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EXECUTIVE SUMMARY 

This white paper provides an overview of virtual metrology (VM) and the benefits it can provide, with cost reduction 

(both capital expenditure and cycle time) being the primary benefit.  The white paper also examines some of the issues 

preventing wider adoption of VM, and offers some possible solutions. The key adoption issues identified in this white 

paper primarily came from a survey of advanced process control (APC) users, implementers, and managers, conducted by 

the International Roadmap for Devices and Systems (IRDS) Factory Integration focus team, to help understand the current 

state of VM adoption. 

The main factors described as preventing wider adoption of VM are based on consensus opinions of the survey 

respondents. These include: confidence in models, customer data quality, lack of process knowledge and correlation with 

metrology, model maintenance, cost, and intellectual property (IP) security.  

Possible solutions include development of a standardized prediction quality metric, improved data communications and 

data quality for model building and model maintenance, better training data, correlation with real metrology when 

possible, and improved interaction between yield and VM, which will allow VM to leverage some of the metrology data 

that yield depends on. The whitepaper also describes some current and potential applications of VM. 

The following recommendations are summarized in the conclusions 

• Standards are needed to evaluate customer data quality. A set of criteria on the minimum level (type and 

completeness) of data required for VM models would be helpful.   Although the wide range of current and possible 

applications preclude exact specifications, guidelines on how to select an initial data set would be helpful. 

• Standards or guidelines are needed on how to evaluate model quality and how to communicate model quality via 

a model quality metric. Issues involving model quality are some of key factors limiting VM model development 

and adoption. A model quality metric (or a number of possible metrics) will not only increase confidence in 

models, but also provide governance for use and enhance model portability and reuse. A platform to host, maintain 

and manage models would also be useful.  

• Where applicable, industry roadmaps should identify processes that could benefit from specific VM applications. 

A wide range of processes could benefit from VM if there is wider understanding of how VM should be applied 

and what benefits could be achieved. The development community and industry roadmap developers should 

highlight applications beyond the current ones that could benefit from VM. Use cases that clearly illustrate 

different applications should also be highlighted. 

• Solutions for VM model robustness and maintenance should be identified   Challenges with maintaining models in 

the face of process dynamics and context shifts should be identified along with potential solutions and a roadmap 

for implementation.  The relationship between model robustness and maintenance requirements, and how it applies 

to specific VM application types should be identified. 

•  





 

 

 

1. INTRODUCTION  

This whitepaper explores some of the relationship between real and virtual metrology (VM). The goal is to better 

understand the needs, challenges and opportunities for virtual metrology. Virtual Metrology is defined by SEMI E1331 

standard as  

“…the technology of prediction of post process metrology variables (either measurable or nonmeasurable) 

using process and wafer state information that could include upstream metrology and/or sensor data.” 

Virtual metrology is not a direct measurement. It requires a set of data that characterizes an environment to make a 

prediction.   VM can be applied to answer questions such as -  what post process metrology variables are critical, how are 

these variables related to the input data, and how are the input variables transformed by the current process. Hence, what 

data must be collected to help predict those variables?  VM plays a limited role2-6  in improving process knowledge and 

yield, but this could be larger if it is applied to other areas.  Currently, process parameters such as etch rate and deposition 

rate are seen as easily adaptable to VM, while uniformity, particle detection and characterization, chemical mechanical 

polishing (CMP) scratches, and stress are seen as more difficult. Figure 1 shows a run-to-run (R2R) control approach using 

VM for a semiconductor manufacturing process4.  

 

 

Figure 1: A generic R2R control diagram for VM for a semiconductor manufacturing process. u is an input, v is a process 

variable, y is measurement output from metrology, ŷ is prediction from the VM module. Illustration taken from Ref. # 4.  Both 

real metrology (RM) measurements and VM predictions are used as feedback data to the R2R controller.  The RM 

measurements are also used to update the VM model. 

 

Real metrology (RM) on the other hand provides an actual measurement of wafer or other parameters; this information 

about the current state of the wafer is typically used to help keep the process under control. The issue of whether the right 

type and amount of data is being collected is a reoccurring one in metrology7. Possible solutions for most of the metrology 

challenges listed in the International Roadmap for Devices and Systems (IRDS) Metrology Difficult Challenges table 8  

would involve an increased use of modeling, simulation, and data analytics. The vast amount of data already collected could 

be used to increase the benefits of both real and virtual metrologies, and could be applied more widely to other areas of  

debug and diagnostics9. 

