
	

	
	 	

	
	

	
	

	
	

	
	 	

	
	

	
	

	
	

	 	 	
	

	
	

	
	

	
	

	 	 	 	

It Doesn't Have to Be Like This: Cybersecurity Vulnerability Trends
D. Richard Kuhn1, M S Raunak2, Raghu Kacker1

kuhn@nist.gov, raghu.kacker@nist.gov raunak@loyola.edu
1National Institute of Standards and Technology 2Loyola University of Maryland

It often seems that every newly announced major data
breach sets a record for the depth and size of impact.
Internet users, nearly everyone these days, naturally
wonder: Why is this happening, and how much worse can
it get? In the inaugural article for this column, published
in January 2009, we reviewed trends in vulnerabilities for
the previous eight years [2]. Our goal, then as well as now,
is to improve the understanding of cybersecurity
vulnerabilities so that we can prevent them. One Moore's
Law generation later, we followed that article with
another review of trends, finding some encouraging
results [3]. In this article, we review some of those earlier
findings, plus what has happened since then, and
prospects for the near future.

Our data source is the US National Vulnerability
Database (NVD) [1], which collects nearly all publicly
reported vulnerabilities since 1997, using the Common
Vulnerabilities and Exposures (CVE) dictionary. It is
developed and run by the US National Institute of
Standards and Technology, with support from the
Department of Homeland Security's National Cyber
Security Division. As of 2017, the NVD includes more
than 85,000 vulnerabilities, and the collection is expanded
daily. With two decades of data, the NVD is an invaluable
resource for security analysts.

One of the primary observations from the January
2009 analysis was that the total number of vulnerabilities
per year had begun to decline, from a peak of nearly 7,000
in 2006 to about 5,500 in 2008. It appeared that
developers and security administrators had begun taking
security seriously, including it as a key component in
development, and staying up to date on mitigation
techniques. Code flaws that were widely used in system
exploits in the 1980s and 1990s, such as format string
vulnerabilities and race conditions, were appearing in
only a dozen or two cases each year, accounting for less
than 1% each of the vulnerabilities in thousands of
applications. Better development methods and tools had
begun to make a difference.

But the 2009 analysis also revealed a trend that we see
repeatedly in all aspects of security - new information
technology produces new challenges to secure it. During
the previous decade, e-commerce and other web-based
services had proliferated, producing new challenges for
protection and new opportunities for attackers. While
buffer overflows and misconfigurations had long been the
main sources of weaknesses in systems defenses, SQL
injections and cross-site scripting were respectively the #1
and #2 vulnerability types in 2008 (Fig. 1). (Note that the
analysis is limited to the distribution of primary
vulnerability categories; another 10% - 15% each year are

classed as either "other" or "insufficient information".) As
we will see later in this article, the trends for these two
vulnerability types illustrate an important lesson for
managing cybersecurity.

Major NVD vulnerability classes, 2008
1200

1000

800

600

400

200

0

O
S
Co

m
m
an
d
In
je
ct
io
ns

Ra
ce

 C
on

di
tio

ns
Fo
rm

at
 S
tr
in
g
Vu

ln
er
ab
ili
ty

Co
nf
ig
ur
at
io
n

Cr
yp
to
gr
ap
hi
c
Iss
ue
s

Cr
ed
en
tia

ls
M
an
ag
em

en
t

Cr
os
s-
Si
te

 R
eq
ue
st

 F
or
ge
ry
…

Au
th
en
tic
at
io
n
Iss
ue
s

N
um

er
ic

 E
rr
or
s

Li
nk

 F
ol
lo
w
in
g

In
fo
rm

at
io
n
Le
ak

 /
 D
isc

lo
su
re

Re
so
ur
ce

 M
an
ag
em

en
t…

Co
de

 In
je
ct
io
n

Pa
th

 T
ra
ve
rs
al

In
pu

t V
al
id
at
io
n

Pe
rm

iss
io
ns
, P

riv
ile
ge
s,
an
d…

Bu
ffe

r E
rr
or
s

Cr
os
s-
Si
te

 S
cr
ip
tin

g
(X
SS
)

SQ
L
In
je
ct
io
n

Fig. 1. web related vulnerabilities were common in 2008.

