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Abstract

This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technol-
ogy (NIST) on the measurement of high-pressure surface excess carbon dioxide adsorption isotherms on NIST Reference
Material RM 8852 (ammonium ZSM-5 zeolite), at 293.15 K (20 °C) from 1 kPa up to 4.5 MPa. Eleven laboratories partici-
pated in this exercise and, for the first time, high—gressure adsorption reference data are reported using a reference material.

An empirical reference equation n,, = vyl [n,,-surface excess uptake (mmol/g), P-equilibrium pressure

(MPa), a=-6.22, b=1.97, c=4.73, and d=3.87] along with the 95% uncertainty interval (U,_,=0.075 mmol/g) were
determined for the reference isotherm using a Bayesian, Markov Chain Monte Carlo method. Together, this zeolitic reference
material and the associated adsorption data provide a means for laboratories to test and validate high-pressure adsorption
equipment and measurements. Recommendations are provided for measuring reliable high-pressure adsorption isotherms
using this material, including activation procedures, data processing methods to determine surface excess uptake, and the
appropriate equation of state to be used.

Keywords Carbon dioxide - High-pressure adsorption isotherm - Interlaboratory study - Reference adsorbent material -
Reference isotherm - RM 8852 - Surface excess adsorption - ZSM-5

1 Introduction

Adsorbent materials have many applications, including
those related to gas storage, gas separation and purification,
catalytic reforming, and environmental remediation (Dab-
rowski 2001; Yang 2003). To better understand and optimize
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been realized during the past two decades, mainly through
low-pressure cryogenic adsorption experiments (Thommes
et al. 2015). During the same period, many high-pressure
adsorption measurements have also been reported for fluids
on micro- and mesoporous solids (Menon 1968; Findenegg
and Thommes 1997; Malbrunot et al. 1997; White et al.
2005). However, challenges still exist for obtaining reliable
high-pressure adsorption isotherms, as demonstrated in a
series of interlaboratory studies (ILSs) on molecular hydro-
gen (Broom and Hirscher 2016; Hurst et al. 2016; Moretto
et al. 2013; Zlotea et al. 2009), carbon dioxide (Gensterblum
et al. 2009, 2010; Goodman et al. 2004, 2007; Gasparik et al.
2014) and small hydrocarbons (Gasparik et al. 2014). These
challenges are associated, in part, with the lack of stand-
ardized protocols, reference materials, and reference data
(Espinal et al. 2013; Broom and Webb 2017).

In response to this situation, the National Institute of
Standards and Technology (NIST) partnered with the
U.S. Department of Energy’s Advanced Research Projects
Agency-Energy (ARPA-E) to create the Facility for Adsor-
bent Characterization and Testing (FACT Lab).! The FACT
Lab recently sponsored a workshop on “Measurement Needs
in the Adsorption Sciences.” The workshop recommended
that an interlaboratory study of high-pressure adsorption iso-
therm measurements on an existing NIST reference material
be undertaken (Thommes and van Zee 2015).

For this ILS, NIST Reference Material RM 8852 (ammo-
nium ZSM-5 zeolite) (Turner et al. 2008) was selected as
the adsorbent because it consists of a network of narrow
micropores (0.5 nm) (Kokotailo et al. 1978), is an impor-
tant catalyst (Cejka et al. 2017), and is the least hygro-
scopic among three NIST zeolitic reference materials (RM
8850, RM 8851, and RM 8852), though RM 8852 is some-
what hygroscopic (Si/Al~28.3, loss on ignition ~ loss on
fusion ~ 8.5%) (Turner et al. 2008). As a reference material,
RM 8852 offers the advantage of having been homogenized
and characterized for a wide range of physical and chemi-
cal properties. Finally, the existing stock of this material
is sufficient to ensure availability to the adsorption science
community for the foreseeable future.

Carbon dioxide (CO,) was selected as the adsorptive
because of its importance in gas storage and separation
applications, its thermophysical properties near ambient
temperature would provide an extra test of experimental pro-
cedures, and it is a gas that most labs would be equipped to
handle. Also, high-pressure CO, adsorption on nanoporous
materials, such as activated carbon, coal, shales, zeolites,
MOFs, and mesoporous silica, has been previously studied
for carbon capture and sequestration due to concern over
its impact on the climate (Humayun and Tomasko 2000;

! http://www.nist.gov/mml/fact.
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Gao et al. 2004; Moellmer et al. 2010; Rother et al. 2012;
Gensterblum et al. 2010; Goodman et al. 2004; Gasparik
et al. 2014; Choi et al. 2009; Sumida et al. 2012; Espinal and
Morreale 2012; Espinal et al. 2013; Bae and Snurr 2011; Lin
et al. 2012). Reliable measurements of high-pressure CO,
adsorption isotherms are therefore helpful for developing
design principles for new and improved solid adsorbents.

