
1

Evaluating variability with atomistic simulations: the effect of potential and calculation

methodology on the modeling of lattice and elastic constants

Lucas M. Hale, Zachary T. Trautt, Chandler A. Becker

Abstract

Atomistic simulations using classical interatomic potentials are powerful investigative tools

linking atomic structures to dynamic properties and behaviors. It is well known that different

interatomic potentials produce different results, thus making it necessary to characterize

potentials based on how they predict basic properties. Doing so makes it possible to compare

existing interatomic models in order to select those best suited for specific use cases, and to

identify any limitations of the models that may lead to unrealistic responses. While the methods

for obtaining many of these properties are often thought of as simple calculations, there are many

underlying aspects that can lead to variability in the reported property values. For instance,

multiple methods may exist for computing the same property and values may be sensitive to

certain simulation parameters. Here, we introduce a new high-throughput computational

framework that encodes various simulation methodologies as Python calculation scripts. Three

distinct methods for evaluating the lattice and elastic constants of bulk crystal structures are

implemented and used to evaluate the properties across 120 interatomic potentials, 18 crystal

prototypes, and all possible combinations of unique lattice site and elemental model pairings.

Analysis of the results reveals which potentials and crystal prototypes are sensitive to the

calculation methods and parameters, and it assists with the verification of potentials, methods,

and molecular dynamics software. The results, calculation scripts, and computational

infrastructure are self-contained and openly available to support researchers in performing

meaningful simulations.

1. Introduction

Calculations and simulations using so-called classical interatomic potentials occupy a

unique place in materials research. Classical molecular dynamics (MD) and Monte Carlo (MC)

simulations are considerably less computationally expensive than comparable quantum-based

calculations, and will likely remain so as the classical methods typically scale with the number of

2

atoms, while density functional theory (DFT), the most used quantum-based calculation method,

scales with the number of atoms cubed. However, this computational efficiency comes at the cost

of accuracy and adaptability in what the classical potentials can realistically represent. In

practice, this tradeoff between computation and accuracy means that classical atomistic

simulations are best suited for revealing how atomic-level structures and interactions influence

the complex, dynamic behaviors and reactions of collections of atoms, molecules, and crystalline

defects.

Appropriately performing atomistic simulations and reporting meaningful results requires

understanding the strengths and limitations associated with the empirical potentials used. Most

classical potentials have functional forms that provide good representations for certain atomic

bonds and poor representations of others. Developers fit the parameters of the models to capture

specific materials properties, atomic configurations, and energy barriers that they consider most

important. The accuracy of these fitted properties depends on the accuracy of the underlying

reference information, and the weights that the potential creators placed on capturing each

property. The resulting potentials can only be expected to give realistic predictions for

simulations that operate within their fitted phase space. However, scientifically interesting

simulations often involve complex, dynamically evolving configurations that may explore

conditions outside the fitted regime. Characterizing simulation results as realistic or artificial

requires an understanding of how the potential behaves under all explored conditions.

Further complications arise from the fact that there are often numerous interatomic

potentials available for a given material system. For example, the National Institute of Standards

and Technology (NIST) Interatomic Potentials Repository [1] currently lists entries for 22

potentials capable of simulating nickel. These models encompass multiple functional forms, and

were fit with different applications and properties in mind. Some even were fit solely for

compounds and provide poor representations of elemental nickel. Anyone planning on

performing simulations of nickel would need to be able to determine which, if any, of the

existing potentials is most likely to provide realistic predictions for their area of study.

The nature of atomistic simulations makes it difficult, if not impossible, to evaluate the

quality of potentials based on their mathematical forms alone. Instead, it is only through

adequate characterization and consideration of the potentials’ predicted properties that one can

realistically compare different potentials [2, 3], and to properly analyze simulation results. There

3

have been numerous comparison studies of potentials published in the literature, often

accompanying the release of a new potential [4-8]. While useful, the static nature of the

publications limits the comparisons to only a handful of currently existing models. Additionally,

there is no consistency across the works in terms of the properties considered, and commonly

reported properties may have been evaluated using different methodologies. It is also not

uncommon for the description of the methodologies to be lacking or non-existent for many of the

so-called basic properties. Clear methodology is important in model verification as it allows for

consistent tests and can help identify the source of variations in reported values across different

works.

To address this need for clear, repeatable atomistic property evaluations, Trautt, et al. [9]

outlined a framework for performing calculations across different interatomic potentials, and

demonstrated its application to producing generalized stacking fault maps for face centered cubic

(fcc) metals. The most notable aspect of that work was that it outlined a means in which the

calculations could be performed in a high-throughput manner, while keeping the calculation’s

methodology transparent to the user.

This paper introduces a new Python-based high-throughput calculation framework which

builds upon the principles introduced in [9]. The new framework features a modular design

better suited for creating and running a wide variety of calculations in high-throughput. An

emphasis is placed on constructing calculation methods that are easy to use, exist in a concise

and sharable format, and fully document and describe the underlying methodology. Additionally,

results are produced in a structured format that is human and machine readable allowing for the

data to be easily shared either as individual files or as part of a database.

The new framework is utilized to compare the relaxed lattice and elastic constants using

different computational methods. Calculations are performed across eighteen different crystal

prototypes, one hundred twenty interatomic potentials and three different relaxation methods.

Analysis of the results proves to be valuable in assessing not only the strengths and limitations of

the calculation methods and interatomic models, but also assists in verification of the underlying

algorithms and code.

