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Access resistance indicates how well current carriers from a bulk medium can converge to a pore or opening,
and is an important concept in nanofluidic devices and in cell physiology. In simplified scenarios, when the bulk
dimensions are infinite in all directions, it depends only on the resistivity and pore radius. These conditions are
not valid in all-atom molecular dynamics (MD) simulations of transport, due to the computational cost of large
simulation cells, and can even break down in micro- and nano-scale systems due to strong confinement. Here,
we examine a scaling theory for the access resistance that predicts a special simulation cell aspect ratio – the
golden aspect ratio – where finite size effects are eliminated. Using both continuum and all-atom simulations,
we demonstrate that this golden aspect ratio exists and that it takes on a universal value in linear response
and moderate concentrations. Outside of linear response, it gains an apparent dependence on characteristics of
the transport scenario (concentration, voltages, etc.) for small simulation cells, but this dependence vanishes
at larger length scales. These results will enable the use of all-atom molecular dynamics simulations to study
contextual properties of access resistance – its dependence on protein and molecular-scale fluctuations, the
presence of charges, and other functional groups – and yield the opportunity to quantitatively compare computed
and measured resistances.

I. INTRODUCTION

Ion transport through narrow constrictions in biological
membranes permits the regulation of concentrations, known
as ion homeostasis, that is vital for physiological functions
of cells [1–3]. Moreover, ion transport through porous inor-
ganic membranes is of interest for technological applications
– such as DNA sequencing [4, 5] – and industrial use [6, 7].
The recent progress in the fabrication of atomically thin mem-
branes such as graphene [8–10], MoS2 [11] and hexagonal
boron nitride [12] opens new avenues in the field of ion trans-
port: These membranes are excellent candidates for molecular
and ionic sieves [13–15] for desalination [16, 17] and gas sep-
aration [18, 19]. Their atomic thickness provides advantages
for bio-sensing, such as sequencing [9, 10, 20] and protein
folding [21]. Synthetic pores – especially ones with atomic
thickness – also provide a testing ground for understanding
biological ion channels and creating biomimetic pores. In
particular, ion currents through pores of controllable size can
probe dehydration [22, 23] and directly quantify its effect on
selectivity [24, 25].

The access resistance – part of the series resistance in patch
clamp measurements – is the resistance for ions to converge
from the bulk electrolyte to the mouth of the pore [26]. It sets
the upper limit of current flow through ion channels [27, 28]
and can become the dominating resistance at low salt concen-
tration [29]. For atomically thin pores with radii sufficiently
larger than the solvation shell of ions, the access resistance
will be the only significant resistance, even at high salt con-
centration. It thus becomes an important component to under-
stand and quantify for sensing and sequencing, which require
high precision measurement and analysis of the ion current.
Moreover, numerous efforts, especially using water-soluble
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polymers, have sought to separate pore and access contribu-
tions to the resistance in order to characterize different aspects
of biological channels [30–32].

Ideally, all-atom molecular dynamics (MD) simulations
should be employed to simulate ion channels [33], as only
these simulations capture contextual aspects of the pores, such
as molecular-scale fluctuations in pore sizes/geometries and
local charges [34]. For instance, edge fluctuations and the
noncircular nature of a pore in graphene, together with van
der Waals interactions and dehydration, make the pore radius
hard to define [34]. However, MD simulations are compu-
tationally intensive. In fact, it is often not possible to reach
biologically relevant timescales using all-atom MD [35]. To-
gether with the long-range nature of convergence, this makes
it difficult to reach the required simulation sizes to quantify
the access resistance [36]. Here, we examine a scaling analy-
sis to extract the access and pore resistances [34], demonstrat-
ing that there is indeed a “golden aspect ratio” (different than
the golden ratio, (1 +

√
5)/2) that removes finite size effects.

We use continuum simulations in order to scan the necessary
parameter space and demonstrate that the golden aspect ratio
indeed removes finite size effects in MD simulation as well.

For an infinitely large, balanced (i.e., infinite in all direc-
tions), and homogeneous system, the access resistance de-
pends only on the resistivity of the medium, γ, and the pore
radius, a. Hall’s expression,