A follow-on review added data from 2009-2010 [3],
providing more in-depth analysis, and showing that
vulnerabilities continued to decline as they had since
2006. Among the interesting findings from this analysis
was that the average difficulty of exploitation began to
change in 2006. Prior to this time, nearly all
vulnerabilities had been easy to exploit, but after this time,
the access complexity of about half of vulnerabilities was
either medium or high. This finding suggests that
defensive measures in code and system administration
were being successfully employed.

Vulnerabilities by Severity

7000

6000

5000

4000 High

Medium

3000 Low

2000

1000

0

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Fig 2. Vulnerabilities declined 2006-2010 but about 96% were medium
to high severity.

mailto:raunak@loyola.edu
mailto:raghu.kacker@nist.gov
mailto:kuhn@nist.gov

	

Among negative findings in that study, it was found that
the proportion of high, medium, and low severity
vulnerabilities had changed little over the period 2001-
2010. That is, serious errors were just as common in 2010
as they had been a decade earlier. Additionally, buffer
errors were still one of the major sources of system
vulnerabilities, and we reported on a separate analysis that
found that roughly 93% of these involved only a single
condition (typically failure to check array bounds; a few
buffer errors required two or more conditions to be true to
exploit). We pointed out that even the most basic of secure
programming practices, such as ensuring checks of all
input string length, could eliminate a large proportion of
these problems.

More recently, we revisited the review of NVD data
through 2016 [4], and found that medium to high severity
vulnerabilities had declined slightly, from 96% in 2008 to
about 90% for 2016 (Fig. 3).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2008 2009 2010 2011 2012 2013 2014 2015 2016

Low Med High

Fig. 3. Vulnerability Severity Trends, 2008-2016

This review also included an additional type of analysis.
Not all security-critical errors in software are specifically
related to security. For example, buffer overflow errors
usually result from failing to check that input is the
appropriate size for internal storage, a check that should
always be done and may result in ordinary failures that are
not necessarily security-relevant. How prevalent are
ordinary coding errors like these among the
vulnerabilities cataloged in the NVD?

To address this question, we can distinguish at least
three types of errors: ordinary coding or implementation
errors, administrative and configuration errors, and
fundamental design problems:

• Configuration vulnerabilities result from bad
configuration files or other administrative errors. One
example is missing password checks. Information
leaks also frequently result from failing to set up
controls, or apply updates.

• Design-related vulnerabilities - which originate in the
planning and design of the system, such as selecting
an outdated or weak cryptographic algorithm.

• Implementation vulnerabilities are errors in code, such
as the buffer overflow example mentioned previously.
Cross-site scripting is less obvious, but generally

results from missing or inadequate input validation,
and other forms of input validation failures are
common.

Table II designates Configuration, Design, and
Implementation errors as C, D, and I respectively. Note
that Table II also indicates whether the different
vulnerability types are increasing (), decreasing (¯), or
approximately unchanged (≈).

As shown in Fig. 3, implementation errors are by far
the major source of vulnerabilities, accounting for roughly
two-thirds of the total. Note that the number of
vulnerabilities is related to the number of applications
released, and new applications are released constantly, so
it is important to consider the proportion rather than
counts of vulnerability types. Remarkably, the proportion
of implementation vulnerabilities for 2008 to 2016 is very
close to the 64% reported for 1998 to 2003 in another
analysis [5]. This is somewhat surprising and
discouraging, given that these vulnerabilities result from
simple mistakes which should be easy to prevent.
However, this finding also suggests the potential for
relatively low-cost improvements. Static analysis tools
can detect about 20% of CVE-defined errors [8] and
formal code inspection has been demonstrated to be
highly effective in error reduction [7]. The key point of
this analysis is that a very large proportion of security
vulnerabilities arise from basic coding errors, which can
be prevented and detected with a comprehensive program
of static analysis and dynamic test methods.

TABLE II. NVD VULNERABILITY CATEGORIES
(C=CONFIGURATION, D=DESIGN, I=IMPLEMENTATION)

CWE-ID Description Type Trend
CWE-16 Configuration C ¯

CWE-20 Input Validation I
CWE-22 Path Traversal I ¯

CWE-59 Link Following I ≈

CWE-78 OS Command Injections I
CWE-79 Cross-Site Scripting (XSS) I ≈

CWE-89 SQL Injection I ¯

CWE-94 Code Injection I ¯

CWE-119 Buffer Errors I
CWE-134 Format String Vulnerability I ≈

CWE-189 Numeric Errors I ¯

CWE-200 Information Leak / Disclosure C
CWE-255 Credentials Management D
CWE-264 Permissions, Privileges, Access D
CWE-287 Authentication Issues D ≈

