to be 

unstable, which is to be expected as the prototype is covalent in nature and most potentials 

included here lack angular-dependent terms.  

There is also observed scatter in the reported lattice constant values across the strain 

ranges of the refine_structure calculations for the Alkali metals of the 2016--Nichol-A [17] 

family of potentials. A closer examination revealed issues with the implementations tested for 

those potentials. The authors were subsequently contacted and replacement versions were added 

to the Interatomic Potential Repository.  
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Figure 4: Predictions of bct silver. The initial unrelaxed prototype used the ideal c/a ratio of 1.5. With refine_structure, iterative 

LAMMPS_ELASTIC, and dynamic_relax, the c/a ratio relaxes to 1.4142 corresponding to the fcc structure. In contrast, the 

original LAMMPS_ELASTIC gives intermediate c/a ratios indicating it has trouble fully relaxing the box dimensions.   

3.3 Elastic constants estimates 

Some potentials were observed to have computed elastic constants that were sensitive to 

the strain range used, most notably the 1987--Ackland-G-J [18], and 2004--Zhou-X-W [19] 

families of potentials (Figure 5). With these potentials, the scatter is related to the fact that the 

third derivatives of the potentials’ functions are not continuous (i.e., the potentials are not C4 

continuous) near the equilibrium configurations. The small strain method of evaluating the 

elastic constants is sensitive to these third-order discontinuities, and will give different 

predictions if the strains sample configurations above, below, or straddling the discontinuities. It 

should be noted that this sensitivity would likely not be an issue for finite temperature dynamic 

simulations as the explored configurations of a dynamic simulation average and smooth over the 

static noise and discontinuities. 
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Figure 5: Predicted C11 elastic constants for fcc gold. Note that scatter is observed in the values for both the 1987--Ackland-G-J-

-Au and 2004--Zhou-X-W--Au potentials. 

The expression for the pair function term of the 1987--Ackland-G-J potentials changes at 

the closed-packed interatomic spacing leading to a third-order discontinuity (Figure 6(a)). This 

results in scatter across the methods and strain ranges for the close-packed prototypes fcc, hcp, 

and α-La. While other potentials have similar discontinuities in their functional forms, they do 

not influence the elastic constant measurements performed here since the discontinuities do not 

correspond to the interatomic spacings of zero pressure equilibrium structures. For the 2004--

Zhou-X-W potentials, the underlying functions are C4 continuous, but the tabulated forms of the 

functions within the potential files are not and the numerical third derivatives of the potential 

functions appear wavy (Figure 6(B)). The developer of the potential noted that this is likely due 

to a precision issue in the code used to generate the potential files, which is planned to be 

corrected in new implementations.   
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Figure 6: Third derivatives of the EAM pair function term for (A) 1987--Ackland-G-J--Au and (B) 2004--Zhou-X-W--Au 

potentials showing discontinuities that interfere with static estimates of the elastic constants. With the 1987--Ackland-G-J family 

of potentials, the functional form is only continuous to the second derivative, and the discontinuity near r = 0.29 nm corresponds 

to the close-packed interatomic spacing. The functional form of the 2004--Zhou-X-W family of potentials is continuous to the 

third derivative but the tabulated forms have been numerically transformed resulting in the observed wavy nature.  

It should also be mentioned that variation in the elastic constants with different small 

strain values is possible even with C4 continuity. The small strain measurements provide 

estimates for the second-order elastic constants and assume linear elasticity. Large strains may 

exceed the linear elastic regime of the potential, if it even has one. Conversely, using too small of 

a strain may introduce error through decreasing numerical precision. To get a quantitative 

estimate of this effect on the strains sampled here, values of C11, C12 and C44 for the fcc crystal 

structure were investigated for all potentials excluding the 2016--Nichol-A, 1987--Ackland-G-J, 

and 2004--Zhou-X-W families of potentials, and any obvious alternate/unstable configurations. 

The elastic constants across strains of 10-8 to 10-5 and both static methods are all within 0.03 GPa 

of each other, except for the Mg model used by the 1997-- and 1998--Liu-X-Y--Al-Mg [20] 

potentials where C11 varies by roughly 0.1 GPa. Much stronger sensitivities are shown upon 

reaching a strain of 10-4, where the largest differences in the elastic constants between the 10-4 

and 10-8 strain states are 2.15 GPa for C11, 0.52 GPa for C12, and 0.14 GPa for C44. This indicates 

that 10-4 is too large a strain to consistently predict elastic constants. 

Some noticeable disagreements were also observed between the elastic constants specific 

to certain prototypes and crystal families. With body-centered tetragonal systems (Figure 7), the 
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elastic stiffness components for the original LAMMPS_ELASTIC differ from refine_structure 

and iterative LAMMPS_ELASTIC. This is likely due to the original LAMMPS_ELASTIC 

method not fully relaxing the lattice constants.  