RHall =
γ

4a
, (1)

gives the form under these idealized conditions [26]. In fact,
the access resistance, Eq. 1, was derived by Maxwell well over
a century ago in the context of the electrical current through
an orifice [37]. Access resistance occurs in heat flow, mass
diffusion, and other related scenarios, such as electrical (e.g.,
disc electrodes) and thermal contacts. Hence, several authors
have derived the same expression for these various physical
systems, see, e.g., Gray and Mathews [38], Brown and Es-
combe [39], Gröber [40], Holm [41], and Newmann [42],
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FIG. 1. Contour plots of potential from continuum (PNP) simulations of ion transport through a nanopore. (a) Potential drop V0 across the
simulation cell with a pore of radius a in a membrane of thickness hp. The equipotential surfaces (thick, shaded red and blue lines shown
on top of a heat map) are elliptical near the pore – i.e., an access-like region. The finite size of the simulation cell curtails the access region,
forcing the equipotential surfaces to transition into nearly flat profiles closer to the electrodes – i.e., a bulk-like region. The top half shows
the rotational elliptical coordinates, ξ and η, we employ in modeling the access resistance. (b) Equipotential surfaces in simulation cells of
increasing L and H , with H > L, show the finite-size scaling of access-resistance. (c) Potential map in simulation cells with L > H (L = 32
nm and H = 16 nm). The equipotential surfaces are quasi-elliptical almost up to the end of the cell, but with the surfaces somewhat vertically
distorted when they approach the electrode surfaces on the top and bottom. (d) As the cell size increases at a constant aspect ratio α = H/L,
more of the equipotential surfaces become ellipsoidal, i.e., access-like and the total resistance converges to its value in an infinite bulk.

and given various names for it (access, convergence, con-
tact, a component of the series resistance, etc.). In the case
of electronic transport, the resistance in the ballistic regime –
the Sharvin resistance [43] – crosses over to Maxwell’s ex-
pression when the pore is larger than the electron mean free
path [44, 45]. Although our focus is on ion transport, the gen-
eral findings should be applicable to other transport scenarios
as well.

Moreover, the fact that the access resistance varies as 1/a
rather than 1/a2, as it does for the pore resistance in the dif-
fusive regime, has an interesting consequence: When the pore
resistance is negligible, the current through one large pore is
less than that through several smaller pores of the same total
area if the pores do not interfere with each other. Nature uses
this effect to maximize the gas exchange rate between the at-
mosphere and stomata in leaves [39], and one can envision us-
ing the same effect for maximizing permeation through atom-
ically thin membranes, such as those through graphene and
MoS2, which naturally have a small pore resistance (above
the dehydration limit [24, 25]).

As we discuss later, Eq. 1 reflects an idealized situation.
Access resistance can deviate significantly from this form
when the pore and the membrane are charged [46, 47] or when
only one ion species is permeable [28, 48]. The effect of sur-
face charge or concentration gradients on access resistance
have been studied elsewhere [46, 48]. Here, we focus on the
effect of the finite simulation cell size.

II. MODELS AND METHODS

In addition to an infinitely large, balanced, and homoge-
neous bulk, the typical derivation of Eq. 1 assumes that a
hemispherical electrode is at infinity. This means that at large
distances the electric field lines extend radially outward from
the pore/contact. Within the pore, these field lines have to
transition to pointing along the symmetry axis, which we take
as the z-axis. These symmetries can be seen from the equipo-
tential surfaces close to the pore, as shown in Fig. 1. We will
retain the ellipsoidal symmetry, which transitions from circu-
lar at the pore to hemispherical at infinity, to derive the finite-
size corrections. These corrections are especially important in
simulations, but can also be relevant to nanofluidic [49] and
microelectromechanical systems (MEMS) [50].

We have shown previously [34] how to modify Eq. 1 for a
finite-size system [while retaining the symmetry of the prob-
lem [42, 51]]. This setup is easier to solve using rotational
elliptic coordinates, ξ and η, which relate to cylindrical coor-
dinates, z and ρ, via

z = a ξ η

ρ = a
√

(1 + ξ2)(1− η2). (2)

Laplace’s equation for the electric potential in this coordinate
system is [52]

∂

∂ξ

[(
1 + ξ2

) ∂V
∂ξ

]
+

∂

∂η

[(
1− η2

) ∂V
∂η

]
= 0. (3)

The boundary conditions are: (i) a constant potential at the
pore mouth (V = 0 at ξ = 0), (ii) no perpendicular electric
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FIG. 2. Variation of the resistance with changes in one of the cell dimensions. The pore radius is a = 1 nm, the membrane thickness hp = 1
nm, and the resistivity γ = 71 MΩ·nm (taken to match our all-atom MD value of 1 M KCl from prior results [34]. (a) The resistance R
versus cross-sectional length L with electrolyte height fixed at H = 14.5 nm. For L & H/f , R is smaller than the actual resistance for an
infinite-size electrolyte,R∞ (horizontal dotted line). The scaling form still correctly predictsR∞ when fit for small L (solid lines) but to do so
it has to display non-monotonic behavior (extrapolated, dashed lines). The computed data at large L, however, converges to a value below R∞
as given by Eq. 11. We note that obtaining f from where R crosses R∞ gives about 1.0 for cylindrical and 1.2 for rectangular cells. This is in
close agreement with the golden aspect ratio we obtain later, with the difference from the exact values likely due to the strong non-monotonic
effects here. (b) The resistance R versus total electrolyte height H when cross-section is fixed at L = 50 nm. For H/f & L, R increases
linearly with increasing H as shown by the fitted solid lines. For H < L, R decreases with decreasing H as the negative correction term
−f ′γ/H becomes larger. The factor f ′ ≈ 0.4 obtained from fitting is similar to simple estimates (about 0.3). The standard error of the fits for
f and R∞ are less than 0.2 %. Their fitted values are shown in bold font in the legends.

