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Valence, loop formation and universality in self-
assembling patchy particles

Debra J. Audus,∗a Francis W. Starr,b and Jack F. Douglasc

Patchy particles have emerged as an attractive model for phase separation and self-assembly
in globular proteins solutions, colloidal patchy particles, and molecular fluids where directional
interactions are operative. In our previous work, we extensively explored the coupling of directional
and isotropic interactions on both the phase separation and self-assembly in a system of patchy
particles with five spots. Here, we extend this work to consider different patch valences and
isotropic interaction strengths with an emphasis on self-assembly. Although the location of self-
assembly transition lines in the temperature-density plane depend on a number of parameters,
we find universal behavior of cluster size that is dependent only on the probability of a spot being
bound, the patch valence, and the density. Using these principles, we quantify both the mass
distribution and the shape for all clusters, as well as clusters containing loops. Following the
logical implications of these results, combined with a simplified version of a mean-field theory that
incorporates Flory-Stockmayer theory, we find a universal curve for the temperature dependence
of cluster mass and a universal curve for the fraction of clusters that contain loops. As the curves
are dependent on the patchy valence, such results provide a method for parameterizing patchy
particles models using experimental data.

1 Introduction
Short-ranged, directional interactions play a crucial role in con-
trolling the structure and assembly of a variety of important sys-
tems, ranging from molecular fluids to small globular proteins to
colloidal solutions.1–4 Modeling these systems as patchy particles
has received extensive attention, due to the ability of these simple
models to capture non-trivial self-assembly and phase separation
phenomena of real complex fluids such as reentrant phase behav-
ior.5–7 The popularity of patchy particles, composed of spheres
with patches on the surface that introduce directional interac-
tions, can also be attributed to the ability of analytic expressions
such as Wertheim’s thermodynamic perturbation theory8–10 and
extensions11 to accurately describe phase separation and self-
assembly, thereby reducing the reliance on computationally ex-
pensive simulations.

In the context of small globular proteins, patchy particles rep-
resent a useful coarse-grained model,12–21 as the patches can
represent charged or hydrophobic residues displayed on the sur-
face. For example, Vlachy and coworkers used Wertheim theory
to reproduce the liquid-liquid phase boundaries of both lysozyme
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and γ-crystalline using the number of patches as a fitting parame-
ter.20 Following their initial work, they considered a mixture of γ-
crystallines, modeling each protein as a dumbbell of patchy parti-
cles.21 While Vlachy and coworkers used models that considered
only a hard sphere isotropic interaction, Kumar and coworkers
added a short-range, isotropic attractive interaction to also ac-
count for the liquid-liquid phase coexistence of both lysozyme
and γ-crystalline, using a combination of Monte Carlo simula-
tions and theory.18 For more complicated systems such as salt
dependent reentrant phase coexistence of human serum albumin
with a multivalent cation, an ion-activated patchy particle model
combined with Wertheim theory qualitatively reproduces exper-
iments.17 The success of patchy particle models, and variants
thereof, highlight their power to describe complicated protein
solutions at various concentrations, including non-physiological
ones. However, much of this work focused on phase separation
rather than on self-assembly, which is also known to occur exper-
imentally as a distinct process.22

From a practical standpoint, patchy particles are also of inter-
est to colloidal scientists due to their potential for applications,
such as electronics and drug delivery.23–25 Numerous synthesis
techniques23,26,27 are available, many of which allow for con-
trol of patch size, strength and directionality, including the recent
techniques of block copolymer assembly28 and DNA-coated col-
loids.29
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Due to the widespread adoption of patchy particles models and
the applicability of Wertheim theory, patchy-particle models have
been extensively studied via theory and computation.1–4 In par-
ticular, Sciortino and coworkers have made numerous contribu-
tions,30,31 including finding that increasing number of patches
widens the phase coexistence boundaries5 and demonstrating the
applicability of Flory-Stockmayer (FS) theory.6 Telo da Gama and
coworkers have explored loop formation in the case of patchy par-
ticles with two types of patches,7 while Frenkel and coworkers
determined the effect of adding an isotropic attractive interac-
tion on the gas-liquid critical point.32 While much progress has
been made in understanding patchy particles, most efforts have
not examined the universal nature of self-assembly, particularly of
loop formation, that occurs in regions of the phase diagram with-
out phase coexistence. Loop formation is of particular interest,
as looping appears to lengthen the cluster lifetimes and to result
in more compact cluster shapes. Although beyond the scope of
this paper, loops are highly relevant to the properties of a self-
assembled network beyond the point of percolation. Additionally,
from the standpoint of predicting patchy particle self-assembly,
the highly successful FS theory assumes that no loops are present
in its derivation. This leads to the question of whether FS the-
ory can still accurately predict cluster size distributions in cases
where loops form.

