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Abstract—One of the main challenges of applying AI to
certain datasets derives from the datasets themselves being un-
structured, unclear, and ambiguous. Furthermore, the insights
that are to be gained reflect the quality of the data itself; if
the data is skewed, so will be the insights. This problem is
not unique to AI technology. People looking back at logs of
past events often struggle to understand what was recorded,
and to put together a timeline amongst a range of actors. AI
technology can help humans sort the data out, but it does
not provide the same insight often found in the background
knowledge of human participants. This contextual weakness
has made unstructured data hard to process. In our work, we
have studied typical manufacturing maintenance logs to explore
whether and how we can apply AI technologies to gain more
insight from this—often vast and under-used—data-source.
Our approach combines AI techniques for NLP, machine
learning, and statistical processing with human contextual
knowledge to quickly develop structured semantics reflecting
unique datasets.

Keywords-Natural Language Processing; Intelligent manu-
facturing systems; Predictive maintenance; Tagging;

I. INTRODUCTION

The typical manufacturing maintenance log consists of
composed notes from operators or maintenance technicians
on problems encountered, along with some information
about the solutions applied. Often, much of the information
is left out, and the records contain numerous abbreviations
and jargon. Some organizations are better than others about
trying to classify these records to track maintenance history,
but more often than not the problem details are still described
in common language. Maintenance logs are typically only
used when there is a recurring or “seismic” problem, at
which point a full-fledged investigation is undertaken. Then,
it is up to the investigator to try and make sense of what has
been recorded. That person brings a good deal of background
knowledge to this task, specifically a good understanding of
the jargon in these records.

Our research has focused on developing a methodol-
ogy for extracting useful knowledge from these records
using emerging technologies for natural language processing
(NLP) and statistical analyses to identify trends in the data.
In this work we “datafy” the maintenance logs, making them
more useful for statistical insight. We approach this problem
through a hybridization—machine learning techniques, aug-
mented with human guidance—to give meaningful structure

to the data. Early results have been promising and are
reported on here. First we provide an overview of the
problem, followed by our approach and preliminary findings.

A. Why Datafication of Maintenance Logs?

Datafication has been defined as “the transformation of
social action into online quantified data” [1]. In the example
we present, we take the “social action” of a maintenance
technician creating some historical record of events (for the
eventuality that it becomes useful to another person), and
transform it into data useful specifically for computation. In
other words, it is the process of structuring data in a way that
adds value to it, by facilitating the transmission of human
contextual knowledge used in understanding this data.

Maintenance management in a manufacturing facility is an
important part of the manufacturing process, since reducing
machine downtime leads to increased productivity. When a
machine breaks down and the subsequent maintenance work-
order is issued, the associated information is either manu-
ally written down, input into a database, or created using
maintenance management software. Meanwhile, during the
machine downtime, the time spent diagnosing the issue is
often larger than the time spent carrying out the repair of
the machine [2]. In other words, getting at the knowledge
within this work-order data, and using it to diagnose and
address problems faster, will mean real improvements to a
manufacturing process.

The problems encountered in using this data reflect the
human-centric nature of the maintenance activity, and in-
clude:

1) Technicians often describe problems informally, lead-
ing to inconsistencies and inaccuracies in the data.

2) Certain maintenance data, such as the actual root cause
of a problem, is not always being collected.

3) Once data is collected, it is not often subsequently
used for future diagnosis.

The first two of these factors can be attributed to a reliance
on human background or contextual knowledge. The latter
factor is due to a lack of clear and simple procedures for
doing so—also a human interaction issue. Our research
addresses both aspects of the problem.

The framework presented in [3] shows how these factors
can be systematically addressed. In this paper, we explore



Table I
EXAMPLE OF TYPICAL INPUT FIELDS IN WORK-ORDER DATA

Input field Input type
Issue ID Integer
When work-order was issued Time/Date
Description of Problem Raw Text
Asset ID Protected String

...
...

Resolution of Problem Raw Text
When work-order was completed Time/Date

how to apply AI techniques to structure the data in a way
that will be more easily understandable and processed—this
is the datafication of these maintenance logs. The resulting
data set contains maintenance work orders that have been
consistently tagged for clarity and analysis.