4

2. Computational Methods

 All calculations performed for this work are encoded as Python scripts within the iprPy

computational framework (accessible at https://github.com/usnistgov/iprPy). The iprPy

framework is focused on the design and creation of open and transparent calculation

methodologies that can easily be integrated into high-throughput workflows. Each calculation

script represents the full methodology of a property evaluation by setting up and performing one

or more Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular

dynamics [10, 11] simulations, followed by processing the simulation results to obtain values of

interest. Simple input files provide all variable parameters to each calculation, and the results are

exported as structured eXtensible Markup Language (XML)- or JavaScript Object Notation

(JSON)-based data models. The high-throughput tools of the iprPy framework were used to

prepare and run all calculations presented here. More details of the design of the iprPy

framework can be found in Appendix A.

Table 1: List of the crystal prototypes used in this study.

ID Strukturbericht

Prototype

Composition Common Name

A1--Cu--fcc A1 Cu Face-centered cubic (fcc)

A2--W--bcc A2 W Body-centered cubic (bcc)

A3'--alpha-La--double-hcp A3' α-La

Double hexagonal close-packed

(double hcp)

A3--Mg--hcp A3 Mg Hexagonal close-packed (hcp)

A4--C--dc A4 Cu Diamond cubic (dc)

A5--beta-Sn A5 β-Sn

A6--In--bct A6 In Body-centered tetragonal (bct)

A7--alpha-As A7 α-As

A15--beta-W A15 β-W

Ah--alpha-Po--sc Ah α-Po Simple cubic (sc)

B1--NaCl--rock-salt B1 NaCl Rock salt

B2--CsCl B2 CsCl

B3--ZnS--cubic-zinc-blende B3 ZnS Cubic zinc blende

C1--CaF2--fluorite C1 CaF2 Fluorite

D0_3--BiF3 D03 BiF3

L1_0--AuCu L10 AuCu

L1_2--AuCu3 L12 AuCu3

L2_1--AlCu2Mn--heusler L21 AlCu2Mn Heusler

https://github.com/usnistgov/iprPy

5

The calculations were performed across one hundred twenty interatomic potentials,

eighteen crystal prototypes, and all pairing combinations of each potential’s elemental models to

each prototype’s unique lattice sites. All potentials used here are hosted on the NIST Interatomic

Potentials Repository [1] in formats compatible with LAMMPS. Table I lists the crystal

prototypes used. For this work, the prototypes are referred to using a unique identifier that

combines the Strukturbericht symbol, prototype composition, and common name. Of the crystal

prototypes investigated, nine are for elemental structures and nine are for binary or ternary

compounds.

Four different calculation scripts were used for this work, referred to as E_vs_r_scan,

LAMMPS_ELASTIC, refine_structure, and dynamic_relax. Initial rough estimates for the lattice

parameters of stable crystal structures were first obtained using the E_vs_r_scan calculation. The

structures corresponding to energy minima identified by the E_vs_r_scan calculation were then

used as initial guesses for stable crystal structures that were passed on to the other calculation

scripts, with each one providing some means of relaxing the initial guess to a more optimal

configuration. The LAMMPS_ELASTIC, and refine_structure calculations also provide an

estimate of the relaxed structure’s elastic constants.

The E_vs_r_scan calculation evaluates a crystal’s cohesive energy, Ecoh, as a function of

shortest atomic nearest neighbor distance, r0. An atomic system for a hypothetical crystal

structure is generated by filling in the unique lattice sites of a crystal prototype with a potential’s

elements. The dimensions of the system are uniformly scaled relative to r0. For this calculation,

the ratio of the lattice constants is held fixed at an ideal value (e.g., c/a = 1.663 for hexagonal

close-packed). For each value of r0, the cohesive energy is evaluated using LAMMPS without

atomic relaxations. The analysis here used 100 steps of r0 over the range 0.2 nm ≤ r0 ≤ 0.6 nm.

This range was found to be optimum for the potentials included in this investigation as most of

the potentials are for metallic and semiconductor systems.

 The refine_structure calculation statically calculates the ideal lattice constants and elastic

constants at a specified pressure. The underlying algorithm works by having LAMMPS evaluate

the pressure for a system as given, and at small positive and negative strains without any atomic

relaxation. The full elastic stiffness tensor, ijC , is calculated from the change in pressures with

respect to the change in strains. Assuming linear elasticity, the pressure of the unstrained system

6

and the elastic compliance tensor,
1 ijij CS , are used to guess a new box size, and the system is

uniformly scaled accordingly. This process is then repeated until the lattice constants converge.

 The LAMMPS_ELASTIC calculation script is a wrapper around the ELASTIC example

simulation distributed with the LAMMPS code in its Examples folder. The ELASTIC example

script is a well-known, open source resource for LAMMPS users to statically calculate the elastic

constants for a crystal. In the ELASTIC example, the system is first relaxed using an energy

minimization of atomic coordinates coupled with box dimension adjustments towards zero

pressure (i.e., minimize plus fix box_relax commands). The elastic stiffness tensor is then

evaluated using the virial pressure of the relaxed system, and at fixed small strain values from

the relaxed configuration. For the small strain states, each was subjected to an energy

minimization of the atomic coordinates with fixed box dimensions prior to measuring the virial

pressure.

The LAMMPS_ELASTIC Python script in iprPy extends the capabilities of the original

script by providing the same input parameter interface used by the other iprPy calculations.