In our prior work,33 we focused on the introduction of isotropic
interactions to examine the interplay between phase separation
and self-assembly. We showed that Werthiem theory accurately
describes phase separation in the absence of isotropic, attractive
interactions, and, through the introduction of an analytic adjust-
ment, can also be used for the case the where isotropic attractions
are included. We also thoroughly explored the self-assembly of
5 spot patchy particles, showing how Werthiem theory can be
combined with FS to predict the universal dependence of clus-
ter mass on temperature. Such a result suggests that the theory
can be used to more rigorously parametrize patchy particle mod-
els based on experimental measurements. Here, we extend this
work33 to show that the framework developed there can be used
for variable patch numbers and isotropic attraction strengths, and
that the validity holds beyond expected limits. We also quantify
the resulting self-assembled clusters, exploring the formation of
loops and associated universal behavior.

The paper is organized as follows. In Sec. 2, we introduce our
model for patchy particles, present a variant of Wertheim theory
and detail simulation techniques. In Sec. 3, we focus on the self-
assembly of the patchy particles, first by identifying the region of
self-assembly and then quantifying the self-assembled clusters in-
cluding their size, shape and the presence of loops. An analysis
of this kind is provided for different patch valences including 2,
3, 5, and 7 spots. We show that the basic concepts from our ear-
lier work hold for the other patch valences and additionally use
insights to understand the formation of loops. Finally, in Sec. 4,
we summarize the key results.

2 Methods
2.1 Patchy Particle Model

We consider patchy particles with four different numbers of spots,
or valances: 2, 3, 5 and 7, with the placement of these patches
shown in Fig. 1. Two spots are chosen as their behavior is fun-
damentally different than patchy particles with larger valances,
as demonstrated below. Odd values of spot numbers for 3 and
greater are chosen to cover a wider range of valances, while
avoiding crystalization that occurs for 6 spots as 6 spots corre-
spond to a perfect cubic lattice using the same scheme for choos-
ing spot locations.18

These patchy particles interact through two different poten-
tials. The first is an isotropic potential ui that is defined as a
function of the distance between the centers of the red spheres,
ri.

ui(ri) =


∞ ri ≤ σ

εi σ < ri ≤ λσ

0 ri > λσ

(1)

Here σ is the diameter of the red sphere, λ is the range of the
isotropic square well potential and εi is the depth of the isotropic
square well potential. λ = 1.15 and various values of εi are chosen
to correspond to our prior work.33 The second potential up is
a square well potential between patches; thus for each pair of
patchy particles, there are multiple patch interactions.

up(rp) =

{
εp rp ≤ δσ

0 rp > δσ
(2)

rp is the distance between blue spots, and εp is the depth of the
patchy square well potential. δ is the size of the spots and is
chosen to be (

√
5−2

√
3−1)/2≈ 0.119, which is the largest patch

size to enforce the constraint that three patches cannot mutually
interact to form a single “bond.” Later, we relax this constraint to
test theories beyond their limit of validity, doubling δ .

2 3 5 7

Fig. 1 Patchy particles with number and location of spots shown. Three
and five spots have spots located at the points of an equilateral triangle
around the equator, while seven spots has spots located at the points of
an equilateral pentagon around the equator. This image was generated
using VMD software. 34

2.2 Monte Carlo Simulations

In order to simulate the patchy particles, off-lattice, Metropo-
lis Monte Carlo simulations were run with a 50 % probability
for both single particle displacement and single particle rota-
tion. Both maximum displacement and maximum angle were
chosen such that acceptance of a trial was roughly 50 %. In or-
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der to ensure equilibrium conditions, simulations with densities
ρ ≡ N/V < 0.8σ−3 were initialized with a grand canonical sim-
ulation until the target density was reached. For ρ ≥ 0.8σ−3,
the grand canonical simulation was run only once to generate an
initial configuration that was then used for all temperatures and
interaction strengths, as the procedure for high densities was pro-
hibitive. Using the initial configuration, the simulations were run
until the desired acceptance ratios were reached. Subsequently,
the simulations were run for 5× 108 timesteps for equilibration
and 9.5×109 timesteps for production. All simulations were run
with a periodic cubic simulation box with side lengths of 20σ .
Our previous work showed that box lengths of 10σ were suffi-
cient for 5 spots,33 but we found that the larger box sizes were
required for smaller numbers of spots, specifically the 2 spot case,
in order to capture highly extended clusters for large cluster sizes.