B. The Structure of Maintenance Logs

To understand the problem of datafication for manufactur-
ing maintenance logs, let’s consider the data more closely.
Maintenance logs, especially when we consider the work-
orders themselves, contain basic natural language descrip-
tions of the maintenance issues. They’re often organized into
tabular form, and include some kind of contextual data, as
illustrated in Table I.

In other cases, data comes directly from sensors, orga-
nized according to some format dictated by the device.
While some standards are emerging, at present the devices
can vary greatly and the sensor data is essentially a struc-
tured set of jargon. In practice, sensor data can be used to
facilitate the creation of work orders by monitoring a variety
of physical signals created by a machine. Work orders
can sometimes be generated automatically if certain sensor
measurements indicate the machine is not functioning as
expected. These work orders can be used in the same manner
as those that are created manually and contain similar data.

For the purposes of this paper, we focus on the human-
generated, natural-language maintenance data—specifically,
on “Description of Problem” and “Resolution of Problem”
fields commonly found as in Table I. These fields are often
a free text description. For example, Technician 1 might
describe a “hydraulic leak” as “leaking hydraulic fluid at
Machine H1”, while Technician 2 might write “hyd leak
at cutoff unit of H1.” Both of these descriptions represent
the same overall problem of “hydraulic leak” located at
“Machine H1”, but described in two different ways. The
same applies for the eventual problem resolution text. These
inconsistencies makes it impossible to automatically search
a database to find something as simple as “common resolu-
tions for all cases of hydraulic leak”.

In an ideal scenario, a maintenance technician would
be able to search instances of “hydraulic leak” and find
suggested solutions from previous instances. Locating these
logs would support the maintenance technician as an aug-

mentation to his existing experience, hopefully aiding to
quickly solve the problem. Additionally, this knowledge
could give maintenance managers a more accurate way to
track problems and corresponding repairs throughout the
facility.

The common assumption behind recording these logs is
that a human will refer back to them; as such a human
is assumed to interpret them. That assumption, however,
makes it very difficult for machine computation in any
meaningful way. Many manufacturers have recognized this
problem, and try to enforce more rigor in these descrip-
tions of problems and solutions, perhaps using interfaces
like drop-down menus to control vocabulary. Computerized
Maintenance Management System (CMMS) solutions, such
as IBM Maximo1, address some of these issues through
drop down menus and enforced categorization [4]. Many
other commercial CMMS products, such as Maintenance
Connection or eMaint CMMS, offer similar approaches to
maintenance management. However, in our conversations,
the problems are not completely resolved through these
systems; the controlled vocabularies do not fully cover the
situational complexity, and much of the useful data for
diagnostics is still covered in the comments. The inter-
faces to these systems are often cumbersome to use and
do not commonly succeed in altering technician recording
behavior or eventual data structuring. The analysis that can
be performed by these CMMS platforms—while certainly
powerful—is often limited by the inconsistent structure of
the human-generated data. Furthermore, small and medium
enterprises (the bulk of the US manufacturing base) often
do not have the wherewithal for these solutions.

As a workable solution to these problems, we propose to
take the free text descriptions found in these logs and apply
the concept of tagging to provide context for such data. This
allows maintenance managers and technicians to properly
analyze the data—perhaps even as a preparation mechanism
for available CMMS systems—and thereby obtain diagnostic
and prognostic aid from a trove of previous solutions.

II. HYBRID DATAFICATION OF MAINTENANCE LOGS

Underlying the task of datafication is a fundamental need
to classify the content of available unstructured data, which
is to say, provide structure for it. Our challenge is to classify
the data from the manufacturing maintenance logs into the
diagnostic framework shown in Fig. 1. Each word or token
in a maintenance log will be fit into one of these categories.
Using this structure we can then identify meaningful patterns
in the data. Classification in this context is approached,

1Certain commercial equipment, instruments, or materials are identified
in this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by
NIST, nor is it intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.



generally, in one of two ways: manually, given some frame-
work within which users are allowed to operate and make
classification decisions; and via automation, generally using
Natural Language Processing (NLP).