Doing so makes it possible to run the calculations in high-throughput across the interatomic

potentials and initial crystal structure guesses. During testing, it was revealed that the relaxation

step of the underlying method may not fully relax crystal structures that are far from a minimum

energy state. To address this issue, the iprPy LAMMPS_ELASTIC calculation was updated such

that it iteratively runs the underlying method until the lattice constants converge. Results are

shown here for both the original single-run version and the newer iterative version to

demonstrate the limitations with the original. For clarity, the updated version is referred

throughout this paper as “iterative LAMMPS_ELASTIC”.

 The dynamic_relax calculation script runs a molecular dynamics simulation at a specified

temperature and pressure, allowing the system to evolve over time. Relaxations are performed

using nph integration with a Langevin thermostat set for 0 K. This integration scheme adjusts the

box dimensions to the given pressure, while dampening out the kinetic energy of the atoms.

Relaxed cell parameters are obtained by averaging the instantaneous system dimensions at each

timestep after an equilibration time.

The calculation scripts and supporting files are integrated into iprPy, and the descriptions

provided here are consistent with iprPy versions 0.6 and 0.7.1. The primary difference between

the two versions is that the iterative LAMMPS_ELASTIC became standard in version 0.7.1,

7

although an option is included that allows the calculations to run without iteration. Simulations

were performed on different computing resources using LAMMPS versions 2016-03-11, 2016-

09-02, 2016-11-17, and 2017-01-26. XML records for all calculations performed and an archival

version of the codebase including calculation scripts, high-throughput tools, and analysis tools

consistent with this work can be accessed from the NIST Material Measurement Laboratory data

repository server (https://materialsdata.nist.gov/).

3. Results and Discussion

3.1 Initial scan

Figure 1 shows some example plots of cohesive energy versus interatomic spacing as

obtained from the E_vs_r_scan calculation method. Out of the 5570 E_vs_r_scan calculations

performed, 98 found no energy minima within the scanned range, 4416 found one minimum, and

1056 found multiple minima resulting in a total of 7427 possible crystal structures being

identified. It should be noted that this calculation method by itself is insufficient for determining

the stability of the possible structures and that many will likely be revealed as unstable upon

further refinement. The identification of multiple minima with some of the calculations may

seem concerning, but does not necessarily mean that a given potential is of questionable quality.

The multiple minima may correspond to unstable configurations, or configurations only

accessible under extreme conditions far from the ideal equilibrium.

Figure 1: Cohesive energy versus ideal interatomic spacing of A1—Cu—fcc crystal structure for elemental aluminum using (A)

2003--Zope-R-R--Al [6] and (B) 2000--Sturgeon-J-B--Al [12] interatomic potentials. For (B), note the shallow secondary minima

around r = 0.51 nm.

3.2 Lattice constant estimates

https://materialsdata.nist.gov/

8

Twelve different relaxation calculations were performed per possible crystal structure

identified from the E_vs_r_scan calculations: one dynamic_relax calculation, five of each of

refine_structure and LAMMPS_ELASTIC corresponding to small strain values of 10-4, 10-5, 10-

6, 10-7 and 10-8, and one iterative LAMMPS_ELASTIC with a small strain value of 10-8. Despite

there being more than ten times the number of static calculations as dynamic calculations,

performing the dynamic calculations required noticeably more computational hours than

performing the static calculations.

Not all of the relaxation calculations finished successfully. For the dynamic_relax

method, 124 calculations issued LAMMPS simulation errors consistent with highly unfavorable

configurations being explored, resulting in unstable simulations. With LAMMPS_ELASTIC,

roughly 30 calculations per strain range issued errors indicative of extremely unstable

configurations being explored. The iterative LAMMPS_ELASTIC additionally had around 350

errors associated with a failure of the lattice constants to converge after 100 cycles. The

refine_structure method had the most errors by far with between 556 and 832 errors per strain

range. Out of the refine_structure errors, roughly half were consistent with a failure to converge

the lattice parameters, and the other half being unable to compute the elastic compliance at a

given state due to the measured elastic stiffness matrix being singular and non-invertible. Closer

examination showed that most of the refine_structure errors were associated with crystal

structures likely to be unstable with the explored potentials, e.g. nearly three-quarters of the α-As

calculations failed.

Analyzing the lattice parameter results across all the methods, potentials and crystal

structures poses a challenging endeavor. For this work, it was realized that the simplest means to

identify possible issues is to compare the results obtained with the calculation methods for a

specific crystal structure and potential to each other. Any noticeable disagreements in the relaxed

lattice constants and cohesive energy values would indicate which calculations warrant a closer

examination. For every crystal structure and composition, a plot was made comparing the

measured values versus the interatomic potential using every initial configuration, method and

strain range. These plots provide a convenient means to compare the predicted properties across

both methods and potentials, and assist in discovering trends.

Comparisons of values for a given crystal structure across the different potentials reveals

some interesting trends and behaviors (Figures 2-4). With elemental crystals that are expected to

9

be stable, the measured lattice constants across the potentials mostly fall into unimodal or

bimodal distributions, where the bimodal distributions arise from differing reference values used

in fitting the potentials. Figure 2 shows the computed lattice constants for body-centered cubic

iron, where most potentials predict lattice constants near either the 0 K experimental value of

0.2855 nm or the 300 K experimental value of 0.2866 nm. Observed outliers are associated with

potentials where the element was designed only for use in alloys and compounds, potentials

where the focus of the fits was on properties other than the lattice constants, and initial states

corresponding to alternate energy minima identified along the cohesive energy versus

interatomic spacing plots. For the three largest outliers in Figure 2, the 2011—Bonny-G—Fe-Ni-

Cr [13] and 2013--Henriksson-K-O-E--Fe-C [14] primarily designed for fcc steels rather than

pure bcc iron, and 2012—Proville-L—Fe [15] placed less of a fitting weight on the lattice

constants to better capture dislocation properties.