 

Figure 7: Predicted C11 elastic constants for bct silver showing a disagreement between LAMMPS_ELASTIC and the other two 

methods. Scatter is also observed for the 1987--Ackland-G-J--Ag and 2004--Zhou-X-W--Ag potentials. 

In contrast, the C11, C12, and C33 components of the hexagonal crystals (Figure 8) and the 

C44 component of the diamond cubic structures show agreement between the two 

LAMMPS_ELASTIC versions, but not the refine_structure method. Using the silicon model in 

the 2012--Jelinek-B--Al-Si-Mg-Cu-Fe [21] potential, the diamond cubic C44 constant is 77 GPa 

with LAMMPS_ELASTIC and 250 GPa with refine_structure (experimentally, C44 should be 

around 80 GPa [22]). These results are consistent with previous works showing the importance 

of internal relaxations on evaluating elastic constants [23-26].  
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Figure 8: Predictions of C11 elastic constants for hcp titanium. Disagreements can be seen between refine_structure and 

LAMMPS_ELASTIC estimates of C11 and C12 across all potentials. Scatter and sensitivity to the small strain value can also be 

seen with the 2004--Zhou-X-W--Ti and 2016--Mendelev_M-I--Ti-1 [27] potentials.  

3.4 Calculation methodology discussion 

The above results highlight strengths and limitations for the different methodologies. 

While the refine_structure method provides a quick evaluation of lattice constants for ideal 

crystal structures, it should not be used to evaluate the elastic constants since it does not perform 

internal relaxations. The LAMMPS_ELASTIC method does allow for the necessary internal 

relaxations but can fail to fully relax some configurations. The newer iterative 

LAMMPS_ELASTIC method overcomes the limitation of the underlying minimization 

algorithm, and can reveal certain structures to be unstable that the other static methods do not. 

Finally, the dynamic_relax method provides the most robust test of a structure’s stability, but is 

considerably more computationally expensive and does not provide an estimate of the elastic 

constants. 

One of the useful aspects of the open source framework is that the methods can be 

improved over time, as was done with the LAMMPS_ELASTIC calculation. An option could be 

added to both static methods to apply a small perturbation to the initial lattice constant guesses to 

break any constraining symmetries. LAMMPS_ELASTIC could be further improved by 

retaining the separate elastic constants estimates for positive and negative strains to check if the 
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structure is fully relaxed and if there are issues with the potential’s derivatives.  Finally, 

dynamic_relax can be improved by performing an energy minimization on the final 

configuration, or using the final configuration as input to the iterative LAMMPS_ELASTIC 

calculation. This would remove variations due to dynamic fluctuations and allow for better 

evaluation of a structure’s stability, plus provide elastic constant estimates. 

The calculation methods and workflow are observed to be insufficient for robustly 

identifying certain stable crystal structures. For the prototypes used here, this is most notable for 

the A6 bct structure. The relaxation calculations will only find one minimum, which may 

correspond to bcc, fcc, or a stable bct structure. Starting from the ideal c/a=1.5 state, most 

calculations performed here are observed to relax to fcc. Rigorously identifying any stable bct 

phases would require an exploration of the bct phase space. This could be accomplished by either 

adding a calculation specific to investigating Bain transition paths, or expanding E_vs_r_scan to 

allow multi-dimensional explorations for uncoupled lattice constants. 

The number of calculations performed here is probably more than strictly necessary. The 

high-throughput approach is brute force in that all possible combinations of prototypes, 

potentials, and element-unique site pairings are explored. Because of prototype symmetries, 

many of the calculations explored are duplicates (e.g., the order of element-unique site pairings 

with NaCl doesn’t matter, and CsCl with only one element is bcc). The duplicate calculations do, 

however, provide a verification that the methods and simulation code are behaving as expected. 

For instance, it was noticed that EAM potentials in the funcfl format (LAMMPS pair_style eam) 

gave drastically different predictions for identical configurations represented with one atom type 

versus multiple atom types of the same element. Tests revealed this as being due to a bug 

introduced in LAMMPS between versions 2016-09-27 and 2016-11-17. This information was 

passed on to the LAMMPS developers, and the issue should be fixed for version 2017-06-20 and 

later. 

Additionally, many of the crystal structures explored are unstable in the calculations, and 

rightfully so. Time could be saved by skipping potential-prototype pairings that have 

incompatible atomic bonding types. For example, EAM potentials lack bond-dependent terms 

that are necessary for representing the covalent prototypes of diamond cubic, β-Sn, and α-As.   