field on the membrane surface (∂V/∂η = 0 at η = 0), and
(iii) an ellipsoidal electrode of radius l (V = V0 at ξ = l/a).
Only condition (iii) is different than that used for an infinite
bulk.

We stress that in a complex system such as ion channel,
factors such as the presence of surface charges and functional
groups, concentration gradients, selective ion transport, and
others limit the validity of these boundary conditions. Even in
a simplified system these boundary conditions only partially
hold. In particular, condition (iii) is really a fictitious electrode
placed at the end of the access region. We will use the loca-
tion as a fitting parameter, as well as an additional contribution
to capture the effect of the transition region – the region be-
tween the access and bulk regions. Our main focus will be on
obtaining the functional dependence of the resistance on cell
dimensions and we will use continuum simulations to both
empirically motivate and validate this dependence.

The solution to Eq. 3 is, see Appendix,

V

V0
=

tan−1 ξ

tan−1(l/a)
(4)

for the potential. Thus, the access resistance is

Raccess/2 =
γ tan−1(l/a)

2πa

=
γ

4a

(
1− 2a

πl
+O

[(a
l

)3])

≈ RHall

(
1− 2a

πl

)
= RHall −

γ

2πl
, (5)

where we ignore higher order corrections since they are
O
[
(a/l)3

]
. The notation “access/2” indicates that this is the

access resistance on a single side of the membrane. When the
(simulation) cell size has, e.g., a cross-sectional length of 10
nm, l has to be less than 5 nm. Hence, the expression shows
that the classical form is off by ≈ 13 % for a pore radius of
1 nm. This will get worse for even moderately larger pore
sizes, not to mention the difficulty in applying the Hall’s form
when a is ill-defined.

Scaling Analysis
The simple boundary conditions and ellipsoidal symmetry al-
low us to derive the expression, Eq. 5, for the access resistance
for an idealized finite size system. However, as mentioned ear-
lier, neither the boundary conditions nor the symmetry holds
exactly in practice. In ion channels, the potential in the pore
and the bulk can be coupled [47]. Nonetheless, such coupling
affects the region near the pore and the boundary conditions
can be taken as approximations. Another important consider-
ation is that simulations usually have parallel disc electrodes
(or homogeneous applied fields) and a uniform cross-section.
Nanopore experiments and patch-clamp measurement of bio-
logical pores have even more complicated arrangements. Fur-
thermore, in simulations, a rectangular or cylindrical cell are
the natural choices. However, as shown in Fig. 1, the poten-
tial still has ellipsoidal symmetry near the pore and it starts to
become flat away from the pore in the vertical direction. This
is also the case in all-atom MD simulations [34]. Most im-
portantly, therefore, we have to consider the empirical obser-
vation, see Fig. 1, that there are different electrostatic regions
of the cell. In what follows, we will use this observation to
develop a general scaling form.

In the case where the bulk height H (not including the
membrane thickness) is greater than the cross-sectional length
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FIG. 3. Resistance versus L for different aspect ratios α, with a = 1 nm, hp = 1 nm, and γ = 71 MΩ·nm. For small α, dR/dL > 0 and for
large α, dR/dL < 0. At special value of α in between – the “golden aspect ratio”, dR/dL = 0 and the resistance is constant (i.e., no finite
size effects). Here, the gold line is very close to, but not quite at, the golden aspect ratio. The solid lines show the fits R = γ

GL (α− f) +R∞

for α > 1 and R = − γf
′

αL
+R∞ for α < 1, where G = π/4 for cylindrical cells (left panel) and G = 1 for rectangular cells (right panel). The

fit parameters are shown in bold. The dashed lines extrapolate these fits, which match well with the calculations for large L and yield consistent
values for R∞. The performance of the scaling analysis using small L indicates that the simulation cell sizes achievable with all-atom MD
should be sufficient to find the total resistance (pore plus access). The error of the fits for the f ’s and the R∞’s are about 0.5 % and 0.1 %,
respectively (except for α = 0.25 where the respective errors are about about 3 % and 0.5 % ).