2.3 Renormalized Mean-Field Theory

A renormalized mean-field theory is used to test the validity of
theory in describing our Monte Carlo simulations. Specifically,
we use a renormalized version of a statistical associating field
theory for variable range potentials (SAFT-VR).11 We have previ-
ously described the details of the renormalized mean-field theory
(RMFT),33 but highlight some of the key aspects and dependen-
cies here. Specifically, the Helmholtz free energy normalized by
the number of particles is given by

f = fid + fi + fp, (3)

where the subscripts id, i and p correspond to the ideal, isotropic
and patchy contributions, respectively.

The ideal contribution depends only on density ρ, whereas the
isotropic contribution, derived using an inverse temperature ex-
pansion35,36 and the Carahan and Starling hard sphere contribu-
tion,37 is dependent on ρ, λ and εi. The patchy contribution is de-
rived using Wertheim’s thermodynamic perturbation theory8–10

and results in

β fp = s
(

lnX− X
2

)
+

s
2
. (4)

β is the inverse of kBT , s is the number of spots, and X is the
fraction of patches that are non-bonded. The value of X can be
computed analytically as

X =
2

1+
√

1+4sρ∆
(5)

where ∆ is the patch interaction strength and depends on ρ, εp,
δ , εi, and λ . See Ref. 33 for details.

The resulting mean-field theory does not predict the correct
theta temperature TΘ, or equivalently Boyle temperature, defined
as the temperature at with the second virial coefficient is zero,
i.e., B2(TΘ) = 0. To correct this deficiency, we define a renormal-
ized εre

i that satisfies T MFT
Θ

(εre
i ) = TΘ(εi). As TΘ can be computed

exactly for our system, this represents a straightforward way to
ensure the exact TΘ is satisfied for any εi. Note that no renormal-
ization procedure is necessary for εi = 0, as the above expression
is automatically satisfied.

For the remainder of the paper, the energy and temperature

scales will be defined relative to εp, while the length scales will be
defined relative to σ , as in our prior work. Mass of a particle will
be set as 1 such that cluster size and cluster mass are equivalent.

2.4 Estimation of phase boundaries

As Monte Carlo simulations of the phase boundaries are com-
putationally expensive and only estimates of phase boundaries
are necessary for our goals, we make use of the RMFT to esti-
mate phase boundaries. In our previous work,33 we found that
the estimates of the critical point from RMFT were significantly
different from those determined using Monte Carlo. To address
this, we proposed a theory for computing the ratio of the criti-
cal temperature between the Monte Carlo simulations and RMFT
(T sim

c /T RMFT
c ). The theory only requires knowledge of a single

Monte Carlo simulation of isotropic spheres without patches, and
thus can be used to estimate T sim

c for patchy particles (see Fig.
3b in Ref. 33). Thus, for estimates of the phase boundary, we
simply multiplied the temperature by the T sim

c /T RMFT
c to produce

reliable estimates. Note that this ratio is dependent on both εi
and the number of spots s.

3 Results & discussion

3.1 Self-assembly transition lines

Before quantifying the self-assembled structures that result from
patchy particles with different valences, or equivalently, num-
ber of patches, it is useful to map out the regions in the
temperature-density plane where self-assembly occurs. The ob-
served self-assembly is a thermoreversible or “rounded” transi-
tion,38,39 rather than phase separation. To quantify this process,
we make use of two metrics to define self-assembly transition
lines. The first metric is based on the extent of clustering, Φ,
and the second metric is based on the probability of percolation,
pperc. For both of these metrics, it is essential to define when a
particle is in a cluster. As the patch interactions are of the form
of a square-well potential, clusters are precisely defined through
bonds where the patch potential is non-zero. Since liquid-liquid
phase separation occurs at low temperatures, we also estimate the
phase boundaries as a reference point, the details of which can be
found in Sec 2.4. As can be seen in Fig. 2, the phase boundaries
migrate to higher temperatures as the valance increases. This re-
sult is unsurprising given that the systems with higher valances
are more attractive to one another, promoting phase separation.

The first metric for assembly captures the extent of clustering,
Φ, which is defined as the fraction of particles that are in a cluster
as opposed to being unbound, or equivalently, monomers. At suf-
ficiently high temperatures, Φ = 0, and all of the particles are un-
bound; at the other extreme of low temperature, assuming phase
separation has not occurred, Φ approaches 1, and all particles
are in clusters. For evident reasons, Φ is an order parameter for
self-assembly. However, these clusters can be distant, and their
respective sizes are not captured directly by Φ. As commonly
employed in self-assembling systems, the midpoint of assembly,
Φ = 1/2, is used to characterize to thermodynamic location of as-
sembly. Thus, the metric, TΦ, is determined by computing the
temperature at which Φ = 1/2 for different densities as shown in
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Fig. 2 for both the simulations and the RMFT. RMFT accurately
estimates the transition.