Figure 2: Lattice constant predictions for bcc Fe. Most potentials predict lattice constants near either the 0 K experimental value

of 0.2855 nm or the 300 K experimental value of 0.2866 nm. For outliers, 2011—Bonny-G—Fe-Ni-Cr [13] and 2013--

Henriksson-K-O-E--Fe-C [14] were primarily designed for fcc steels not bcc iron, and 2012—Proville-L—Fe [15] placed less of

a fitting weight on the lattice constants to better capture dislocation properties.

By far, most of the observed disagreements between the methods are associated with the

dynamic_relax and iterative LAMMPS_ELASTIC calculations producing lower energy

configurations than the refine_structure and original LAMMPS_ELASTIC calculations. Figure 3

shows results for AlNi in the unstable rock salt structure, where the final structures remain cubic

10

for refine_structure and LAMMPS_ELASTIC, but not for dynamic_relax and iterative

LAMMPS_ELASTIC. The reason for this is that the relaxation algorithms for dynamic_relax

and LAMMPS_ELASTIC often retain the symmetry conditions of the original system box. If

two or three of the dimensions are the same size, the algorithms apply equal adjustments along

those box dimensions. The iterative LAMMPS_ELASTIC appears to avoid this issue for many

structures, such as the AlNi rock salt structure in Figure 3 where the final relaxed configurations

across all potentials are non-cubic.

It should be noted that the general inability of refine_structure and LAMMPS_ELASTIC

to break the symmetry of the system may be preferable for certain investigations. They allow for

the relative energies of ideal structures to be measured regardless of whether the structure is

stable or unstable. This can be useful for comparing the predictions from classical potentials with

predictions from quantum potentials where full relaxations may be challenging to obtain.

Figure 3: Predictions of B1 AlNi crystal structures. For all potentials, the refine_structure and LAMMPS_ELASTIC methods

predict the same stable cubic structures (horizontal and vertical lines form a plus). The dynamic_relax and iterative

LAMMPS_ELASTIC methods reveal all potentials relax the structure to non-cubic configurations (multiple ‘x’ and ‘o’ markers).

While the iterative LAMMPS_ELASTIC method does a better job at identifying unstable

structures than the other static methods, it is still unable to capture some relaxations seen with

the dynamic_relax calculations. An example of this is in Figure 2 for the 2011--Bonny-G--Fe-Ni-

Cr potential. Two possible body-centered cubic configurations were identified with lattice

constants around 0.269 nm and 0.287 nm. With iterative LAMMPS_ELASTIC, the smaller

11

configuration remains bcc, while the larger relaxes into a tetragonal structure. In contrast, the

dynamic_relax method transforms both initial configurations into a distorted bcc structure with

lattice constants of 0.274 nm.

Other disagreements are observed that are specific to the static method used. The original

LAMMPS_ELASTIC method is seen to have trouble with systems where the initial ideal b/a and

c/a ratios are far from the relaxed ratios. Most notably, this is observed with hcp structures of Al

and Ti, and with nearly all the bct structures (Figure 4). This is associated with the underlying

minimization algorithm, which the LAMMPS documentation notes “is not a mathematically

well-defined minimization problem” [16]. It can have issues if the initial dimensions are far from

the fully relaxed dimensions. The iterative LAMMPS_ELASTIC corrects this issue and gives

lattice constants consistent with the refine_structure and dynamic_relax methods for these

structures.

Interesting observations are also made for the refine_structure method. A

disproportionately high number of errors (roughly 1/5) are issued for calculations using the α-As

prototype. While the other methods do not issue errors, they do show the α-As crystals to be

unstable, which is to be expected as the prototype is covalent in nature and most potentials

included here lack angular-dependent terms.

There is also observed scatter in the reported lattice constant values across the strain

ranges of the refine_structure calculations for the Alkali metals of the 2016--Nichol-A [17]

family of potentials. A closer examination revealed issues with the implementations tested for

those potentials. The authors were subsequently contacted and replacement versions were added

to the Interatomic Potential Repository.

12

Figure 4: Predictions of bct silver. The initial unrelaxed prototype used the ideal c/a ratio of 1.5. With refine_structure, iterative

LAMMPS_ELASTIC, and dynamic_relax, the c/a ratio relaxes to 1.4142 corresponding to the fcc structure. In contrast, the

original LAMMPS_ELASTIC gives intermediate c/a ratios indicating it has trouble fully relaxing the box dimensions.

3.3 Elastic constants estimates

Some potentials were observed to have computed elastic constants that were sensitive to

the strain range used, most notably the 1987--Ackland-G-J [18], and 2004--Zhou-X-W [19]

families of potentials (Figure 5). With these potentials, the scatter is related to the fact that the

third derivatives of the potentials’ functions are not continuous (i.e., the potentials are not C4

continuous) near the equilibrium configurations. The small strain method of evaluating the

elastic constants is sensitive to these third-order discontinuities, and will give different

predictions if the strains sample configurations above, below, or straddling the discontinuities. It

should be noted that this sensitivity would likely not be an issue for finite temperature dynamic

simulations as the explored configurations of a dynamic simulation average and smooth over the

static noise and discontinuities.