L, i.e., H & L, there are three regions on each side: (a) an el-
lipsoidal access-like region extending from ξ = 0 to ξ = l/a,
(b) a flat bulk-like region extending from approximately z = l
to z = H/2 (this takes the upper membrane surface to be
at z = 0), and (c) an intermediate region between the two.
When H & L, the length l will be some fraction of the cross-
sectional length L and the resistance of the intermediate re-
gion should decay as 1/L. Thus, the total resistance is

R = Raccess +Rbulk +Rintermediate +Rpore (6)

= 2

(
RHall −

γ

πf1L

)
+ γ

(
H − f2L
GL2

)
+
γf3
GL +Rpore

where GL2 is the cross-sectional area of the bulk cell (G = 1
for rectangular and G = π/4 for cylindrical). We intro-
duce factors f1, f2, and f3 due to the uncertainty in the ex-
tent/contribution of these regions and the transitory nature of
the boundaries between them. In Eq. 6, the access region ends
at l = f1L/2 and we expect f1 to be O(1), i.e., this region
encompasses a substantial fraction of the cell width (when
H & L). After the access region and some transition re-
gion ends in the vertical direction, the normal bulk-like re-
gion begins. It has total height H − 2f2L/2, where f2L/2
is subtracted from each side of the membrane (the membrane
thickness is not included in H), and we expect f2 to also be
O(1).

When the cell size is infinite in all directions, the resistance
reduces to

R→ R∞ = 2RHall +Rpore. (7)

Thus, from equations 6 and 7, we obtain

R =
γ

G

(
H

L2
− f

L

)
+R∞, (8)

where

f = 2G/πf1 + f2 − f3 (9)

gives a single fitting factor. This relation shows that the finite
size – and confined – correction to the access resistance de-
pends on both height and the cross-section of the cell. In the
context of heat flow [53, 54], others have shown that, for an
infinitely tall cell, access resistance has functional dependence
on a/L, which reduces to the classical form when L� a.

Equation 8 is the resistance for H & L and its development
employed both the derivation of the corrections to Hall’s form
and the empirical observations in Fig. 1. However, Eq. 8 does
not necessarily require R∞ = 2RHall + Rpore, rather only
that the resistance convergences to some R∞. For example,
R∞ can include the rectifying action of a channel [55], the
effect of charges [46, 47], or an ill-defined pore radius [34].
Conditions such as these, ones that give an access contribu-
tion other than Hall’s form, should still obey the scaling law
so long as the cell is large enough to remove non-scaling finite
size effects. The reason is simple, the convergence is an alge-
braically decaying effect, whereas structural fluctuations are
completely local and charges are screened beyond few Debye
lengths. This means that after some distance these features
will no longer be felt by the ionic solution. We will show this
explicitly in the case of non-linear response to large voltages,
which is a much more drastic perturbation to the medium than
fluctuations of the pore or the presence of charges.

For H . L, we will get a different form than Eq. 8 but the
considerations will be similar. Fig. 1 (c) shows the equipo-
tential surfaces for this case. The access region now ends at
l = f ′1H/2, as it is not the horizontal boundary that terminates
the access region but the vertical. This occurs at some fraction
of the box height, f ′1 = O(1), where the prime indicates it is
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FIG. 4. Universality of the golden aspect ratio with pore size. (a) The resistance versus L for cylindrical cells with α = 1.07, hp = 1
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shown in bold. The errors of the fits for f ’s and R∞’s are less than 0.5 % and 0.1 % respectively. As the pore radius increases, we examine
fits for larger L, to roughly keep proportionality between L and a as there are (non-scaling) finite-size effects that will affect the simulations
when the radius starts to become comparable to the cell cross-sectional length. The range of the fitting can influence the extracted f (we
expect that ultra-precise calculations at really large L will reveal the exact golden aspect ratio, which will be close to 1.07). (b) ∆R from
fits to R = γ

(
1/2a+ heff/πa

2
)

+ ∆R, for cylindrical cells of various α, with heff and ∆R as fitting parameters. We get ∆R ≈ 0 for the
“golden aspect ratio” α? = 1.07 (dashed lines), the fit of which is shown in the inset. The effective height, heff , is (5±1) % larger than the 1
nm membrane thickness, see Fig. 5. (c) ∆R in the fits R = γ/4a+ ∆R for half cylinders of different aspect ratios with the pore mouth set at
potential V = 0. We again get ∆R ≈ 0 for α? = 1.07 (dashed lines), whose fit is shown in the inset. The interpolated lines in the insets are
for visual clarity only.