Due to the nature of manufacturing maintenance as a
natural-language domain, neither of the above are particu-
larly satisfactory approaches. In our experience, the scale
of available natural-text maintenance log data exists in
the 103 − 105 (number of entries) range—this is far too
labor-intensive to manually classify under some standard-
ized framework, especially considering the need for time-
crunched, domain-expert employees to divert time toward
such a menial task. On the other hand, NLP is typically
suited toward large corpuses of documents, not the short,
technical issue descriptions found in maintenance logs. 2

Complicating the problem further, these logs are full of
highly domain-specific technical terms and user-specific
lingo. The classification is very difficult to automate without
customized NLP libraries tailored to the jargon, further
adding to the burden on manufacturers trying to implement
datafication techniques.

Our approach is to hybridize the two paradigms, centering
around the use of data tagging. “Tags” are simply annotation
terms for some resource — in this case, maintenance work-
orders — and are generally chosen without a controlled
vocabulary or boundary [5]. Tagging is very flexible —
being a direct reflection of the tribal knowledge and domain
vocabulary of specific users, it can adapt quickly to new
domains by simply adding and removing tags. Additionally,
tags can be used to reconstruct robust dynamic hierarchies
of concepts, sometimes referred to as “folksonomies” [6].

Rather than separating data-points into discrete bins or
strict relations, a user of a tagging system simply assigns
characteristics directly onto data instances . However, while
being more intuitive for humans than strictly unambigu-
ous taxonomic classification, this “fully-manual tagging”
methodology is still labor intensive. For this reason we
propose a hybrid system, augmenting a human’s ability to

2NLP has been applied to short documents with many instances (i.e.
Twitter R©) with general success; however, the size of our datasets are not
nearly of that scale, and the language is generally much more technical.

tag natural-language maintenance documents, while preserv-
ing the flexibility and robustness of a folksonomy. This
is accomplished through easily implemented, foundational
techniques from NLP as a way to optimize a human tagger’s
time investment. In this way, we hope to encourage adoption
and understanding of techniques that balance human usabil-
ity with analytic efficacy for the analysis of largely unused
maintenance data.

A set of tags meant to give structure to maintenance
logs should in essence list qualities associated with the
1) problem, 2) solution, and 3) items (the objects directly
relevant to the issue such as machine, resources, parts, etc.)
Consequently, we have adopted a ”meta-classification” for
the tags themselves, namely, the enumerated classes above.
Fig. 1 shows an example tagging in this style, which is
accomplished via the process outlined in Section II-A below
and in Fig. 2.

A. Importance-based Vocabulary Tagging

It follows from the above discussion that imposing a
protected vocabulary when tagging items would be counter-
productive; however, a vocabulary list functioning as a look-
up table, able to match important concepts to their “tag”
representation (without repeated human input), is very well-
suited to technical domains like manufacturing maintenance.
NLP allows us to extract an initial vocabulary list which
can then be validated and refined by experts. NLP extracts
a list of “tokens” 3 that are ranked in order of importance.
For the purpose of this study, we turn to a widely used
importance metric called Term Frequency & Inverse Doc-
ument Frequency (TF-IDF), which balances the frequency
of occurrence of some word within a document (i.e. issue)
and the frequency in the overall corpus of documents. [7].
Passing this list of tokens to a set of domain experts for
“meta-classification” is highly efficient for quickly building
a list of common vocabulary, as we demonstrate in the
following case-study. The job of the experts is to determine

3In the context of NLP, tokens are either individual words, or combina-
tions of words (n-grams) that have a discrete meaning. For example, “ice”,
“cream”, and “ice cream” might all be tokens, with “ice cream” being a
2-gram.

Figure 1. Illustration of a maintenance issue tagging process, mapping from two raw-text inputs—here an issue description and corresponding resolution—to
a set of categorized tags. Note the correction of “replaces” to “replace”.



Figure 2. A flow chart illustrating the process from raw-text work-order documents and expert annotation to tags. The key is to pass users a ranked
list that is already in (approximately) “tag-like” form, via various pre-processing techniques and ordered by a TF-IDF “importance” heuristic. In the
keyword-extraction step, a series of binary decisions determines if incoming tokens are already classified and whether to mark them as Tags or Unknowns.

if the tokens fall into one or a subset of the following
categories:

1) Item, Problem, or Solution named-entity (NE) tag
2) Redundant or un-useful tokens
3) Stop-word and Ambiguous tokens.
The NE tag classifications (1) are then treated as definitive

information, and all instances of these tokens need no further
human input to be correctly tagged. We allow the experts to
add an alias or preferred label for any of these token classes,
thereby automating the creation of a thesaurus that can take
local jargon and abbreviations into account.