Although closer interaction between VM and RM could greatly increase the return on investment (ROI)10, 11 for both areas, 

there are barriers. In this whitepaper, we examine some of the issues preventing wider adoption of VM, some possible 

solutions, and potential areas of application. This information represents a collaboration between the Metrology and Factory 

Integration focus teams within IRDS. The information presented is partly from a survey of advanced process control (APC) 

users, implementers, and managers12, conducted by IRDS Factory Integration focus team, to help understand the current 

state of VM, and possible solutions.   



 

 

2. KEY BENEFITS OF VIRTUAL METROLOGY 

The primary benefits of VM are cost and cycle time reductions. This includes savings from reduction of both capital 

expenditure and cycle time.  The latter can result from leveraging VM as part of smarter metrology and dynamic sampling 

techniques. In this case, VM is able to predict what and how much to sample to get the desired results. Other key benefits 

include augmenting run-to-run (R2R) control, and the ability to predict something that cannot be measured directly or non-

destructively.  These same benefits currently constitute the main ROI. Table 1 lists the primary benefits, ROI order, and the 

order in which VM is usually adopted. For importance of VM, a value of 1 indicate the most important. 

TABLE 1: BENEFITS OF VIRTUAL METROLOGY 

 Importance of VM-  

(Ultimate ROI) 

Order of VM 

adoption  

Metrology excursion detection 4 1 

Use of smarter metrology sampling / dynamic 

sampling. 

3 2 

Augmenting run to run (R2R) control 2 3 

Ability to predict something that cannot be 

measured directly or non-destructively 

1 4 

3. SOME ISSUES PREVENTING WIDER ADOPTION OF VM AND POSSIBLE 

SOLUTIONS 

3.1. CONFIDENCE IN MODELS  

Virtual metrology relies on models, and as such most of the issues identified as preventing wider adoption revolve around 

confidence in models. Models could be hard to validate prior to initial deployment and especially as part of a model 

maintenance effort. Given that VM may sometimes be used to predict parameters that real metrology cannot measure or 

verify, confidence in models is most important. Currently, there is no standard or generally accepted method to validate or 

adopt VM models, or to communicate model confidence.  

3.2. CUSTOMER DATA QUALITY  

This includes not measuring the relevant parameters, not using the right sampling strategy (i.e., amount and frequency of 

sampling needed to accurately predict post process information), including the necessary context data (such as product ID 

and maintenance indication) along with parameter data, and the quality of the training data.  In some cases, data integrity 

in older tools and changes of state of models after major tool maintenance often leads to excessive error or poor repeatability. 

So robustness of models over time and across context due to data drifts and shifts is a problem. Other causes of poor data 

quality include measurement noise and process noise.  

3.3. LACK OF PROCESS KNOWLEDGE AND CORRELATION WITH METROLOGY 

In addition to data issues raised above, there may not be a full understanding of the processes being modeled, or a lack of 

incorporation of process knowledge in modeling solutions (i.e., models are purely statistical or data-driven). Although the 

main effects of a process may be well known, a full mechanistic understanding of all the process variables, especially to 

the level needed to add value, may not be available. As a result, when model parameters cannot be directly measured, 

correlation with real metrology is not always possible. This leads to a lack of acceptance by the metrology and yield groups. 

 

3.4. MODEL INDEPENDENCE AND MAINTENANCE 

Virtual metrology model portability across different chambers (chamber matching), recipes, products and other context 

is often low and inconsistent due to chamber differences, dynamics, context differences, and sensor calibration drift, 



 

 

 

etc. Methods of porting models need to be developed to reduce the startup cost of model development.  VM models 

must also continue to provide predictions in the face of process dynamics and context changes such as process drift, 

product changes, and maintenance events.  This usually requires VM models to have an ability to adapt to these changes 

in the environment.  Challenges and potential solutions for VM model adaptation to maintain model quality and 

robustness must be identified.   

3.5. COST AND INTELLECTUAL PROPERTY (IP) 

Cost and Intellectual property are two of the overarching problems that cut across all aspects of VM.  Although VM 

could have a lower capital cost, it is an additional investment. Intellectual property protection and confidentially also 

mean that VM models and associated data and interfaces cannot be shared easily.   