different than the fraction in theH & L case. The normal bulk
region is now almost negligible. Moreover, the cross-sectional
area that contributes to the resistance in the normal bulk region
is not L × L, but rather should be nearly equal to H ×H , as
only the region above the access region feeds ions into that
region and contributes to the current. This is also reflected by
the fact that the electric field is nearly zero for a radial dis-
tance about H away from the z-axis. Hence, at that distance
away, the electrolyte does not contribute to the resistance. We
will therefore take γf ′2/GH for the normal bulk contribution
(i.e., a height divided by a relevant cross sectional length that
is proportional to H/H2) and f ′2 should be very small. The
transition region will also depend on 1/H , giving

R = Raccess +Rbulk +Rintermediate +Rpore (10)

= 2

(
RHall −

γ

πf ′1H

)
+
γf ′2
GH +

γf ′3
GH +Rpore.

Rewriting this equation gives

R =− γf ′

H
+R∞, (11)

with f ′ = 1/πf ′1 − f ′2/G − f ′3/G. This equation entails that
if we keep H constant the total resistance will stay constant
as we increase L. We estimate f ′1 ≈ 1 and f ′2 ≈ f ′3 ≈ 0
giving f ′ ≈ 1/π ≈ 0.32. Moreover, the correction to access
resistance is negative as it removes part of the access region
to give a lower lower total resistance.

The difficulty with the applying Eq. 8 and 11 is that R both
depends on two geometric variables, H and L, and it transi-
tions from Eq. 8 to Eq. 11 at an unknown boundary (albeit
H ≈ L). On the one hand, if we hold L constant and increase
H , then R will increase linearly with H (e.g., this would ap-
ply both in simulations and experiments where a very narrow
nanofluidic constriction leads up to the membrane/pore). This
is essentially increasing the larger normal bulk region in the
cell. On the other hand, if we keep H constant and increase
L, the resistance will initially decrease due to the larger cross-
sectional area available for transport in the normal bulk re-
gion. However, the finite-size correction in Eq. 8 becomes
negative once L & H/f . At this point, R becomes smaller
than R∞ and, as Eq. 11 indicates, should flatten out as L be-
comes larger. This is seen in Fig. 2. In other words, a further
increase in L does not converge R to R∞, because the ad-
ditional cross-sectional area does not contribute to transport.
One can still apply the scaling form, Eq. 8, so long as the fit
is for a range of L . H/f , which Fig. 2(a) shows it extracts
the correct R∞ (found by using the approach we describe be-
low). To use the scaling form in Eq. 11 one has to set L to
a large value and increase H , fitting for values H . L, as
seen in Fig. 2(b) (one can not take H near in magnitude to
L, however, as there are corrections missing in Eq. 10 as H
approaches L from below).

In order for R to converge to R∞ monotonically (in the ab-
sence of nonlinearities), whether from above or from below,
both L and H need to increase simultaneously. An intuitive
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method to do so is to keep the aspect ratio, α = H/L, con-
stant, which simplifies Eq. 8 and Eq. 11 to

R =

{
γ
GL (α− f) +R∞ for α & 1,

−γf ′

αL +R∞ for α < 1.
(12)

Not only do these equations give a unified scaling formR∞+
O(1/L), i.e., both decay with L (one from above, one from
below), the former also indicates that if we choose a special
aspect ratio α? = f then the finite size correction is eliminated
and R is independent of L. In other words, at this “golden
aspect ratio”, α?, R = R∞ for any L.

It is likely not possible to find a general expression f =
2G/πf1 + f2 − f3, since the transition from access-like to
bulk-like is complicated and the factors f1, f2 and f3 will
in general depend on geometric details of the pore and the
boundary conditions. Nevertheless, with some reasonable ap-
proximations we can give an estimate of f . We expect that
f1 ≈ f2 ≈ 1 (i.e., a boundary between access and bulk-like
regions at a radial distance equal to the cell edge, l = L/2).
To estimate f3, which depends on f1 and f2, we assume that
the intermediate region has equal contributions from access-
and bulk-like behavior. This intermediate region can be as-
sumed to have a hemispherical boundary of radius f1L/2 and
a flat boundary of cross-section GL2 at height f2L/2 on each
side of the pore. Thus the resistance of the intermediate region
is estimated to be

γf3
GL =

1

2

(
2γ

πf1L
− 2γ

πL

)
+

1

2

(
2γf2L/2

GL2

)
, (13)

giving

f3 =
G
f1π
− G
π

+
f2
2
. (14)

The expression for f3 likely overestimates the bulk-like con-
tribution, while either under- or over-estimating the access
contribution. Using it in Eq. 9, simplifies f to

f =
G
πf1

+
f2
2

+
G
π
. (15)

f1 1.00 0.80 0.60 0.40
f2 1.00 0.80 0.60 0.40
α? (rectangular) 1.14 1.12 1.15 1.31
α? (cylindrical) 1.00 0.96 0.97 1.08

TABLE I. Estimates of the golden aspect ratio, α? = f , for various
values of f1 and f2. We expect f1 and f2 to be O(1).