13

Figure 5: Predicted C11 elastic constants for fcc gold. Note that scatter is observed in the values for both the 1987--Ackland-G-J-

-Au and 2004--Zhou-X-W--Au potentials.

The expression for the pair function term of the 1987--Ackland-G-J potentials changes at

the closed-packed interatomic spacing leading to a third-order discontinuity (Figure 6(a)). This

results in scatter across the methods and strain ranges for the close-packed prototypes fcc, hcp,

and α-La. While other potentials have similar discontinuities in their functional forms, they do

not influence the elastic constant measurements performed here since the discontinuities do not

correspond to the interatomic spacings of zero pressure equilibrium structures. For the 2004--

Zhou-X-W potentials, the underlying functions are C4 continuous, but the tabulated forms of the

functions within the potential files are not and the numerical third derivatives of the potential

functions appear wavy (Figure 6(B)). The developer of the potential noted that this is likely due

to a precision issue in the code used to generate the potential files, which is planned to be

corrected in new implementations.

14

Figure 6: Third derivatives of the EAM pair function term for (A) 1987--Ackland-G-J--Au and (B) 2004--Zhou-X-W--Au

potentials showing discontinuities that interfere with static estimates of the elastic constants. With the 1987--Ackland-G-J family

of potentials, the functional form is only continuous to the second derivative, and the discontinuity near r = 0.29 nm corresponds

to the close-packed interatomic spacing. The functional form of the 2004--Zhou-X-W family of potentials is continuous to the

third derivative but the tabulated forms have been numerically transformed resulting in the observed wavy nature.

It should also be mentioned that variation in the elastic constants with different small

strain values is possible even with C4 continuity. The small strain measurements provide

estimates for the second-order elastic constants and assume linear elasticity. Large strains may

exceed the linear elastic regime of the potential, if it even has one. Conversely, using too small of

a strain may introduce error through decreasing numerical precision. To get a quantitative

estimate of this effect on the strains sampled here, values of C11, C12 and C44 for the fcc crystal

structure were investigated for all potentials excluding the 2016--Nichol-A, 1987--Ackland-G-J,

and 2004--Zhou-X-W families of potentials, and any obvious alternate/unstable configurations.

The elastic constants across strains of 10-8 to 10-5 and both static methods are all within 0.03 GPa

of each other, except for the Mg model used by the 1997-- and 1998--Liu-X-Y--Al-Mg [20]

potentials where C11 varies by roughly 0.1 GPa. Much stronger sensitivities are shown upon

reaching a strain of 10-4, where the largest differences in the elastic constants between the 10-4

and 10-8 strain states are 2.15 GPa for C11, 0.52 GPa for C12, and 0.14 GPa for C44. This indicates

that 10-4 is too large a strain to consistently predict elastic constants.

Some noticeable disagreements were also observed between the elastic constants specific

to certain prototypes and crystal families. With body-centered tetragonal systems (Figure 7), the

15

elastic stiffness components for the original LAMMPS_ELASTIC differ from refine_structure

and iterative LAMMPS_ELASTIC. This is likely due to the original LAMMPS_ELASTIC

method not fully relaxing the lattice constants.

Figure 7: Predicted C11 elastic constants for bct silver showing a disagreement between LAMMPS_ELASTIC and the other two

methods. Scatter is also observed for the 1987--Ackland-G-J--Ag and 2004--Zhou-X-W--Ag potentials.

In contrast, the C11, C12, and C33 components of the hexagonal crystals (Figure 8) and the

C44 component of the diamond cubic structures show agreement between the two

LAMMPS_ELASTIC versions, but not the refine_structure method. Using the silicon model in

the 2012--Jelinek-B--Al-Si-Mg-Cu-Fe [21] potential, the diamond cubic C44 constant is 77 GPa

with LAMMPS_ELASTIC and 250 GPa with refine_structure (experimentally, C44 should be

around 80 GPa [22]). These results are consistent with previous works showing the importance

of internal relaxations on evaluating elastic constants [23-26].

16

Figure 8: Predictions of C11 elastic constants for hcp titanium. Disagreements can be seen between refine_structure and

LAMMPS_ELASTIC estimates of C11 and C12 across all potentials. Scatter and sensitivity to the small strain value can also be

seen with the 2004--Zhou-X-W--Ti and 2016--Mendelev_M-I--Ti-1 [27] potentials.

3.4 Calculation methodology discussion

The above results highlight strengths and limitations for the different methodologies.

While the refine_structure method provides a quick evaluation of lattice constants for ideal

crystal structures, it should not be used to evaluate the elastic constants since it does not perform

internal relaxations. The LAMMPS_ELASTIC method does allow for the necessary internal

relaxations but can fail to fully relax some configurations. The newer iterative

LAMMPS_ELASTIC method overcomes the limitation of the underlying minimization

algorithm, and can reveal certain structures to be unstable that the other static methods do not.

Finally, the dynamic_relax method provides the most robust test of a structure’s stability, but is

considerably more computationally expensive and does not provide an estimate of the elastic

constants.