The second metric for assembly quantifies the emergence of
clusters that percolate the system. From the perspective of a
simulation, the probability of percolation, pperc, can be defined
as the fraction of simulation snapshots that contain at least one
percolating cluster, that is clusters that wrap around the periodic
boundary conditions to bond to themselves. At high tempera-
tures, there are no clusters; thus, the probability of percolation
is zero. As temperature is decreased this probability increases.
In the thermodynamic limit, pperc as a function of temperature
should be a Heaviside step function.40 However, due to finite size
effects, some rounding of the transition occurs. Thus, as an esti-
mate of where the step occurs, we have used pperc = 1/2 as shown
in Fig. 2. We have previously shown that although the degree of
rounding is sensitive to finite size effects, the second metric, Tp,
is not.33
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Fig. 2 Regions of self-assembly as defined using two metrics, TΦ (simu-
lations: diamonds and RMFT: solid lines) and Tp (simulations: triangles).
For reference, estimates of the phase separation boundaries (dashed
lines) are also shown. εi = 0.1.

Together, these transition lines, TΦ and Tp indicate the condi-
tion of the system: at high temperatures, all of the particles are
by themselves; as the temperature decreases, the extent of clus-
tering continues to increases as it passes through TΦ; further de-
crease of temperature leads to percolation; eventually, the two
phase region is reached. We find that the region of self-assembly,
roughly defined as the area under the TΦ curve is larger for larger
valences, which is consistent with intuition as a larger number of
patches promotes self-assembly.

While Fig. 2 only considers the case where the isotropic attrac-
tive interaction, εi, is 0.1, the results are qualitatively similarly for
other values of εi: 0, 0.2, 0.3 and 0.4. As shown in our previous
paper, increasing εi promotes phase separation and reduces the
one phase region of self-assembly.33

3.2 Mean cluster size & cluster shape

With the map of self-assembly, we next examine the cluster size
distributions. In Fig. 3, we plot the probability of finding a clus-
ter of size (mass) M. The open symbols correspond to all clusters,
while the closed symbols correspond to only the clusters that con-
tain loops. For the entire population, we find that the size distri-
bution can be described remarkably well by the mean-field FS
theory,41,42 a model that assumes loops are not present. From
the FS theory, the probability distribution can be described as

p(M) =
2sX2+M(s−2)(1−X)M−1(sM−M)!
(sX +2− s)(sM−2M+2)!M!

(6)

where X is the probability of a spot being unbound and s is the
number of spots, or equivalently valence. Since X is an aver-
age quantity, it is equivalent to the fraction of spots that are un-
bound. It can equivalently be estimated directly from simulation
as Φ = 1−X s. Physically, this equation can be understood by con-
sidering that the probability for an unbonded particle is simply
the probability that all of its patches are unbound, X s, while the
fraction of particles in a cluster is one minus that quantity. Since,
both Φ and s are known, X can be estimated and p(M) can be
determined, which results in the solid line through the open sym-
bols. The results for the 2 spot case are consistent with work by
Sciortino and coworkers.30 In the limit of large M, FS theory must
break down in part due to the higher fraction of looped clusters
at large M. It has been previously shown that patchy particle self-
assembly follows a power law for large M and that the exponent
is not consistent with FS theory.33 Nonetheless, the theory does
capture the size distribution for higher probabilities, correspond-
ing to smaller clusters, rather well.
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Fig. 3 Cluster size distributions for all clusters (open symbols) and those
that contain loops (closed symbols). Lines correspond to FS theory for all
clusters and theory as described in the text for loop containing clusters.
All data is for ρ = 0.6.
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We also consider the size distribution for clusters that contain
loops. In the case of the 2 spots particles, no rings are observed,
although rings are not prohibited as even with geometric con-
straints as few as 8 particles are needed to form a ring. The rea-
son for this absence of rings will be explored further when we
consider the shape of the clusters. In the case of 3 spots, loops
can form, but they tend to form with extremely low probabilities
that make it hard to acquire accurate statistics. For the 5 and 7
spot cases, the relative probability of forming clusters with loops
for a given cluster size is significant larger than that of 3 spots as
can be seen in Fig. 3.