Table I shows the value of f for various values of f2 = f1.
The value of f is quite insensitive to f1 and f2 in a reasonable
range (due to the fact that one appears in a denominator and
the other in a numerator), including when f1 and f2 are varied
separately. The equipotential surfaces in Fig. 1 suggest f1 ≈
2/3 and f2 ≈ 3/4, and thus we estimate

f =

{
1.2 for rectangular box
1.0 for cylindrical box

(16)

8

16

32

64

128

1 2 2 2 3 4 4

γ
(

1
2a

+ 1.05 nm
πa2

)
+ 0.2 MΩ

γ
(

1
2a

+ 2.05 nm
πa2

)
+ 0.2 MΩ

γ
(

1
2a

+ 3.05 nm
πa2

)
+ 0.3 MΩ

R
(M

Ω
)

a (nm)

γ
(

1
2a

+ 4.05 nm
πa2

)
+ 0.3 MΩ

FIG. 5. The resistance versus a for cylindrical cells with L = 32
nm, the golden aspect ratio α? = 1.07, and hp = 1.0 nm, 2.0
nm, 3.0 nm and 4.0 nm. The resistance fits into the model, R =
γ
(
1/2a+ heff/πa

2
)

+ ∆R with heff and ∆R as fitting parameters
(shown in bold in the legend). The fitted heff is slightly larger than
the actual membrane thickness but its relative difference diminishes
as the membrane thickness is increased. This is due to the curvature
of the potential at the pore mouth and not due to numerical grid-size
errors (a ten times smaller grid increase this value to 7 % and thus we
expect this height correction to converge to something of this order.).
The standard errors of heff and ∆R are about 0.01 nm and 0.04 MΩ
in each case.

for the golden aspect ratio.
We will also examine the sensitivity of f to different condi-

tions, including whether one uses the Poisson-Nernst-Planck
(PNP) equations or just Laplace’s equation (i.e., Ohm’s law).
The latter – the homogeneous medium approximation – is
valid when the applied potential is small and the ion con-
centration is large [8]. Poisson’s equation and the stationary
Nernst-Planck equation express the spatial dependence of the
potential V and current density J as

∇2V =
∑

ν

qνcν
ε

(17)

and

Jν = −qν (Dν∇cν + µνcν∇V ) , (18)

where qν , cν ,Dν , µν are the charge, concentration, diffusivity,
and mobility of ion species ν. We use a commercial finite
element solver for both cases.

Finally, we expect that the “golden aspect ratio” is applica-
ble to MD because, at large distance and weak enough vari-
ation in fields, MD can be coarse-grain into a continuum de-
scription. We test this applicability by simulating the ionic
current through graphene nanopore of radius a = 1.81 nm
immersed in 1 mol/L of KCl. We perform the all-atom MD
simulation using NAMD2 [56], the CHARMM27 [57] force
field, and a rigid TIP3P [58] water model. The details of MD
simulation are the same as in our previous work [34].
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4γ(1.4 − 1.1)/πL + 594.9 MΩ

−(0.3γ)(0.8L) + 583.3 MΩ

4γ(1.1 − 1.1)/πL + 583.8 MΩ
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4γ(1.4 − 1.1)/πL + 584.0 MΩ

−(0.1γ)(0.8L) + 528.3 MΩ

4γ(1.1 − 0.9)/πL + 530.8 MΩ

300 mV

4γ(1.4 − 0.9)/πL + 532.3 MΩ

−(0.3γ)(0.8L) + 59.5 MΩ

4γ(1.1 − 1.1)/πL + 59.6 MΩ

R
(M

Ω
)

4γ(1.4 − 1.1)/πL + 59.6 MΩ

−(0.3γ)(0.8L) + 59.4 MΩ

4γ(1.1 − 1.1)/πL + 59.4 MΩ

L (nm)