The redundant tokens (2) do not add additional informa-
tion, and can be ignored. As an example, consider the recog-
nized tokens from the phrase “bar feeder chain”. Extracted
tokens from 3-gram TF-IDF might be:

{bar, feeder, chain,
bar feeder, feeder chain,

bar feeder chain}

However, in this specific process, a “feeder chain” might
not make sense without “bar”, and a feeder might not be
an object existing outside of “bar feeder”. Such a scheme is
depicted in Fig. 3. With necessary redundant classifications
in place, the resulting tags extracted using expert-classified
vocabulary might be

{bar, bar feeder, bar feeder chain}

Similarly, stop words or ambiguous tokens (3) are deemed
either non-important filler words or words too ambiguous to
give a strict Item/Problem/Solution designation. This process
of annotation results in a classification and alias list in order
of TF-IDF “importance”, as seen in Table II. It is then com-
putationally inexpensive to return to the the Bag of Words
representation of the original raw text issue descriptions and

Figure 3. An example heuristic rule for determining what extracted tokens
might be considered ”redundant”. Each arrow is a determination if, within
the context of a given corpus, some n-gram token makes sense to talk about
without its (n+1)-gram parent. If not, it can be ignored, since it will almost
always occur within one of the sensible n-gram parents.

Table II
EX. TOP TOKENS, CLASSIFICATIONS, AND ALIASES

Token NE Alias
replace S replace
unit I unit
motor I motor
spindle I spindle
leak P leak
valve I valve
replaced S replace

...
...

...

flag extracted tokens as useful tags, redundant/ambiguous, or
as completely unknown due to incompleteness of the vocab-
ulary list. This automated tagging approach is described in
the case study section below using an industry data-set.



B. Human Critique and Completion
Once a first pass has been completed by the automated

vocabulary-based tagger, humans may now provide critique
of the set of tags for each issue. This can be handled with
a combination of approaches.

As a consequence of the vocabulary method above, each
maintenance issue will now have a list of Unknown tokens.
It is then possible to perform a TF-IDF importance ranking
on only the unknown tokens, then passing this to a human
expert for classification. This iterative process is hypoth-
esized to quickly reduce the number of unknown tokens
while better completing the vocabulary list than the TF-IDF
heuristic ranking alone.

Another possibility, which particularly becomes useful
when multiple human agents can tag resources in a data-
set, takes a nod from previous taxonomic and crowdsourcing
work [8], [9]. If users are to ever manually add or remove
tags from individual issues directly, it is important that they
are directed in such a way as to

1) maximize the utility of their time investment, and
2) optimize completeness of the issue-to-tag mapping

This can be achieved by maximizing the expected informa-
tion gain over the set of available issues, and queuing issues
for the users to tag, ordered in this way.

The human critique may serve another, potentially impor-
tant, goal: the separation of Items into problem-items and
solution-items. These categories are highly ambiguous and
the vocabulary list may not be useful to differentiate between
them, since the tags for the two categories are nearly
mutually-inclusive. Consequently, these must be determined
on a per-issue level. The benefits for doing so are a current
area of research, especially concerning diagnostic prediction
using the tagged data; a minimal example of such diagnostics
is further discussed in the Diagnostics part of Section III-B
below.

III. INDUSTRY CASE STUDY

To test the vocabulary-based tagging procedure outlined
above, a manufacturing data-set containing 3,438 raw-text
descriptions and resolutions of maintenance issue work-
orders was analyzed.

First, two domain experts collaboratively tagged as many
individual issues as possible, resulting in 1,814 structured
data-points via fully-manual tagging. The experts reported
being able to tag approximately 100 issues/hour, giving a
rough estimate of 18 hrs, 8min to tag that number of issues.
They were asked to list the Problem, Solution, and Item tags,
further differentiating between problem-items and solution-
items.