Interesting, the probability of finding a loop-containing cluster
of a given size can also be described analytically for the 5 and 7
spot cases using an empirical expression. In particular, the prob-
ability can be described by

ploop(M) =


(1−X)(M−α)

βρ
p(M) M > 2

0 M ≤ 2.
(7)

This equation involves two additional parameters, α and β . Note
that if ploop(M)/p(M) is plotted as a function of M, this results in a
line with a x intercept of α and a slope of (1−X)/(βρ). As clusters
with two particles (M = 2) cannot form loops, while clusters with
3 particles (M = 3) can form loops, the x intercept, or equivalently
α, must be between 2 and 3. Both α and β are only dependent on
the number of spots and not the temperature, density or isotropic
interaction strength, parameters that are implicitly captured in
X and ρ in Eq. 7. Although this equation is derived empirically,
the predicted trends are consistent with physical intuition. Larger
clusters, corresponding to large M, have larger fractions of loops
as there are more particles present in the cluster to form loops.
Loops are also more likely to form when probability of bonding
(1−X) is high, a situation that occurs at low temperatures and
high densities; it is also not unreasonable to expect loop forma-
tion might be linear with respect to the probability of bonding as
loops are formed by one or more additional bonds within a clus-
ter compared to loop-less clusters. Finally, the ρ dependence is
more complicated as it is dependent both implicitly in 1−X and
explicitly in ρ in Eq. 7. For a fixed temperature, and isotropic
interaction strength, we find that the ρ dependence is dominated
by the 1−X in the numerator rather than the ρ in the denomina-
tor such that the fraction of loops increases with ρ, an expected
result as higher densities will force clusters to be more compact.

As shown below, the existence of such a universal distribution
implies a master curve for the fraction of clusters in the system
multiplied by the density. Using this master curve, we fit both
of the unknown parameters finding that α = 2.6 and β = 22 for
5 spots, while α = 2.3 and β = 7.5 for 7 spots. Note that α is
between 2 and 3, as expected. Although only one probability
distribution is shown in Fig. 3 for a given number of spots, this
relationship holds for other temperatures, densities and isotropic
interaction strengths. At some point the distribution in Eq. 7 must
break down as it predicts that the fraction of loops increases lin-
early with cluster size, a quantity that is bounded to be less than
or equal to one. This erroneous prediction could be corrected
by using a piecewise function that sets ploop(M) = p(M) when

ploop(M)/p(M) > 1, but as ploop is small for large M, such a con-
tribution can be ignored. As this result can be used for at least 5
spots and larger, it provides an interesting way of predicting the
full distributions for all clusters and clusters with loops using only
theory, as the RMFT can be used to calculate Φ, which can then
be used to determine X and the distributions, assuming α and β

are known for a given number of spots (and likely spot size).
Having quantified the size distributions, we consider the shape

of the clusters, both with and without loops. In Fig. 4a, we plot
the radius of gyration of the clusters as a function of cluster size,
which determines the mass scaling exponent ν , 〈R2

g〉1/2 ∼Mν . For
3, 5 and 7 spots, we find that once the clusters get large enough,
they follow a power law with ν = 1/2. For 5 and 7 spots, this
is true both for clusters that contain loops and those that do
not. For 3 spots, the power law also holds for clusters without
loops for large enough M. However, no definitive conclusion re-
garding loops can be formed as there are only 〈R2

g〉1/2 values for
M < 10. The power law ν = 1/2 corresponds to a fractal dimen-
sion d f = 1/ν = 2 and is consistant with lattice animals,43 but
distinct from percolation clusters, which have a fractal dimension
near 2.5.40 The former is in the same universality class as swollen
branched polymers, while the latter is in the same universality
class as branched polymers in a theta solvent.44 Also note that
the fractal dimension predicted by the mean-field FS theory is
4,40 which is rather different than the observed value of 2.
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Fig. 4 Radius of gyration and ratios of eigenvalues of the gyration tensor
for various cluster sizes and both those with (open) and without (solid)
loops for selected conditions.

For the case of 2 spots, the radius of gyration also follows a
power law, but with ν = 1, rather than 1/2. This corresponds
to a fractal dimension of one, and is consistent with a rod-like
shape. The reason for this rod-like behavior is the constrained
nature of the bonds. In particular, the particles are composed of
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large spheres with much smaller patches. The maximum angle
that two particles can bend from a straight line is 57◦, and a large
degree of bending is unlikely due to entropic considerations. This
also explains why we observe no closed rings (loops) for the 2
spot case.