4. SOME POSSIBLE SOLUTIONS 

Possible solutions would include addressing the global problems outlined above, but also finding ways to make 

implementing VM more practical in the field. This requires a clear indication that the ROI is worth the effort. To do this, 

use cases that clearly illustrate different applications, and robustness over time and context are needed. Ideally, this would 

be for cases where VM could make a unique impact. 

The development and use of a prediction quality metric would be very helpful in increasing the confidence of models and 

defining their use. A lot of the issues that prevent wider adoption has to do with model reliability, confidence, and 

repeatability. A prediction quality metric would at least give users an indication of model quality. Understanding better 

ways to communicate data for model building, better training data, and correlation with real metrology (when possible) 

would be helpful. 

An area or approach that could help VM is predictive maintenance (PdM)13. Both VM and PdM largely use the same 

modeling approaches, and have a lot of the same requirements for model development, implementation and maintenance 

(historical data, communication infrastructure, data merging, etc.). However, while VM has been around longer, PdM seems 

to be receiving more attention. Simple PdM models can be more portable and robust, and it is easier to show ROI. PdM 

also has more relaxed requirements with respect to functionality.  For example, even if PdM predicts an earlier schedule, 

the end result is still okay. In spite of differences in expectations, the success of PdM suggest that there could be things VM 

could learn from PdM. Methods to integrate VM and PdM has also been proposed14. 

The relationship between yield and VM could be better. Currently, yield analysis relies heavily on real metrology rather 

than VM.  Although the benefits described above have a direct impact on yield, VM’s interaction with fault detection (FD) 

and APC could be further improved to increase yield. Specifically, similar models used to predict metrology metrics could 

be used to predict and improve yield.  The impact of good sampling techniques on measurement uncertainty are well 

known15, and should be applied more widely.  Better sampling techniques developed for VM would be particularly useful 

in predicting yield excursions, especially if the models come with a prediction quality metric. This will result in a smaller 

data set being used for yield correlation. FD also needs to be more yield aware, i.e. FD process excursions linked to yield 

excursions.   

5. APPLICATIONS OF VIRTUAL METROLOGY 

Virtual Metrology can be applied to a variety of applications where the relationship between process parameters and results 

are well understood and can be predictable. VM has been applied to the following areas with varying degrees of success: 

etch rate, deposition rate and film thickness, chamber matching, chemical mechanical polishing, carrier profiles prediction 

and uniformity among others.  We highlight two uses that cut across different applications: R2R control and smart sampling. 

5.1. RUN TO RUN (R2R) CONTROL 

R2R Control is defined as “the technique of modifying recipe parameters or the selection of control parameters between 

runs to improve processing performance. A run can be a batch, lot, or an individual wafer”16. R2R control uses process, 

equipment, and metrology data with historical knowledge of the same parameters to suggest changes to the recipe after each 



 

 

run.  The goal is to capture and correct process shifts and drifts and to reduce process variability between runs, which in the 

end reduces cost. R2R control is used due to lack of in-situ or real-time information about a process, especially one that 

could drift out of control. R2R control has been successfully implemented in lithography, CMP, and chemical vapor 

deposition amongst other areas, and could be extended to other uses. Some benefits include improved process capability 

(increased accuracy to target and reduced variability), early detection of process drifts, reduced process downtime, better 

process control, and scrap reduction among others. R2R control utilizes both feedforward and feedback information for 

process control.  This information usually comes from pre and post-process metrology respectively.  Unfortunately, in a 

large number of semiconductor processes, not all wafers are measured, so the controller must operate without 100% wafer 

sampling, reducing controller effectiveness.  As shown in Figure 1, VM can be used to augment real metrology, enabling 

essentially 100% sampling for pre and post metrology.  Issues of VM prediction quality complicate the control modeling 

and execution process.  

5.2.  SMART SAMPLING 

Smart sampling (also known as dynamic sampling) is the ability to change the sampling details (frequency, size, etc.) based 

on prior observations. This enables the ability to know what to sample, how much to sample, and when. Generally, the 

sampling frequency increases when the process looks as if it is drifting from the intended value, and decreases when the 

process is under control.  With adaptive sampling, a key part of the implementation is to make sure that the algorithm is 

robust enough to respond to small process shifts during low sampling periods. Smart sampling has been applied to different 

areas such as etch and deposition and is usually one of the first VM techniques to be adopted. When used as part of a VM 

scheme, data from smart sampling is used along with other process data to feedforward information17, 18.  