 

4. Summary and Conclusions 
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Developing scripts to represent simulation methodologies opens these calculations to many 

powerful computational and analysis tools. As was demonstrated here, the calculations can be 

easily implemented and integrated into high-throughput workflows to perform comprehensive 

investigations across models, configurations, methods and settings. Evaluating predictions across 

potentials makes it possible to validate whether the models are appropriate for applications of 

interest by comparing property values to experiments or more robust calculation techniques. 

Additionally, as was shown here, comparative studies allow for sensitivity analyses of 

calculation methods and parameters demonstrating method limitations and guiding 

improvements. Outliers and inconsistent data also assist in verification of the methodology, 

interatomic models, and simulation software by indicating specific simulations that warrant more 

detailed investigations.  

All the calculation scripts, tools, and results used for this work are openly available. The 

current version of the iprPy framework, including updated calculation scripts and high-

throughput tools, is hosted on GitHub (https://github.com/usnistgov/iprPy). Summaries of 

property results obtained from these calculations and more are being published on the NIST 

Interatomic Potentials Repository website (https://www.ctcms.nist.gov/potentials/) for each 

hosted potential. An archival version of iprPy and the calculation results consistent with this 

paper can be downloaded from the NIST Material Measurement Laboratory data repository 

server (https://materialsdata.nist.gov/). The calculation results contained on the data repository 

include XML records for every calculation performed, and interactive versions of the Figures in 

this paper for every potential and crystal structure.  

 

Appendix: The iprPy Computational Framework 

The iprPy computational framework is focused on the creation and design of open and 

transparent calculation methodologies that can easily be integrated into high-throughput 

workflows. It consists of implemented calculation scripts, supporting codebase, and tools and 

resources for the high-throughput execution of the implemented calculations. All content 

associated with the iprPy framework is available on GitHub at 

https://github.com/usnistgov/iprPy/.  

A key principle of the framework is to minimize barriers for usage. Python was selected 

as the primary programming language of the framework due to its open source nature, focus on 

https://github.com/usnistgov/iprPy
https://www.ctcms.nist.gov/potentials/
https://materialsdata.nist.gov/
https://github.com/usnistgov/iprPy/
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clarity of code, and widespread use in the scientific community. The only required software for 

the core of iprPy to run is Python 2.7, and the list of non-standard Python packages is kept to 

those that work on any operating system that Python does. All results are generated in an 

XML/JSON equivalent format making the information directly accessible to both humans and 

software. Additionally, the supporting codebase provides modular components and common 

functionalities to help facilitate the rapid development of new calculations. 

Calculations form the heart of the iprPy framework and package. Each calculation 

consists of a “calc.py” calculation script and any other non-variable files that the script accesses. 

When executed, the calculation script reads in all variable parameters from a simple key-value 

formatted input parameter file. Upon successful completion, the processed results are saved as 

either a JSON or XML record allowing for values to be easily read by both humans and 

computers. Each calculation is designed to be an independent unit of work that can be executed 

in isolation from any other calculation.  

While the framework itself is agnostic to the work that a calculation does, all currently 

implemented calculations use molecular dynamics simulations. In particular, the atomman 

Python package (https://github.com/usnistgov/atomman/) is used to create calculation scripts that 

represent the entire workflow of a property calculation involving LAMMPS [10, 11] simulations. 

Each of these atomman-based scripts loads or creates an initial atomic configuration, generates a 

LAMMPS input file from a template by filling in variable terms, runs one or more LAMMPS 

simulations, and automatically imports the simulation results for post-processing. This design 

makes it possible for the input and output data to focus on terms that are important to the 

calculation’s purpose instead of the specifics of how any underlying simulations are performed. 

Encoding calculation methodologies as Python scripts assists in making the 

methodologies transparent for both validation and knowledge transfer. A corresponding 

demonstration Jupyter Notebook is provided for each calculation script that combines working 

Python code with formatted documentation of the procedure and underlying theory. The code in 

the Jupyter Notebooks is fully functional; it contains identical underlying functions as the 

associated calc.py scripts. The code between the two formats only differs in the control of input 

and output data, with the Notebooks directly receiving and displaying the values as opposed to 

the calc.py scripts reading from and writing to files.  

https://github.com/usnistgov/atomman/
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Using XML/JSON for representing calculation results allows for the associated records to 

be constructed as modular data models. Instead of defining a completely new schema for each 

data model from scratch, they can be composed from reusable data types. Each data type 

represents a complete concept, such as a single value, interatomic potential, or the description of 

an atomic system. These types can be pieced together like building blocks to define more 

complex types and concepts, eventually leading to the construction of a full data model schema 

for a given record style.  