4γ(1.4 − 1.1)/πL + 59.4 MΩ

−(0.3γ)(0.8L) + 58.2 MΩ

4γ(1.1 − 1.0)/πL + 58.3 MΩ

4γ(1.4 − 1.0)/πL + 58.3 MΩ

FIG. 6. PNP solution of the resistance versus L for cylindrical cells with hp = 1 nm, a = 1 nm, and various aspect ratios (α = 1.4, 1.1
and 0.8 from top to bottom). The labels at the top show the applied potential and the labels at the right show the concentration of KCl. The
golden aspect ratio remains the same as in the homogeneous medium calculation for the smaller voltages (10 mV and 100 mV) and for both 1
mol/L and 0.1 mol/L concentrations. For 300 mV applied voltage, the golden aspect ratio seems to take on a lower value due to the increased
concentration of ions near the membrane, which is more pronounced for low concentrations due to a diminished ability to screen and generate
local fields. The legends show the fits to Eq. (12) with the fit parameters shown in bold. The error of the fits for f ’s and R∞’s are about 0.5 %
and 0.1 % respectively.

III. RESULTS

We first test the scaling form, Eq. 12, for a homogeneous
medium by solving Laplace’s equation for the electric poten-
tial. All simulations take a silica membrane with dielectric
constant 2.1. With the rectangular cell, we compute the re-
sistance using both finite and periodic cells (as is common in
all-atom molecular dynamics). Both boundary conditions give
the same results and thus we show results only for the finite
cells for the continuum case (for the all-atom simulations, we
have a periodic rectangular cell). Fig. 3 shows that, for both
cylindrical and rectangular cells, the resistance increases with
L for small aspect ratios and decreases for large aspect ra-
tios as predicted from Eq. 12. Physically, we can understand
this as follows: When the aspect ratio (H/L) is small, the
access-like region covers most of the height of the cell. Thus,
when increasing L, the access contribution increases, as the fi-
nite size correction – a negative correction – in Eq. 5 is being
eliminated. On the other hand, when the aspect ratio (H/L)
is large, the access-like region is localized near the pore and
the bulk-like region covers the remainder of the height of the
cell. This bulk-like region gives a large positive contribution
to the resistance, but is decreasing with L (due to the fact that
it decreases with the area). This transition from increasing to
decreasing resistance with L suggests that there should be a
constant R at some special value of the aspect ratio. At this

special value, the two competing effects cancel. Fig. 3 shows
that there is an aspect ratio that shows little variation as L in-
creases. Thus, indeed, the golden aspect ratio exists and is
approximately α? = 1.07 for a cylindrical cell and α? = 1.2
for a rectangular cell, in line with the estimate in Eq. 16.

In Fig. 4(a), we examine three pore sizes and use a cylin-
drical cell with aspect ratio α = 1.07 where we get a visually
flat profile of R versus L. An inappropriately chosen aspect
ratio, however, will have R dependent on L and disagree with
the classical form of the access resistance. Fig. 4(b) shows
that, around α = 1.07 and at finite L (32 nm), the form
R = γ

(
1/2a+ hp/πa

2
)

+ ∆R, fits the data with ∆R ≈ 0,
thus coinciding with the classical form. For α = 2, a rea-
sonable value from a computational standpoint, the fit gives
∆R ≈ 3 MΩ, which is an error of ≈ 30 % in R∞ at a = 4
nm.

Notice that we obtain hp = 1.05 nm from the fit, which is
different than the 1 nm membrane thickness. The expression
γhp/πa

2 assumes the potential surfaces are flat within the full
length of the pore. However, in actual pores, these surfaces are
not perfectly flat, especially near the pore mouth, as is visible
in Fig. 1. This difference in curvature will give a correction to
γhp/πa

2 and it seems likely this is responsible for the slight
difference in hp. This correction becomes negligible for thick
membranes, as shown in Fig. 5, where the correction comes
out to be 1.0 % for a 4 nm membrane (compared to 5 % for
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FIG. 7. The resistivity along the z-axis for various applied potentials
and cell dimensions L. The pore radius is a = 1 nm and the KCl
concentration is 0.1 mol/L (γb = 710 MΩ·nm). Large applied volt-
ages enhance the density of charge carriers near the pore, decreasing
the resistivity. Since the access resistance contribution is largest near
the pore, see Eq. 5, this enhancement lowers the overall access re-
sistance and gives an apparent depression to the golden aspect ratio
when examining small simulation cells.

the 1 nm membrane).
To test the finite-size effect of the bulk, we can remove

this source of ambiguity completely by examining the resis-
tance on a half cylinder – between the pore mouth set at po-
tential V = 0 and an electrode at one end of the cylinder.
Fig. 4(c) shows this resistance versus pore radius. Since the
half cylinder does not have the pore resistance, we fit it to
R = γ/4a + ∆R. Once again we get ∆R ≈ 0 for the aspect
ratio α = 1.07 and a value substantially different than zero for
other α. These calculations, using Laplace’s equation, pin the
golden aspect ratio to be around α? = 1.07 for the cylindri-
cal box (and around 1.2 for a rectangular box). Furthermore,
these values of the golden aspect ratio are remarkably close to
the estimate in Eq. 16. We also want to examine more realis-
tic simulations, and thus we now examine the PNP equations,
which are widely employed to compute ion channel behav-
ior [59–64] and MD simulations.