The shape of the clusters can be further explored by comput-
ing the eigenvalues of the radius of gyration tensor, λ j, where
λ1 + λ2 + λ3 = R2

g and λ3 > λ2 > λ1. The ratio of these eigen-
values quantifies how anisotropic the particles are.45 If all three
eigenvalues are equal, then the object is roughly spherical and
both ratios will be 1. Conversely, if two of the eigenvalues are 0,
then the object is a rod and one ratio is infinity and the other ill-
defined. As the 2 spot clusters are highly anisotropic, they, with
the exception of a single point, are off the scale of the plot of the
ratios in Fig. 4b and c.

For 3, 5 and 7 spots, as the clusters become large enough, the
ratios λ3/λ1 and λ2/λ1 approach those expected for lattice an-
imals, 7.56 and 2.03, respectiviely.45 Lattice animals, as previ-
ously mentioned, are in the same universality class as branched
polymers in a good solvent. For comparison, the limit for per-
colation clusters,45 which are in the same universality class as
branched polymers in a theta solvent is also plotted. As the num-
ber of spots increase, the large M limit is reached sooner. The limit
is also reached sooner for clusters that contain loops, as those
clusters tend to be more compact when M is small.

3.3 Universal metrics of cluster size

In our last paper,33 we explored the possibility of a universal func-
tional relationship to describe the variation of the mean cluster
size 〈M〉 for the 5 spot case over a range of isotropic interaction
strengths. Here we extend it to other valences and test the lim-
its of the theory, demonstrating that the theory can hold even
beyond its limits. Ultimately, we want to determine the average
mass as a function of temperature, as this can be measured ex-
perimentally. This can be done by linking the average mass to X
and, subsequently, X to temperature.

First, we consider the average cluster size. As we showed above
the entire mass distribution can be described by the FS theory,
which requires only X as an input. Thus, the average mass can
also be computed as a function of the fraction of non-bonded
patches X simply by computing the appropriate sum.

〈M〉= 2
sX +2− s

(8)

for X ≥ 1− 1/(s− 1). For X < 1− 1/(s− 1), FS predicts percolat-
ing clusters and the sum to compute 〈M〉 is not convergent. As X
is not directly measured from simulation, we can convert X to Φ

using Φ = 1−X s where s is the number of spots, or equivalently
valence. The result can be found in Fig. 5 for different number
of spots. We find excellent agreement. The gray lines correspond
to the case beyond the limit of the validity of FS theory, that is,
when the theory predicts percolation. The points plotted in Fig. 5
correspond to different number of spots, different temperatures,
different densities, and different isotropic interaction strengths.
The only constraint is that the temperature and density must be

chosen such that it is above both the two phase region and per-
colation lines shown in Fig. 2. The fact that the simulation data
continues to larger Φ than the range of validity of FS theory im-
plies that FS underestimates the value of Φ necessary for perco-
lation. The reason for this deviation is likely due to the fact that
FS does not consider loops, which are clearly present in the sim-
ulations. Nonetheless, FS still reproduces essential trends well
beyond its strict range of validity. In order to further test if the
theory can be effective beyond its formal range of validity, we
also consider a system of patchy particles containing 5 patches,
but with patches that are large enough to break the assumption
of the RMFT; specifically, we considered spots with a diameter of
twice the size. These also follow the same trend suggesting that
theory may still be useful for characterizing experimental systems
even if the assumptions of the theory are not fully realized.
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Fig. 5 Master curves for extent of clustering and ρKb (inset). Points
correspond to simulation data for different ρ (0.1 to 0.9), T (< 0.4) and
εi (0 to 0.4) above both the binodal and the percolation transition. Black
and gray lines correspond to the theory within and beyond the limits of
validity, respectively. Data for 5 large spots is beyond the validity of the
theory.

Second, we consider linking the temperature to X , since tem-
perature is the operational variable experimentally. This can be
done by treating the formation of a bond as a reaction. In this
case, the mass-action law gives

1−X
X2 = sρ∆ = ρKb, (9)

where Kb is the reaction constant. Using the RMFT and simplify-
ing assumptions as explained in Ref. 33,

ln
(

1−X
X2

)
=

1
T
− 1

TΦ

+ ln
(

21/s(21/s−1)
)
. (10)

Assuming a simple activated process,

ρKb = exp
(
−∆F

T

)
= exp

(
−∆U

T
+∆S

)
, (11)
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where ∆U and ∆S are the energy and entropy of activation, their
values are

∆U =−1 (12)

and
∆S =− 1

TΦ

+ ln
(

21/s(21/s−1)
)
. (13)

We now test the validity of these simplifying assumptions. From
simulations, we can indirectly compute X via Φ; see inset in Fig. 5.
The line is the prediction from theory, and the data for all the dif-
ferent number of spots follows the line closely. Deviations only
occur for the largest number of spots, 7 spots, and these devia-
tions are small. The minor discrepancy is likely due to the break-
down of the simplifying assumptions applied to the RMFT to yield
eq. 10.