6. POTENTIAL APPLICATIONS OF VIRTUAL METROLOGY  

Increasingly, machine learning and predictive analysis are used for metrology applications 10, 11, 19-21. Although this is not 

always referred to as VM, it is part of a trend towards autonomous and semi-autonomous evaluation of metrology data for 

pattern analysis, prediction, and decision making. The following examples are areas where the predictive nature of VM 

could be used to enhance the usefulness of real metrology. In some cases, this would help streamline current measurement 

processes, in other cases it would predict outcomes for parameters that cannot be measured non-destructively based on 

training data. This is not meant to be an exhaustive list, just a few examples to highlight the broad applicability. 

6.1. DIRECTED SELF ASSEMBLY 

Directed self-assembly (DSA) is based on the use of self-assembling materials (mostly block copolymer films) for nano-

patterning22. Although there are a variety of potential applications in nanotechnology, a considerable body of work has been 

devoted to semiconductor lithography23-25. Although DSA is a promising technique for nano-patterning, it is mostly at the 

research stage, so a large body of process monitoring data is not widely available. In addition, there is no clear information 

on material and system dependent measurands. However, key metrology challenges have been identified, and their solutions 

for a factory environment could benefit from VM.  Prediction techniques could be used to determine where DSA defects 

are most likely be, and also correlate certain types of defect with process issues in other steps. Some examples include: 

DSA Defects: Metrology techniques to detect low densities of surface and buried defects over a large area are needed for 

DSA. Low densities and small defect sizes mean that optical inspection tools do not have the required sensitivity for 

detection.  A better understanding of the material and system dependent defects would help predict the most critical post 

metrology variables, defect position and location, defect density, and possible impact on the process.  

DSA: CD and Overlay: Another issue is overlay metrology for DSA. Overlay shifts in DSA are not systematic, so more 

sampling at higher rates is needed to fully capture overlay shifts. Metrology issues such as position and critical dimensions 

(especially over a large area) are yet to be addressed.  

6.2. VIRTUAL STANDARDS AND TEST STRUCTURES 

Virtual Metrology could play a role in the development of virtual test structures. The data to model the relationship between 

instrument parameters, measurement data, performance and yield is available but rarely used for such purposes. This is 

mostly due to lack of knowledge about process variables that could affect the results. This could change if predictive models 

are used to verify the “calibration” or suitability of an instrument for specific measurements. The goal is not to replace 



 

 

 

physical calibration. This approach will model the relationships between frequency of calibration, process shifts, and post 

metrology parameters. This will provide information on when best to physically calibrate the instrument, and when to use 

virtual standards.  Virtual standards could be combinations of instrument and system models, parameters, and calibrated 

images26 used to define the best operating status for a set of measurements. Although developed for different applications, 

the use of model based libraries for Scanning Electron Microscopy (SEM) linewidth analysis27 and data fusion models28 

could be refined for this application. 

6.3. HYBRID METROLOGY  

Hybrid metrology is the complementary use of several techniques to measure parameters, where no single instrument has 

the capability, resolution or low levels of uncertainty needed to characterize all the parameters. At least two or more 

instruments are used, and the results combined to get the final values. Note that the hybrid metrology discussed here is the 

use of multiple instruments, rather than the combination of VM and RM. The need to use multiple techniques29-32 comes 

from the increased use of 3D devices such as fin-based field effect transistors (finFETS), where the number and complexity 

of parameters make it impossible for any single instrument to measure. For example, in measuring critical dimensions with 

scatterometry 29, 33, 34regression models that include parameters such as width, sidewall angle, height and pitch are 

developed. The uncertainty of the models could be reduced if values for some of the parameters are included and allowed 

to float with their specified uncertainties. Values from specific parameters would come from instruments that are better at 

such measurements than scatterometry. So sidewall angle values from atomic force microscopy could be included in the 

optical regression model, with the uncertainty providing a smaller floating range. Similarly, for failure analysis, two or 

more techniques can be combined on the same device to obtain sub-nm structural and electrical information as in the case 

of AFM and TEM35, 36. Figure 2 shows a conceptual diagram of hybrid metrology. Critical dimension –small angle X-ray 

scattering (CD-SAXS)37, 38, atomic force microscopy (AFM)39, 40, SEM, and optical critical dimension (OCD) contribute 

information based on specific measurands or parameters based on their capabilities. This is used to develop a generalized 

measurement model. This model can also be applied to  dedicated site-specific analysis and failure studies35. Applications 

of hybrid metrology could also involve just two instruments such as AFM and SEM or TEM35, 41-44 and SEM and CD-

SAXS. In some applications, one of the instruments could also provide calibration and traceability for specific measurands. 