The objectives of this ILS were three-fold: (1) to pro-
vide an assessment of the comparability of high-pressure
adsorption isotherms across measurement techniques and
procedures, as currently practiced, (2) to generate a refer-
ence isotherm on a reference material to serve as a standard
for the adsorption community, and (3) to recommend best-
practices for high-pressure isotherm measurements based
on the results of the exercise. An aspect that distinguishes
this ILS from previous studies is that differences among
submitted data were investigated and, as a collaborative
effort, participants were given the opportunity to remeasure
or reprocess submitted isotherms before the reference iso-
therm was derived.

2 Experimental and data analysis methods

Ten invited laboratories participated in this ILS, in addition
to the FACT Lab. The measurement capabilities of these
laboratories included both commercial and custom-built
manometric and gravimetric instruments.

2.1 ILS protocol

Given that one objective was to assess existing labora-
tory practices, the measurement protocol was not overly
detailed. It only specified a minimum purity of the CO,
(99.999%), the sample pretreatment protocol [activation
at 623 K (350 °C) for at least 12 h under high-vacuum],
the pressure range (4.5 MPa or the maximum capability of
the instrument), the temperature of the isotherm (293.15 K,
20 °C), and the number of isotherms to be measured (two
isotherms each for two separate aliquots, totaling four iso-
therms). Each participant was provided with one unit of
RM 8852 (40 g). Participants were asked to write a brief
research report describing their experimental procedures and
data processing steps, and to transmit that report and the iso-
therms as surface excess uptake in units of millimole of CO,
adsorbed per gram of activated RM 8852. By-and-large the
participants followed the prescribed protocol, though there
were some small deviations. Further details can be found in
Table 1, which lists various experimental parameters and
procedures for each dataset.
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Table 1 (continued)

Blank correction®

Temperature and stability Pressure transducer accuracy

Equation of state

Dataset Void volume/buoyancy correction

Yes, Si shot

(293.15+0.02) K 0 MPa —2.0 MPa, accuracy +0.04%

Span and Wagner

Buoyancy correction from ex-situ

10

F.S. and resolution 0.006% F.S.;
0 kPa — 10 kPa accuracy +0.15%

determined skeletal density and

mass of sample and balance com-

ponents

reading and resolution 0.001% F.S
0 MPa —2.0 MPa, accuracy +0.02%

No

(293.15+0.1) K

Not used

Buoyancy correction not applied

11

of range (2.0 MPa)
0.1 MPa and 20 MPa; accu-

Yes, empty sample holder

(293.15+0.01) K

M

Span and Wagner

Not mentioned

12

racy +0.05% F.S
0 kPa —1.33 kPa, 0 kPa — 13.3 kPa,

(293.15+0.2) K

No

293.15K

Lee/Kesler Generalized-correlation

Buoyancy correction via sample vol-

13

0 kPa — 133 kPa, and 0 kPa

—1.333 MPa

method (Lee and Kesler 1975)

ume determined from He isotherm

“Blank isotherm was measured using CO, at 293.15 K using either an empty sample holder or a non-adsorbing sample (Si shot)

"M

manifold or air bath temperature (temperature of reference volume or other components of instruments (not at the analysis site) involved in calculation of excess adsorption)

°F.S. = Full Scale

2.2 As-submitted datasets

Each participant submitted at least one dataset. For clar-
ity, a dataset is defined as being composed of four adsorp-
tion isotherms (aliquot 1-isotherm 1, aliquot 1-isotherm 2,
aliquot 2—isotherm 1, and aliquot 2—isotherm 2). In total,
thirteen datasets were evaluated in this analysis. In general,
the isotherms were highly reproducible (see Figures S1-S3
in the Supplemental Information).

To clearly display a plot including data from all partici-
pants, the average of the four isotherms for a given dataset is
shown in the figures in the text. However, there were some
datasets for which averaging was not possible because the
excess adsorption data were measured at different equilib-
rium pressure points for each of the four isotherms in the
dataset. In these cases, one representative isotherm was
selected for display.

2.3 Statistical evaluation of as-submitted data

The as-submitted data were converted from excess adsorp-
tion (n,,) to absolute adsorption (n,,), using the equation
(Keller and Staudt 2005; Brandani et al. 2016),

nex
Mops = T > 1
1- pgas/pabsrb M

where p,,, is the gas density and p,,,,, is the bulk density
of the adsorbate, assumed here to be 0.773 g/cm?, the liquid
density of CO, at 293.15 K (20 °C).