Next, they were given a TF-IDF ordered list of extracted
tokens, with the task of meta-classification described pre-
viously, assigning one of: Item (I), Problem (P), Solution
(S), Ambiguous (U), or Stop-word (X), along with any pre-
ferred labels to replace lingo, misspellings, etc. The experts

reported finishing 1000 vocabulary items in approximately
1 hour, while ultimately completing 1,362 classifications,
giving an estimate of 1hr, 22min spent.

A. Datafication Quality

To estimate the quality of the automated tagging, we
assume that any issues with no Unknown tags are considered
fully “datafied”, or tag-complete. Additionally, for issues
where no known tags were extracted at all, the datafication
process was completely non-useful. The top of Figure 4
reports both of these groups as fractions of the entire data-
set, versus the size of the available vocabulary list. The
automated tagger datafies nearly all issues, and extracts all
available information from over half of the data-set with
only 1,000 tokens in its vocabulary.

1) Comparison to Fully-Manual Tagging: Another way
to quantify the tag quality is by directly comparing the tag-
set from the vocabulary tagger to the human-generated fully-
manual tags as a test-set. This requires a suitable metric.
Typically, accuracy is defined as the ratio of “correct” to
“incorrect” label instances, which in this context would be
how many times one set of tags perfectly matches the other
set. This is an overly-harsh metric for the performance of
multi-label classification, since it ignores how close we got
to the correct output in each case. The Hamming score
(SH ) measures the “distance” between the two sets of tags,
averaged over the data-set, which is a more forgiving and
useful metric [10]. Given a set of n resources, where the ith
resource has “true” tags Ti and predicted tags Pi:

SH =
1

n

n∑
i=1

|Ti ∩ Pi|
|Ti ∪ Pi|

(1)

However, this is somewhat difficult to interpret. Addition-
ally, we can use the more intuitive notions of precision,
recall, and their weighted harmonic mean Fβ-score. 4 Sim-
plistically, precision is a classifier’s ability to avoid false-
positives, and recall is its ability to not miss true-positives.
Fβ then combines them, attributing β times more importance
to recall than to precision:

Pr =
1

n

n∑
i=1

|Ti ∩ Pi|
|Pi|

(2)

Re =
1

n

n∑
i=1

|Ti ∩ Pi|
|Ti|

(3)

Fβ =
1

n

n∑
i=1

(1 + β2)
PriRei

β2Pri +Rei
(4)

Since we do not really trust that the original tags given by
humans were all-inclusive, we want to place more impor-
tance on recall in our measure — for example, twice as much

4There are several ways to aggregate these scores across a data-set; here
we have adopted the simple mean over all resources/issues (macro-average).



— leading to our usage of F2. The results of calculating
these values, assuming the manually-tagged issues define the
“true” tag set, are in the bottom of Fig. 4.

Figure 4. The top chart illustrates the return on labor investment
for meta-classification of the tag vocabulary. The bottom chart shows
the information-retrieval scores for the vocabulary-tagger when calculated
against un-assisted human-derived tags.

It is interesting to note that the Precision actually goes
down with more vocabulary; this arises from Precision-
punishing false-positives. This implicitly assumes that the
human-derived tags are “the whole truth”, when in reality
these tags only consist of what was deemed important. This,
coupled with the way that Precision losses and Hamming
scores level out rather quickly with further increases in
vocabulary size, indicate that it is likely better to start with
the auto-tagging procedure as a “gold standard”, since we
can be certain extracted tokens existed in the original text.

2) NLP Comparative Study: Another common way to
assist datafication efforts with NLP is by using Machine
Learning models that, for example, mimic the tagging
patterns of observed human-generated tags. Generally this
requires a training set, i.e. there are resources with existing
“true” tags, which are used to train a multi-label classifier.
5 This obviously requires some initial time-investment from
human taggers to create this training set, but once this is
completed, the model has potential to quickly tag remaining

5Mutli-label classification is the task of assigning some set of target labels
to an input, meaning that the output “classes” may not be mutually exclusive
(as would be the case in multiclass classification). This is necessary for tag
prediction, since resources must receive multiple tags.