Using the results above, a master curve for the average mass
as a function of the temperature can be generated by connecting
two master curves above. Specifically, combining Eq. 8, Eq. 9
and Eq. 10 yields a universal curve as plotted in Fig. 6. We see
excellent agreement both within and even beyond the limits of
validity, which is not surprising given the performance of the two
master curves in Fig. 5. To reemphasize the point, this plot is
for all valences, temperatures, densities and interaction strengths
such that the state point is in the one phase region above the
percolation line. Although not perfect, this approximation does
well even for the case of 5 large spots, where the theory is pushed
beyond its range of assumptions.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-4 -3 -2 -1  0  1  2  3

〈M
〉

1/T-1/TΦ

7 spots
5 spots
3 spots
2 spots
5 large spots

Fig. 6 Master curve for the average cluster size. Points correspond
to simulation data for different ρ (0.1 to 0.9), T (< 0.4) and εi (0 to 0.4)
above both the binodal and the percolation transition. Black and gray
lines correspond to the theory within and beyond the limits of validity,
respectively. Data for 5 large spots is beyond the validity of the theory.

The master curve above has interesting experimental implica-
tions. It means that if one knows the average mass as a function
of temperature for various densities, the data can be used to pa-
rameterize a patchy-particle model, extract TΦ, the energy, and
the entropy. In our prior paper, we suggested this could be done
using light scattering following the approach of Burchard.46,47

However, we have since found that the required assumptions are
incompatible with our simulations, as scattering curves can be ex-
tracted from simulation and the predicted molecular mass follow-
ing Burchard is not consistant with the directly measured mass.
An attractive, alternative approach may be sedimentation velocity
analytical ultracentrifugation (AUC)48–51 experiments, which can
determine the entire cluster size distribution. However, care must
be taken to consider the time-scale of association relative to the
time-scale of the experiment as the clusters are separated by their
sedimentation rates, which are dependent on the cluster size and
assumed to be fixed during the the course of the experiment.51

Note that as the entire FS distribution is known, the appropri-
ate master curve can be generated for any type of average mass.
For example, the expression linking X to the mass average mass,
Mw, as opposed to the number average mass, 〈M〉, can also be
computed.

ln
1−X

X2 = ln
2s〈M〉(〈M〉−1)
((s−2)〈M〉+2)2 (14)

ln
1−X

X2 = ln
(Mw−1)(Mw(s−1)+1)

(Mw(s−2)+2)2 (15)

This can be linked using Eq. 10 to yield the equivalent of Fig. 6.
Additionally, the x axis of Fig. 6 can also be manipulated into an
equivalent reduced form [(T −TΦ)/T ](1/TΦ), if a reduced repre-
sentation that is similar to those used in critical phenomenon is
desired.

3.4 Universal metric for loop containing clusters

For the universal curves above, we considered all clusters both
those containing loops and those not containing loops. As men-
tioned earlier, the mean-field theory of FS neglects such loops.
Nonetheless, a distinct universal curve can be generated for the
loop containing clusters; this logically follows, as we empirically
know the distribution for the clusters with loops as a function of
X (see Eq. 7), thus, the fraction of clusters that contain loops as
a function of X can be computed. floop is the number of clusters
that contain loops divided by the total number of clusters,

floop =
∑

∞
i=3 ploop(M)

∑
∞
i=1 p(M)

. (16)

Analytically, performing these sums results in the empirical ex-
pression:

floopρ =
(1−X)

β

(
2+(2α−2)X s +(α−2)sX2s−2(1−X)

2− s(1−X)
−α

)
,

(17)
which is tested in Fig. 7 for 5 and 7 spots. The gray portions
of the lines are beyond the limit of assumptions where FS the-
ory predicts percolation has already occurred. We find excellent
agreement in all cases over nearly six orders of magnitude, but
only within the limits of FS theory.