All the isotherms of the as-submitted surface excess data
were fit, collectively, to a three-parameter logistic function
(Balakrishnan 1992),

_ Y
ex = 17 expl(-In(P)+ a)/B 1’ o

where, n,, is the excess uptake (mmol/g), P is equilibrium
pressure (MPa), and «, , and, y are fit parameters. The fit
parameters and the associated 95% uncertainty interval were
estimated using a Bayesian, Markov Chain Monte Carlo
method (Possolo and Toman 2007; Gelman 2013).

2.4 Dataresubmission

Six datasets were re-evaluated after applying the evaluation
methods described above. Five datasets were resubmitted.
For more detailed information regarding the resubmission,
see the Supplemental Information, section S4. One partici-
pant (dataset #8) was unable to explore the origin for the
deviation in their dataset from the statistical mean, and this
dataset was excluded from the final determination of the
reference isotherm.

@ Springer
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Fig. 1 As-submitted surface excess CO, adsorption isotherms at
293.15 K (20 °C) for RM 8852 (For low-pressure data and semi-log-
scale see Figures S6 and S7.)

2.5 Empirical reference function

To obtain an empirical reference isotherm function, the final
surface excess datasets were fit to a four-parameter logistic
function (Balakrishnan 1992),

_ d
e = T ¥ expl=n(®) + @) /b 1) S

where, n,, is the excess uptake (mmol/g), P is equilibrium
pressure (MPa), and a, b, c, and d are fit parameters, deter-
mined using the method given above. The logistic function
was selected because it replicated the form of the measured
isotherms. No physical significance should be associated
with the function or the fit parameters.

3 Results and discussions

The thirteen as-submitted datasets are shown in Fig. 1.
Seven datasets report similar uptakes (#1, 3, 5, 6, 7, 9, and
10). One dataset (#4) shows uptake slightly above this clus-
ter, while five datasets have lower uptake (#2, 8, 11, 12, and
13). One dataset (#2) exhibits a noticeably different pres-
sure dependence. To evaluate more rigorously the quality
and comparability of the as-submitted data, the as-submitted
excess adsorption data isotherms were converted to absolute
adsorption. The surface excess isotherms were also fit to
Eq. 2. When plotted as absolute adsorption, it is expected
that an isotherm should monotonically increase as a func-
tion of pressure. All the datasets exhibit the expected trend,
except for one (#2). To assess statistical variability, the as-
submitted excess adsorption data were fitted, collectively,

@ Springer

to Eq. (2). Six of the thirteen datasets (#2, 4, 8, 11, 12, 13)
were outside the expanded uncertainty interval of the best-fit
to the collective dataset (see Figure S5).

Further evaluation of the as-submitted data and the asso-
ciated research reports identified reasons for the observed
variation in the outlying surface excess datasets, which
included the following: incomplete activation of the sample
(#12) and inaccurate determination of sample mass (#4, 12);
inaccurate sample skeletal volume determination (#11, 13);
lack of a buoyancy correction, when using a gravimetric
system (#11); improper choice or application of an equation
of state for CO, (#13); and the need for a blank correction
(#2, 11, 13).

Insufficient sample activation (e.g. outgassing with just a
rotary pump) led to lower adsorbed amounts at higher pres-
sures, in line with previous reports in the literature (Genster-
blum et al. 2009). Mass measurement errors can result from
incomplete sample activation, sample rewetting following ex-
situ activation, or measuring the mass of empty sample holder
and sample under different physical conditions. As the uptake
is reported as “per gram of activated adsorbent,” inaccurate
sample mass determination affects the uptake proportionally.

The skeletal volume of the sample, which is needed for
void volume determination and buoyancy correction, affects
the calculation of surface excess uptake. For RM 8852, a skel-
etal density value of ~2.36 g/cm’ should be used as a guide to
determine the sample volume.

While the effect is minor for low-pressure isotherms, the
lack of a buoyancy correction can significantly impact high-
pressure data when using gravimetric instruments. The mag-
nitude and direction of the discrepancy of the uncorrected data
depends on the buoyancy force acting on the sample, which
depends on the balance set-up of the instrument.

For adsorption measurements with fluids near the critical
region, where the compressibility of the gas is significant at
high pressures (such as for CO, at room temperature), it is also
important to consistently use a critically evaluated equation
of state, e.g. for CO,, the Span—Wagner equation (Span and
Wagner 1996). In addition, the appreciable compressibility
of CO, at higher pressures at 293.15 K (20 °C) coupled with
other experimental limitations, such as insufficient temperature
stability and homogeneity in key areas of the adsorption appa-
ratus, can lead to additional uncertainties that can be accounted
for by a blank adsorption experiment.