One of the useful aspects of the open source framework is that the methods can be

improved over time, as was done with the LAMMPS_ELASTIC calculation. An option could be

added to both static methods to apply a small perturbation to the initial lattice constant guesses to

break any constraining symmetries. LAMMPS_ELASTIC could be further improved by

retaining the separate elastic constants estimates for positive and negative strains to check if the

17

structure is fully relaxed and if there are issues with the potential’s derivatives. Finally,

dynamic_relax can be improved by performing an energy minimization on the final

configuration, or using the final configuration as input to the iterative LAMMPS_ELASTIC

calculation. This would remove variations due to dynamic fluctuations and allow for better

evaluation of a structure’s stability, plus provide elastic constant estimates.

The calculation methods and workflow are observed to be insufficient for robustly

identifying certain stable crystal structures. For the prototypes used here, this is most notable for

the A6 bct structure. The relaxation calculations will only find one minimum, which may

correspond to bcc, fcc, or a stable bct structure. Starting from the ideal c/a=1.5 state, most

calculations performed here are observed to relax to fcc. Rigorously identifying any stable bct

phases would require an exploration of the bct phase space. This could be accomplished by either

adding a calculation specific to investigating Bain transition paths, or expanding E_vs_r_scan to

allow multi-dimensional explorations for uncoupled lattice constants.

The number of calculations performed here is probably more than strictly necessary. The

high-throughput approach is brute force in that all possible combinations of prototypes,

potentials, and element-unique site pairings are explored. Because of prototype symmetries,

many of the calculations explored are duplicates (e.g., the order of element-unique site pairings

with NaCl doesn’t matter, and CsCl with only one element is bcc). The duplicate calculations do,

however, provide a verification that the methods and simulation code are behaving as expected.

For instance, it was noticed that EAM potentials in the funcfl format (LAMMPS pair_style eam)

gave drastically different predictions for identical configurations represented with one atom type

versus multiple atom types of the same element. Tests revealed this as being due to a bug

introduced in LAMMPS between versions 2016-09-27 and 2016-11-17. This information was

passed on to the LAMMPS developers, and the issue should be fixed for version 2017-06-20 and

later.

Additionally, many of the crystal structures explored are unstable in the calculations, and

rightfully so. Time could be saved by skipping potential-prototype pairings that have

incompatible atomic bonding types. For example, EAM potentials lack bond-dependent terms

that are necessary for representing the covalent prototypes of diamond cubic, β-Sn, and α-As.

4. Summary and Conclusions

18

Developing scripts to represent simulation methodologies opens these calculations to many

powerful computational and analysis tools. As was demonstrated here, the calculations can be

easily implemented and integrated into high-throughput workflows to perform comprehensive

investigations across models, configurations, methods and settings. Evaluating predictions across

potentials makes it possible to validate whether the models are appropriate for applications of

interest by comparing property values to experiments or more robust calculation techniques.

Additionally, as was shown here, comparative studies allow for sensitivity analyses of

calculation methods and parameters demonstrating method limitations and guiding

improvements. Outliers and inconsistent data also assist in verification of the methodology,

interatomic models, and simulation software by indicating specific simulations that warrant more

detailed investigations.

All the calculation scripts, tools, and results used for this work are openly available. The

current version of the iprPy framework, including updated calculation scripts and high-

throughput tools, is hosted on GitHub (https://github.com/usnistgov/iprPy). Summaries of

property results obtained from these calculations and more are being published on the NIST

Interatomic Potentials Repository website (https://www.ctcms.nist.gov/potentials/) for each

hosted potential. An archival version of iprPy and the calculation results consistent with this

paper can be downloaded from the NIST Material Measurement Laboratory data repository

server (https://materialsdata.nist.gov/). The calculation results contained on the data repository

include XML records for every calculation performed, and interactive versions of the Figures in

this paper for every potential and crystal structure.

Appendix: The iprPy Computational Framework

The iprPy computational framework is focused on the creation and design of open and

transparent calculation methodologies that can easily be integrated into high-throughput

workflows. It consists of implemented calculation scripts, supporting codebase, and tools and

resources for the high-throughput execution of the implemented calculations. All content

associated with the iprPy framework is available on GitHub at

https://github.com/usnistgov/iprPy/.

A key principle of the framework is to minimize barriers for usage. Python was selected

as the primary programming language of the framework due to its open source nature, focus on

https://github.com/usnistgov/iprPy
https://www.ctcms.nist.gov/potentials/
https://materialsdata.nist.gov/
https://github.com/usnistgov/iprPy/

19

clarity of code, and widespread use in the scientific community. The only required software for

the core of iprPy to run is Python 2.7, and the list of non-standard Python packages is kept to

those that work on any operating system that Python does. All results are generated in an

XML/JSON equivalent format making the information directly accessible to both humans and

software. Additionally, the supporting codebase provides modular components and common

functionalities to help facilitate the rapid development of new calculations.

Calculations form the heart of the iprPy framework and package. Each calculation

consists of a “calc.py” calculation script and any other non-variable files that the script accesses.

When executed, the calculation script reads in all variable parameters from a simple key-value

formatted input parameter file. Upon successful completion, the processed results are saved as

either a JSON or XML record allowing for values to be easily read by both humans and

computers. Each calculation is designed to be an independent unit of work that can be executed

in isolation from any other calculation.

While the framework itself is agnostic to the work that a calculation does, all currently

implemented calculations use molecular dynamics simulations. In particular, the atomman

Python package (https://github.com/usnistgov/atomman/) is used to create calculation scripts that

represent the entire workflow of a property calculation involving LAMMPS [10, 11] simulations.