The primary source for the deviation beyond the limits of FS
is likely from Eq. 7, the basis for Eq. 17 rather than the inher-
ent assumptions in FS. As discussed previously, Eq. 7 must break
down for large M as it predicts ploop(M)/p(M) increases linearly
with M whereas physically, it must be bound to 1 as the number
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of clusters with loops cannot be greater than the total number
of clusters. This could be fixed by imposing ploop(M)/p(M) = 1
for cases where Eq. 7 currently predicts ploop(M)/p(M)> 1; how-
ever, the equivalent of Eq. 17 would no longer be analytic, reduc-
ing the practical utility of the theory. Upon closer examination,
ploop(M)/p(M) ∼ (1−X), so this issue is more likely to be prob-
lematic when (1−X), or equivalently, the probability of a spot be-
ing bound is large. This is exactly the scenario under which Eq. 17
fails. It is also intuitive as the larger the probability of bonding,
the larger the ploop(M) and thus the larger the erroneous contri-
bution to the sum in Eq. 16. Nonetheless, under most conditions
realized in practice, the error from Eq. 7 is negligible and Eq. 17
retains its predictive power. Thus, if an experimental system is
found to have 5 or more spots, and the fitting parameters α and
β are known, the fraction of loops can be computed, as well as
its full distribution via Eq. 7. Also, floop can be determined as a
function of temperature by combining Eqs. 10 and 17

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

 0.001  0.01  0.1  1

ρ
 f

lo
o

p

1-X

7 spots
5 spots
3 spots

Fig. 7 Master curves for the density times fraction of clusters that contain
a loop. Points correspond to simulation data for different ρ (0.1 to 0.9), T
(< 0.4) and εi (0 to 0.4) above both the binodal and the percolation tran-
sition. Black and gray lines correspond to the theory within and beyond
the limits of validity, respectively.

For the case of 3 spots, a master curve is also found from sim-
ulation. However, a similar analytic expression cannot be com-
puted, as the expression in Eq. 17 does not hold for 3 spots. As
the size of the clusters increases, the fraction of loops does not
approach one, as in the case of 5 and 7 spots. From Fig. 4b and c,
the 3 spot particles must form branches. Thus, many of the spots
are used in forming branches, and extra spots for forming loops
are limited. Therefore, there is not the same excess of spots as
in the 5 and 7 spot cases, which makes the 3 spots qualitatively
different, despite similar looking functional dependence in Fig. 7.

4 Conclusions
Using two metrics to define the degree of association, the ex-
tent of clustering and probability of percolation, we compute
transition lines that can be used to quantify the regions of the

temperature-density plane where self-assembly occurs. Although
these self-assembly transition lines do not represent phase tran-
sitions, they do quantify the change in the state of self-assembly.
Not surprisingly, we find that the region of self-assembly increases
with increasing patch valence. Having defined the region of self-
assembly above both phase coexistence and percolation, we quan-
tify the resulting clusters. We first consider the mass distribution
and show that the Flory-Stockmayer (FS) theory, an intrinsically
mean-field model that neglects loops and breaks down for large
M, accurately describes the distribution for small M, despite its
deficiencies. If clusters with loops are considered, we find an
empirical expression with two fitting parameters, which are only
dependent on the valence, not the temperature, pressure, density,
or isotropic interaction strength. This expression holds for both
the 5 spot and 7 spot systems where the number of patches is
in excess. Loops in the 2 spot system are not found due to the
rod-like nature of clusters in this system. In addition to the mass
distribution, we quantify the cluster shape finding that 3, 5 and 7
spot systems behave as lattice animals, and thus are in the same
universality class as swollen, branched polymers, while the 2 spot
system behaves as rods having a fractal dimension of one and a
highly anisotropic shape.

Having quantified the properties of the clusters, we turn to the
implications of the mass distributions. As implied by FS theory,
the average mass must only depend on the probability of bonding,
or equivalently the extent of clustering. This results in a universal
curve that depends only on valence for the region of self-assembly
above percolation and phase separation. Additionally, FS provides
a description of this universal curve without any fitting parame-
ters. Furthermore, the temperature is linked to the extent of clus-
tering via the RMFT and a simplifying assumption. Although this
assumption cannot be justified a priori, it does in fact hold for the
simulation data, providing the necessary link, as well as a route
to identify the energy and entropy of patch binding. Combined
with FS theory, it produces a universal curve for average mass
as a function of inverse temperature with no fitting parameters
and only knowledge of the patch valence. From an experimen-
tal point of view, this provides a useful method for parametrizing
patchy particle models using experimental data, specifically in the
case of small globular proteins. Additionally, we consider the im-
plications of the mass distribution for loops. After performing the
appropriate sums, we also find universal behavior for the fraction
of clusters that contain loops times the density as a function of
the probability of patch bonding for cases where the number of
patches is in excess. In this case, only two fitting parameters are
required and the result is consistent with that for the full mass
distribution. These results have significant implications for ex-
perimental quantification of systems that can be described by the
model of patchy particles.
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