After datasets #2, 4, 11, 12, and 13 were re-submitted, the
final surface excess datasets for CO, adsorption on RM 8852
were obtained. As shown in Fig. 2A, these final datasets are
in good agreement. An empirical surface excess reference
function was determined by optimizing the fit of Eq. 3 to the
final datasets and is shown in Fig. 2B. The parameters for this
empirical reference isotherm are a=—6.22 (0.08), b=1.97
(0.01), c=4.73 (0.21), and d=3.87 (0.01). (The standard error
for each fit parameter is shown in parenthesis.) This function
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Fig.2 a Final surface excess CO, adsorption isotherms at 293.15
K (20 °C). b Best fit to the isotherm data and 95% uncertainty inter-
val. (For low-pressure data and logarithmic scales see Figures S8—
S10. Residuals of the fit are shown in Figure S11.)

is predictive from 1 kPa up to 4.5 MPa and has expanded
uncertainty, U(k=2), for the excess uptake of approximately
0.075 mmol/g over the full pressure range. The final datasets
and the reference isotherm with its 95% uncertainty interval
are available through the NIST Database of Novel and Emerg-
ing Adsorbent Materials (Siderius et al. 2014, 2018).

4 Recommendations

The protocol to use RM 8852 and the associated reference
CO, adsorption isotherm at 293.15 K (20 °C) are provided
in Section S1 in the Supplemental Information. In addi-
tion, based on this work, the following recommendations
for measuring of this high-pressure CO, adsorption iso-
therm are offered:

Sample activation—Sufficiently complete sample acti-
vation is crucial. Typically, for microporous materials,
such as ZSM-5, this will involve outgassing at high-
temperature and vacuum, though other approaches
may be adequate for achieving comparable activation
(Thommes et al. 2015). RM 8852 requires special han-
dling to ensure the sample is activated completely. It
must be activated at 623 K (350 °C) for at least 12 h
under high vacuum (<1 cPa) to realize the reported
reference isotherm. If the sample is activated ex-situ,
exposure to air and moisture must be avoided to obtain
the correct sample mass.

Sample volume determination—Proper determination of
sample volume is needed both for buoyancy correction in
a gravimetric system, as well as the void volume determi-
nation in a manometric system (International Organiza-
tion for Standardization 2014; Belmabkhout et al. 2004).
If required in data analysis, a skeletal density of ~2.36 g/
cm? should be used for RM 8852.

Buoyancy correction/void volume correction—A buoy-
ancy correction must be applied when using a gravimet-
ric system. Although less important at low-pressures,
buoyancy effects are significant for high-pressure meas-
urements and cannot be overlooked (Nguyen et al. 2017;
Rouquerol et al. 1999). This is analogous to the use of
void volume in a manometric instrument to determine
surface excess uptake, and the effect of using the wrong
volume also becomes more significant with increasing
pressure.

Equation of state—In general, identify the equation of
state used to calculate fluid density, and use critically
evaluated equations, such as those contained in the NIST
Reference Fluid Thermodynamic and Transport Proper-
ties Database (REFPROP) (Lemmon et al. 2013). The
Span and Wagner equation of state should be used for
CO, adsorption at 293.15 K (20 °C).

T, P, and m—Ensure good control and measurement
of temperature (7), pressure (P), and sample mass (m),
as these are important in accurate determination of the
uptake (Broom and Webb 2017; Belmabkhout et al.
2004).

Blank correction—A blank run subtraction should be
performed whenever possible, as it corrects for small
uncompensated transducer nonlinearities, effects of tem-
perature heterogeneities coupled with the compressibility
of the adsorptive, and other experimental effects (Nguyen
et al. 2017).
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5 Conclusions and outlook

This work presents an empirical reference isotherm function
for high-pressure CO, adsorption on NIST RM 8852. It was
demonstrated that even when using diverse instruments—
gravimetric, manometric, commercial, custom-built—it is
possible to obtain consistent surface excess isotherms when
attention is paid to sample handling and data processing.
The reference isotherm function and the associated refer-
ence material provide, for the first time, a means for labo-
ratories to test and validate high-pressure adsorption equip-
ment and measurements. This work should also prove to
be a useful resource for those learning to make adsorption
measurements.

This ILS was unique in that the as-submitted datasets
were evaluated and in collaboration with participating lab-
oratories, the causes for differences among datasets were
identified, and laboratories were given the opportunity to
reprocess data or remeasure adsorption isotherms before the
reference isotherm function was derived.

In a forthcoming exercise, a new ILS will be undertaken,
for high-pressure adsorption of methane on NIST Refer-
ence Material RM 8850 (zeolite Y). The methane ILS is
being organized through Technical Working Group 39 of
the Versailles Project on Advanced Materials and Standards
(VAMAS).? Replication of the reference data generated in
this CO, ILS will be a requirement for participation in the
upcoming methane exercise. The methane ILS will provide
another unique dataset that will aid in the proper use of high-
pressure adsorption equipment.
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