There are several advantages to constructing data models in this fashion. First, it allows 

for new data models to be implemented faster as they can take advantage of the structure and 

components of existing data models and types. Individual components can also be easily added 

or modified to define a newer version of a data model if the original version was found to be 

inadequate. Additionally, this design allows for software to interact with certain components of a 

data model without requiring that the entire model adhere to a rigid schema. This feature is 

convenient in that the information contained within a data type can be read from any data model 

that contains that type. For example, one calculation may compute elastic constants and another 

use them. If the records for both calculations use the same structured elastic constants data type, 

then only one function is needed to extract the elastic constants values regardless of the record 

type.  

The design of the calculations and use of XML/JSON records facilitates implementation 

with high-throughput workflows. Figure 9 shows a schematic overview of how iprPy handles 

calculations in a high-throughput manner. The scripts “prepare.py”, “runner.py”, and 

“process.py” allow for a user to interact with records in a database and set up, execute, and 

analyze calculations. Each calculation is given its own “prepare.py” script which generates 

calculation instances based on unique combinations of the parameters in the calculation’s input 

files. Every calculation style has its own unique prepare method to handle the specific 

combinatorial logic of the calculation’s input parameters. Each prepared instance consists of a 

folder containing a copy of the calculation script, the completed input file, copies of any other 

required files, and copies of reference records retrieved from the database. An incomplete record 

associated with each instance is simultaneously added to the database.  
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Figure 9: Flow chart for the high-throughput calculation framework.  A user creates a prepare.in input file that prepare.py 

interprets to generate numerous calculation instances and submits a corresponding partial XML record for each instance to the 

database. Each calculation instance contains a copy of the calculation Python script and an input file for that script.  The 

runner.py script runs each calculation instance using file information in the calculation folder or accessible from the database, 

and then puts the completed XML record and archived calculation instance into the database.  The user can then execute scripts 

that retrieve and further process the results stored in the database. 

The prepared calculations can then be performed in a high-throughput manner using one 

or more runners by executing the “runner.py” script. Unlike “prepare.py”, only one “runner.py” 

script exists and it operates on all calculations indiscriminately. Each operating runner selects an 

unfinished calculation instance within a specified directory at random and verifies that no other 

runners are currently operating on it. The “calc.py” script for that instance is then executed using 

the associated input parameter file. Upon completion, the corresponding record in the database is 

updated to a complete record by adding either results or any error message generated by the 

calculation. The folder in which the calculation instance was performed is compressed into a 

zipped archive and stored in the database as well.  

Finally, “process.py” scripts can be created to extract information from the records in the 

database. Different scripts can check on the status of prepared calculations, identify and collect 

errors issued by the calculations, and collect all results for a given calculation style.   

This design is simple, but it provides some useful options. By using modular data models, 

a record produced by one calculation instance can serve as an input reference record for an 

instance of another calculation. Child calculations can be prepared based on incomplete parent 
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records allowing the runners to handle hierarchies solely by checking the completeness of any 

records contained with a calculation instance. Multiple runners can access and add to the same 

database, and iterate through prepared calculation instances from the same or different root 

directories. Runners can be started directly, or submitted to a queueing system, and can be 

assigned multiple cores. Calculations can be performed heterogeneously, with single core 

runners operating on easy calculations, and multi-core runners operating on the more 

computationally expensive.  

The core codebase of the iprPy framework is designed to support the rapid 

implementation of new calculations. While each calculation has a unique set of input parameters, 

there may be common parameters across similar calculations. For instance, all of the current 

calculations using atomman and LAMMPS have common parameters for specifying the 

LAMMPS executable, interatomic potential, initial atomic system generation, and default units 

to use. Any new similar calculations can reuse these common input parameters and the functions 

used for interpreting them. 

The iprPy framework uses classes to define common interactions across different types of 

calculations, databases, and records. When an object of one of these classes is identified, it is 

given a style that specifies the particular actions for each common interaction method. For 

example, the Database class has methods for accessing a database to add or retrieve records. 

There are currently two styles, local and curator, that make it possible to interact with either a 

local directory of XML files or an instance of the Materials Database Curation System in the 

same manner. The styles are treated modularly and new ones can be added by simply placing the 

associated code within appropriate folders of the framework.  

What the iprPy framework provides is a roadmap for designing high-quality research 

calculations. Each calculation has clearly defined inputs, is a complete and independent unit of 

work, and produces refined results in a structured format. Both the scripts and results can be 

easily shared, used and understood external to the framework itself. The Jupyter Notebook 

versions of the calculations fully document the calculation methodology making it transparent to 

users who would want to learn how the calculations work. Finally, the calculation scripts and the 

data records are designed to be implemented into high-throughput workflow tools and databases. 
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