The data intensive nature of Hybrid metrology lends itself to some degree of virtualization. Also, some of the analysis tools 

could be used for prediction. Hybrid metrology involves instrument calibration, instrument selection, measurement systems 

modeling, data analysis and synthesis. Virtual metrology could be used to predict which instrument should be included in 

the group based on past performance, or knowledge from training data, and robustness of the generalized model. For 

example, VM training data would be able to predict if an increase in overall outcomes (model performance, better process 

control, etc.) associated with the use of certain instruments justifies the cost.   Rigorous uncertainty analysis could also 

enhance the effectiveness of smart sampling15. Research on ways to incorporate virtual metrology, hybrid metrology, and 

machine learning are currently underway20, 21, 45-47. 

 



 

 

 

Figure 2: Conceptual diagram of hybrid metrology. Information from different instruments is used to 

develop a generalized model of the measurement.  Image courtesy of Richard Silver (NIST). 

 

6.4. ESH/S 

Some of the analytical methods developed for metrology could be applied to environmental, health, safety and 

sustainability monitoring. This could be used for nanomaterials, effluent and contamination monitoring, and more 

broadly to a wide range of analyte evaluation issues.  Given that the analyte being monitored is either a process material 

or a by-product, some of the methods developed for materials metrology and contamination characterization when 

suitable could be applied to ESH/S.  Materials metrology data could be used to predict expected levels of specific 

materials and their compounds. In some cases, this would involve modeling data from metrology, ESH/S, assembly 

and packaging on issues such as chemical sensing. 

7. CONCLUSIONS AND RECOMMENDATIONS 

This white paper examined the relationship between virtual metrology and real metrology, some issues preventing wider 

adoption of VM, and possible solutions. Overall, confidence in models, customer data quality, methods for model 

maintenance, and lack of incorporation of process knowledge and correlation with metrology were identified as some of 

the key issues preventing wider adoption of VM. A possible solution would be to develop a model quality metric. This 

would give users an indication of model quality, and help increase confidence in models. Another possible solution is to 

improve the collaboration between yield and VM. Yield relies heavily on real metrology rather than VM. VM’s interaction 

with FD and APC could be further improved to increase yield. Similar models used to predict metrology metrics could be 

used to predict and improve yield.    

In order for VM to gain wider acceptance, certain steps could be taken by the VM development communities, standards 

developers, and industry roadmap developers to increase the wider adoption of VM. These steps include: 

• Standards are needed to evaluate customer data quality. A set of criteria on the minimum level (type and 

completeness) of data required for VM models would be helpful.  Although the wide range of current and possible 

applications preclude exact specifications, guidelines on how to select an initial data set would be helpful. 

• Standards or guidelines are needed on how to evaluate model quality and how to communicate model quality via 

a model quality metric. Issues involving model quality are some of the key factors limiting VM model development 



 

 

 

and adoption. A model quality metric (or a number of possible metrics) will not only increase confidence in 

models, but also provide governance for use and enhance model portability and reuse. A platform to host maintain 

and manage models would also be useful.  

• Where applicable, industry roadmaps should identify processes that could benefit from specific VM applications. 

A wide range of processes could benefit from VM if there is wider understanding of how VM should be applied 

and what benefits could be achieved. The development community and industry roadmap developers should 

highlight applications beyond the current ones that could benefit from VM. Use cases that clearly illustrate 

different applications should also be highlighted. 

• Solutions for VM model robustness and maintenance should be identified.  Challenges with maintaining models in 

the face of process dynamics and context shifts should be identified along with potential solutions and a roadmap 

for implementation. The relationship of model robustness and maintenance requirements to specific VM 

application types should be identified. 

Overall the metric that matters most is cost reduction – both capital and cycle time. Increased awareness about the benefits 

of VM, and closer interaction between real and virtual metrology would ultimately lead to substantial cost savings.  
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