Each of these atomman-based scripts loads or creates an initial atomic configuration, generates a

LAMMPS input file from a template by filling in variable terms, runs one or more LAMMPS

simulations, and automatically imports the simulation results for post-processing. This design

makes it possible for the input and output data to focus on terms that are important to the

calculation’s purpose instead of the specifics of how any underlying simulations are performed.

Encoding calculation methodologies as Python scripts assists in making the

methodologies transparent for both validation and knowledge transfer. A corresponding

demonstration Jupyter Notebook is provided for each calculation script that combines working

Python code with formatted documentation of the procedure and underlying theory. The code in

the Jupyter Notebooks is fully functional; it contains identical underlying functions as the

associated calc.py scripts. The code between the two formats only differs in the control of input

and output data, with the Notebooks directly receiving and displaying the values as opposed to

the calc.py scripts reading from and writing to files.

https://github.com/usnistgov/atomman/

20

Using XML/JSON for representing calculation results allows for the associated records to

be constructed as modular data models. Instead of defining a completely new schema for each

data model from scratch, they can be composed from reusable data types. Each data type

represents a complete concept, such as a single value, interatomic potential, or the description of

an atomic system. These types can be pieced together like building blocks to define more

complex types and concepts, eventually leading to the construction of a full data model schema

for a given record style.

There are several advantages to constructing data models in this fashion. First, it allows

for new data models to be implemented faster as they can take advantage of the structure and

components of existing data models and types. Individual components can also be easily added

or modified to define a newer version of a data model if the original version was found to be

inadequate. Additionally, this design allows for software to interact with certain components of a

data model without requiring that the entire model adhere to a rigid schema. This feature is

convenient in that the information contained within a data type can be read from any data model

that contains that type. For example, one calculation may compute elastic constants and another

use them. If the records for both calculations use the same structured elastic constants data type,

then only one function is needed to extract the elastic constants values regardless of the record

type.

The design of the calculations and use of XML/JSON records facilitates implementation

with high-throughput workflows. Figure 9 shows a schematic overview of how iprPy handles

calculations in a high-throughput manner. The scripts “prepare.py”, “runner.py”, and

“process.py” allow for a user to interact with records in a database and set up, execute, and

analyze calculations. Each calculation is given its own “prepare.py” script which generates

calculation instances based on unique combinations of the parameters in the calculation’s input

files. Every calculation style has its own unique prepare method to handle the specific

combinatorial logic of the calculation’s input parameters. Each prepared instance consists of a

folder containing a copy of the calculation script, the completed input file, copies of any other

required files, and copies of reference records retrieved from the database. An incomplete record

associated with each instance is simultaneously added to the database.

21

Figure 9: Flow chart for the high-throughput calculation framework. A user creates a prepare.in input file that prepare.py

interprets to generate numerous calculation instances and submits a corresponding partial XML record for each instance to the

database. Each calculation instance contains a copy of the calculation Python script and an input file for that script. The

runner.py script runs each calculation instance using file information in the calculation folder or accessible from the database,

and then puts the completed XML record and archived calculation instance into the database. The user can then execute scripts

that retrieve and further process the results stored in the database.

The prepared calculations can then be performed in a high-throughput manner using one

or more runners by executing the “runner.py” script. Unlike “prepare.py”, only one “runner.py”

script exists and it operates on all calculations indiscriminately. Each operating runner selects an

unfinished calculation instance within a specified directory at random and verifies that no other

runners are currently operating on it. The “calc.py” script for that instance is then executed using

the associated input parameter file. Upon completion, the corresponding record in the database is

updated to a complete record by adding either results or any error message generated by the

calculation. The folder in which the calculation instance was performed is compressed into a

zipped archive and stored in the database as well.

Finally, “process.py” scripts can be created to extract information from the records in the

database. Different scripts can check on the status of prepared calculations, identify and collect

errors issued by the calculations, and collect all results for a given calculation style.

This design is simple, but it provides some useful options. By using modular data models,

a record produced by one calculation instance can serve as an input reference record for an

instance of another calculation. Child calculations can be prepared based on incomplete parent

22

records allowing the runners to handle hierarchies solely by checking the completeness of any

records contained with a calculation instance. Multiple runners can access and add to the same

database, and iterate through prepared calculation instances from the same or different root

directories. Runners can be started directly, or submitted to a queueing system, and can be

assigned multiple cores. Calculations can be performed heterogeneously, with single core

runners operating on easy calculations, and multi-core runners operating on the more

computationally expensive.

The core codebase of the iprPy framework is designed to support the rapid

implementation of new calculations. While each calculation has a unique set of input parameters,

there may be common parameters across similar calculations. For instance, all of the current

calculations using atomman and LAMMPS have common parameters for specifying the

LAMMPS executable, interatomic potential, initial atomic system generation, and default units

to use. Any new similar calculations can reuse these common input parameters and the functions

used for interpreting them.

The iprPy framework uses classes to define common interactions across different types of

calculations, databases, and records. When an object of one of these classes is identified, it is

given a style that specifies the particular actions for each common interaction method. For

example, the Database class has methods for accessing a database to add or retrieve records.

There are currently two styles, local and curator, that make it possible to interact with either a

local directory of XML files or an instance of the Materials Database Curation System in the

same manner. The styles are treated modularly and new ones can be added by simply placing the

associated code within appropriate folders of the framework.