Figure 5. Box-plot comparison of the performance for Vocabulary tagger
vs. multi-label SVM classification using Word2Vec semantic embeddings of
the raw-text issues. Notches indicate 95% confidence intervals for median
score, via 10,000 bootstrap samples.

resources.
For this study, a linear-kernel support-vector machine

(SVM) was used in a One-vs-Rest multi-label scheme6.
Inputs were 1,814 Word2Vec semantic embeddings [12],
one for each raw-text maintenance issue tagged by the
experts. Target (training) labels were the expert-generated
tags themselves. Stochastic Gradient Descent (SGD) was
used to minimize the hinge loss, and an elastic-net penalty
was used to reduce over-fitting [13]. The model was written
in Python using the Sci-kit Learn and SpaCy libraries [14],
[15]. Results compared to the vocabulary-based tagger w.r.t.
the expert tags are displayed in Fig. 5.

It is apparent that the SVM out-performs the vocabulary
tagger in every available metric, especially in Precision
(i.e. a much lower false-positive rate). Recall, however,
that we do not expect the expert taggers to generate all-
inclusive labels, which prompted the usage of an F2 met-
ric. The F2-score for both methods are remarkably close.
Considering the drastic (over an order of magnitude) human
time-investment discrepancy between implementing the two
methods, the 7-point gain for the SVM is not a particularly
worth-while return on investment.

Still, the increased precision is a desirable feature of
the SVM. Once the initial vocabulary-based tags have
been through the Human-Critique phases described above,
an SVM using Word2Vec would potentially pick up on
contextual tag patterns not existing explicitly in the raw
text. This layer of human-machine hybridization should
provide a robust and scalable approach to the continued
tagging of issues, especially when the corpus size becomes
considerably larger.

B. Potential Applications of Datafication by Tags

In this section, we provide an initial foray into the usage
of tagged maintenance data for 1) Diagnostic assistance, and
2) Prognostics and health management (PHM). While there

6Called Binary Relevance method in the multi-label classification litera-
ture [11]



is not space here for a holistic tag-based approach to either
field (nor would any single study necessarily suffice), we
hope to demonstrate the effectiveness of tagged maintenance
issues at capturing some useful information from otherwise
unused natural-language data.

1) Diagnostics: The most straight-forward application
of tags is to query on the occurrence rate for certain
tag combinations, as proxy for occurrence rate of certain
issues. This is especially effective for its simplicity. Using
the case-study data, the most common raw-text description
was an “Accumulator check request”, occurring uniquely
14 times. After automated vocabulary tagging, the issue
count for occurrence of {accumulator} ∪ {check request}
was 73. Additionally, the rate for {hydraulic} ∪ {leak},
which was not in the top 20 most common (raw-text) issue
descriptions, in fact occurred in 159 separate issues. The
high occurrence of hydraulic leaks was not known to the
maintenance management previously.

Extending this idea, tag occurrence can be shown over
time, visually illustrating issue “hot-spots”, as demonstrated
in the top of Fig. 6. Note the increase of hydraulic leaks in
the summer months, information which could potentially be
correlated with specific jobs underway in those periods, that
might be causing such behavior.

Another possible use-case concerns solving new main-
tenance work-orders. Given the set of existing tags, along
with some new problem and item tags as input from a
maintenance tech, an algorithm might predict the set of
most likely solution tags, along with other item tags of
significance to this issue. If the additional step of classifying
Items as “problem-items” and “solution-items” is taken as
part of the Human-Critique phase, it is possible to predict the
object involved in solving some input problem. This might
be done with a type of ”maintenance-tag language”, using
the classified tags as an n-gram language model, such as in
[16]. An visual implementation of this style of diagnostic
assistance is demonstrated in Fig. 7.