CWE-310 Cryptographic Issues D
CWE-352 Cross-Site Request Forgery I ≈

CWE-362 Race Conditions I
CWE-399 Resource Management Errors I ¯

	

 	

	 	 	

	 	 	 	 	 	 	 	 	

	
	

	
	

	 	

	
	 	

	 	 	
	

	
	

	 	
	

	
	
	

	
	 	

	 	 	 	

Design, Implementation, Config Errors
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
2008 2009 2010 2011 2012 2013 2014 2015 2016

Design (% of Total) Impl (% of Total) Config (% of Total)
Fig. 3. Vulnerability Class Trends, 2008-2016

As noted previously, SQL injection vulnerabilities were
the #1 most common type in 2008. By 2015,
vulnerabilities of this type had been dramatically reduced
(Fig. 4). Better tools and improved development practices
helped prevent this type of implementation error, and can
do so for the other types as well. As suggested in the title
of this article, we can reduce cybersecurity vulnerabilities,
using tools and methods that are readily available but
must be applied.

Major NVD vulnerability classes, 2015
1000

800

600

400

200

0

Co
nf
ig
ur
at
io
n

Fo
rm

at
 S
tr
in
g
Vu

ln
er
ab
ili
ty

Li
nk

 F
ol
lo
w
in
g

Au
th
en
tic
at
io
n
Iss
ue
s

Co
m
m
an
d
In
je
ct
io
ns

Ra
ce

 C
on

di
tio

ns
In
je
ct
io
n

Cr
ed
en
tia

ls
M
an
ag
em

en
t

Cr
yp
to
gr
ap
hi
c
Iss
ue
s

N
um

er
ic

 E
rr
or
s

Pa
th

 T
ra
ve
rs
al

SQ
L
In
je
ct
io
n

Cr
os
s-
Si
te

 R
eq
ue
st
…

Re
so
ur
ce

 M
an
ag
em

en
t…

In
pu

t V
al
id
at
io
n

Pe
rm

iss
io
ns
, P

riv
ile
ge
s,
…

In
fo
rm

at
io
n
Le
ak

 /
…

Cr
os
s-
Si
te

 S
cr
ip
tin

g
(X
SS
)

Bu
ffe

r E
rr
or
s

Fig. 4. Distribution of vulnerabilities changed significantly
from 2008 - 2015

Products may be identified in this document, but such identification does
not imply recommendation by the US National Institute of Standards and
Technology or the US Government, nor that the products identified are
necessarily the best available for the purpose.

References

[1] National Vulnerability Database, http://nvd.nist.gov 2017
[2] Kuhn, R., Rossman, H., & Liu, S. (2009). Introducing"

Insecure IT". IT professional, 11(1), 24-26.
[3] Kuhn, R., & Johnson, C. (2010). Vulnerability trends:

measuring progress. IT professional, 12(4), 51-53.
[4] Kuhn, D. R., Raunak, M. S., & Kacker, R. (2017, July). An

Analysis of Vulnerability Trends, 2008-2016. In Software
Quality, Reliability and Security Companion (QRS-C),
2017 IEEE International Conference on (pp. 587-588).
IEEE.

[5] Heffley, Jon, and Pascal Meunier. "Can source code
auditing software identify common vulnerabilities and be

used to evaluate software security?" System Sciences, 37th
Annual Hawaii Intl Conf, IEEE, 2004.

[6] Okun, Vadim, Aurelien Delaitre, and Paul E. Black.
"Report on the static analysis tool exposition (SATE) IV"
NIST Special Publication 500 (2013): 297.

[7] Jones, C, "Measuring Defect Potentials and Defect
Removal Efficiency", Crosstalk, Journal of Defense
Software Engineering (June 2008).

[8] Medeiros, I., Neves, N. and Correia, M., 2016. Detecting
and removing web application vulnerabilities with static
analysis and data mining. IEEE Trans. Reliability, 65(1),
pp.54-69.

[9] Balachandran, V., 2013, May. Reducing human effort and
improving quality in peer code reviews using automatic
static analysis and reviewer recommendation. In Software
Engineering (ICSE), 2013 35th International Conference
on (pp. 931-940). IEEE.

http:http://nvd.nist.gov