What the iprPy framework provides is a roadmap for designing high-quality research

calculations. Each calculation has clearly defined inputs, is a complete and independent unit of

work, and produces refined results in a structured format. Both the scripts and results can be

easily shared, used and understood external to the framework itself. The Jupyter Notebook

versions of the calculations fully document the calculation methodology making it transparent to

users who would want to learn how the calculations work. Finally, the calculation scripts and the

data records are designed to be implemented into high-throughput workflow tools and databases.

References

23

[1] C. Becker, NIST Interatomic Potentials Repository. <http://www.ctcms.nist.gov/potentials>,

2007 2016).

[2] C.A. Becker, F. Tavazza, L.E. Levine, Implications of the choice of interatomic potential on

calculated planar faults and surface properties in nickel, Philosophical Magazine 91(27) (2011)

3578-3597.

[3] C.A. Becker, F. Tavazza, Z.T. Trautt, R.A.B. de Macedo, Considerations for choosing and

using force fields and interatomic potentials in materials science and engineering, Current

Opinion in Solid State & Materials Science 17(6) (2013) 277-283.

[4] G. Grochola, S.P. Russo, I.K. Snook, On fitting a gold embedded atom method potential

using the force matching method, J Chem Phys 123(20) (2005).

[5] B.J. Lee, A modified embedded atom method interatomic potential for silicon, Calphad 31(1)

(2007) 95-104.

[6] M.I. Mendelev, M.J. Kramer, C.A. Becker, M. Asta, Analysis of semi-empirical interatomic

potentials appropriate for simulation of crystalline and liquid Al and Cu, Philosophical Magazine

88(12) (2008) 1723-1750.

[7] A. Budi, D.J. Henry, J.D. Gale, I. Yarovsky, Comparison of embedded atom method

potentials for small aluminium cluster simulations, Journal of Physics-Condensed Matter 21(14)

(2009).

[8] H.H. Wu, D.R. Trinkle, Cu/Ag EAM potential optimized for heteroepitaxial diffusion from

ab initio data, Computational Materials Science 47(2) (2009) 577-583.

[9] Z.T. Trautt, F. Tavazza, C.A. Becker, Facilitating the selection and creation of accurate

interatomic potentials with robust tools and characterization, Model Simul Mater Sc 23(7)

(2015).

[10] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J Comput Phys

117(1) (1995) 1-19.

[11] LAMMPS Molecular Dynamics Simulator. <http://lammps.sandia.gov>).

[12] J.M. Winey, K. Alison, Y.M. Gupta, Thermodynamic approach to determine accurate

potentials for molecular dynamics simulations: thermoelastic response of aluminum, Model

Simul Mater Sc 18(2) (2010) 029801.

[13] G. Bonny, N. Castin, D. Terentyev, Interatomic potential for studying ageing under

irradiation in stainless steels: the FeNiCr model alloy, Model Simul Mater Sc 21(8) (2013)

085004.

[14] K.O. Henriksson, C. Bjorkas, K. Nordlund, Atomistic simulations of stainless steels: a

many-body potential for the Fe-Cr-C system, J Phys Condens Matter 25(44) (2013) 445401.

[15] L. Proville, D. Rodney, M.C. Marinica, Quantum effect on thermally activated glide of

dislocations, Nat Mater 11(10) (2012) 845-9.

[16] <http://lammps.sandia.gov/doc/fix_box_relax.html>, (accessed Feb 1, 2018.).

[17] A. Nichol, G.J. Ackland, Property trends in simple metals: An empirical potential approach,

Physical Review B 93(18) (2016) 184101.

[18] G.J. Ackland, R. Thetford, An Improved N-Body Semiempirical Model for Body-Centered

Cubic Transition-Metals, Philos Mag A 56(1) (1987) 15-30.

[19] X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-

deposited CoFe/NiFe multilayers, Physical Review B 69(14) (2004).

[20] X.Y. Liu, P.P. Ohotnicky, J.B. Adams, C.L. Rohrer, R.W. Hyland, Anisotropic surface

segregation in Al-Mg alloys, Surf Sci 373(2-3) (1997) 357-370.

http://www.ctcms.nist.gov/potentials
http://lammps.sandia.gov/
http://lammps.sandia.gov/doc/fix_box_relax.html

24

[21] B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, M.I.

Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Physical

Review B 85(24) (2012).

[22] H.J. McSkimin, W.L. Bond, E. Buehler, G.K. Teal, Measurement of the Elastic Constants of

Silicon Single Crystals and Their Thermal Coefficients, Phys Rev 83(5) (1951) 1080-1080.

[23] M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys

Rev B Condens Matter 46(5) (1992) 2727-2742.

[24] M.I. Baskes, R.A. Johnson, Modified Embedded-Atom Potentials for Hcp Metals, Model

Simul Mater Sc 2(1) (1994) 147-163.

[25] R.A. Johnson, Internal relaxation in the HCP lattice, Model Simul Mater Sc 1(5) (1993)

717.

[26] L. Kleinman, Deformation Potentials in Silicon .1. Uniaxial Strain, Phys Rev 128(6) (1962)

2614-2621.

[27] M.I. Mendelev, T.L. Underwood, G.J. Ackland, Development of an interatomic potential for

the simulation of defects, plasticity, and phase transformations in titanium, The Journal of

Chemical Physics 145(15) (2016) 154102.