2) Preliminary Prognostics: Prognostics is primarily con-
cerned with predicting the useful life of some system or
component before it ceases to function [18]. This remaining
useful life (RUL) is often calculated using empirical ob-
servations and/or a model of the process failure rates. The
expected time between actual failures is called the failure
inter-arrival time (δf ), and it is generally modeled as a
stochastic process from which failures are drawn. [19]

Note that failures are not—in general—the same as main-
tenance requests, since a machine able to be repaired has
not actually failed or reached 0 RUL. With this in mind,
even if we make assumptions that failures are a constant-rate
stochastic process, it is often quite difficult to calculate RUL
values, let alone when there is a lack of sensor or other pre-
existing data in a CMMS system. However, with the tagging
system proposed above, it is possible to approximate failures
as occurring when some set of pre-defined tags appear, such

as {broken} ∪ {replace}. A calendar view of the tag co-
occurrences over time, with this explicit condition, is shown
in the bottom of Fig. 6. Using that data, is now possible to
approximate δf as drawn from, for example, an exponential
distribution δf ∼ Exp(λ), where λ is the rate parameter in
a constant-rate Poisson Process. The approximation, while
certainly rough, can be visually verified as reasonable for
the “spindle” and “motor” tags in Fig. 8.

As a final item of interest, it is perhaps useful to consider a
taxonomy of maintenance concepts. Determining which tags
are most discriminatory for use in prognostics is a non-trivial
problem, and a taxonomy might help to organize the tags as
inheriting information or even classification from other, more
generalized tags. However, generating such a taxonomy or
ontology is a labor-intensive design task, and could not eas-
ily be generalized across multiple manufacturing domains.
One possibility is the use of automated taxonomy-generation
algorithms built around the sorting of tag co-occurrences
according to their graph-theoretic centrality. One such tool,
the Heymann algorithm [20], has shown preliminary success
at hierarchically ordering the item tags by generality. This
will be discussed at length in further research, but initial
results suggest that this automatically generated taxonomy
is easy for humans to critique for robustness This may prove
a much simpler task than designing a process taxonomy from
scratch.

IV. CONCLUSION

The work outlined in this paper is part of a larger
framework presented in [3]. The framework is the basis for
a knowledge base of manufacturing performance problems,
to support diagnosis of performance issues. The use of
manufacturing work order data is one method for identifying
these problems, and others are being researched as well.
The tagging procedures described in this research promise
to provide a rich source of data for the knowledge base.

The progress shown thus-far in datafication of main-
tenance logs addresses one of the primary challenges of
constructing such a knowledge base—formulating reusable
semantics around data being collected by manufacturers
today. By most estimates, a significant portion of today’s
manufacturing data is not being used—or perhaps only
analyzed later, when significant problems occur. A barrier
to using the data more proactively is the use of inconsistent
terminology and lack of context for the data. Our tagging
approach can help address these problems.

In addition, the insights gained through the datafication
and analysis processes themselves suggest that meaningful
insights may be gained from the data independent from its
inclusion in a knowledge base. The goal for this work is
to provide methods to improve manufacturing performance
and help to address common challenges that industries face.
We envision publishing a formal methodology and tool that
manufacturers could use to learn from their own data sets.



Figure 6. Illustration of the usefulness of tags in quickly analyzing maintenance data as a time-series. Additionally, an approximation to “failure rates”
of parts might be approximated by returning only tags co-occurring with both the “broken” and “replace” tags. This rough approximation may be useful
for preliminary RUL models.

Figure 7. A simple app interface demonstrating the usefulness of further categorizing Items into “problem items” and “solution items”. Simply using
ordered tag co-occurrences previously observed in the database, one might calculate the unsmoothed likelihood of observing some solution tags given
some input problem tags, as illustrated above. Each node is weighted by its likelihood given the nodes before it (left-to-right), and the edges indicate how
much each node is contributing to the likelihood of its successors. In this example, given an issue like “Hydraulic leak; motor is broken with a loose brush
unit”, the suggested solution is to replace the output module. Note that only nodes above some tunable probability threshold are displayed. Created using
interactive widgets via the Bokeh visualization library [17].



Figure 8. Approximate failure inter-arrival time (δf ) distributions extracted
using vocabulary-based tags. Basic models for spindle or motor failure
could perhaps assume a constant-rate Poisson Process, allowing one to
predict failures, e.g., for a motor once every 18 days, on average.

Future work will also include reproducing our results with
data from a broader variety of organizations and sources,
as well as understanding the idiosyncrasies of computation
with sensor data. Finally, we plan to explore additional
interface technologies that help humans in validating and
augmenting data sets produced through automated means
of processing. These mechanisms, along with the previously
discussed human-critique methodologies, are areas for future
research.
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