PNP Solution
We test Eqs. 12 for PNP simulations with two different con-
centrations, 0.1 mol/L and 1.0 mol/L of KCl solution, and ap-
plied voltages of 10 mV, 100 mV and 300 mV. Fig. 6 shows
that for 10 mV and 100 mV we obtain a similar golden aspect
ratio as for the homogeneous medium solution. However, this
special ratio seems to decrease for the larger voltage of 300
mV. Clearly, there are nonlinear effects coming into play when
the voltage increases and/or the concentration is insufficient to
screen the field without substantially perturbing the medium.
We will show that this decrease is just an apparent decrease

360

370

380

390

51

52

53

54

32 64 128 256 512 1024 2048

0.1 mol/L

1.0 mol/L

−(0.3 γ)(0.8L) + 361.3 MΩ

4γ(1.1 − 0.9)/πL+ 361.4 MΩ

4γ(1.4 − 0.7)/πL+ 361.4 MΩ

−(0.4γ)(0.8L) + 52.5 MΩ

4γ(1.1 − 1.1)/πL+ 52.5 MΩR
(M

Ω
)

L (nm)

4γ(1.4 − 1.0)/πL+ 52.5 MΩ

FIG. 8. PNP solution of the resistance versus L at applied potential
of 1 V and KCl concentrations 0.1 mol/L (top panel) and 1.0 mol/L
(bottom panel) for cylindrical cells with hp = 1 nm, a = 1 nm, and
aspect ratios (α =1.4, 1.1 and 0.8). The solid lines show the fit with
f and R∞ as fitting parameters (shown in bold) and the dashed lines
show the extrapolation. Since the applied field is large, the resistance
at smaller L (< 100 nm) is highly nonlinear and cannot be scaled to
extract R∞ with Eq. 12 as is done for the smaller applied voltages
in Fig. 6. Hence, a larger L is necessary to employ the scaling form
when the electric field is large and ion concentrations are small. Note
that the resistance for the 0.1 mol/L solution is substantially smaller
than at lower voltages. For 0.1 mol/L solution, the error of the fit for
f and R∞ are about 3 % and 0.03 % respectively, whereas for 1.0
mol/L solution the respective errors are less than 1 % and 0.01 %.

due to non-scaling [in the context of Eq. 12] finite-size effects.
Larger L will restore the scaling form.

We first want to understand the origin of these effects,
which requires that we consider the formation of concentra-
tion gradients [65]. As seen in Fig. 7, the resistivity (γ =
1/
∑
cνµν) is fairly constant along the axis of the simula-

tion cell for small voltages and thus we get the same result
as in the homogeneous case. For higher voltages, however,
γ is smaller near the pore as a result of classical Wien effect
[66, 67]. However, the scaling form, Eq. 12, can still be em-
ployed as long as the resistivities of different regions do not
change drastically. Relaxing the homogeneity assumption that
went into the derivation of Eq. 12, we set γb, γa, and γp to be
the resistivity in the bulk-like region, the access-like region,
and in the pore, respectively. Then, the total resistance (for
H & L) is

R =Raccess +Rbulk +Rintermediate +Rpore

=2

(
γa
4a
− γa
πf1L

)
+ γb

(
αL− f2L
GL2

)
+
γbf3
GL +

γphp
πa2

=
γb
GL

[
α− f

(
γa
γb

)]
+R′∞, (19)

where R′∞ = γa/2a+ γphp/πa
2 and

f

(
γa
γb

)
=

2Gγa
πf1γb

+ f2 − f3. (20)
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Within this simplified – “compartmentalized” – inhomoge-
neous system, the resistance of the infinite system and the
golden aspect ratio are linear function of γa, decreasing as γa
decreases. This qualitatively explains why we see the appar-
ent decrease in the golden aspect ratio – it is the depression
of the access contribution that decreases the required height
of the bulk-like region that “balances” it. Of course, the re-
sistivity is not constant throughout the access-like region and,
at very high voltage and low concentration, is not even in the
bulk-like region. Thus, this simplified inhomogeneous model
will not accurately determine the apparent golden aspect ra-
tio. However, it does not need to: The extensive decrease in
resistivity is due to the fact that the simulation cells that are
really small can not sustain large potential drops without a
global perturbation to the medium. Examining much larger
cells shows that the scaling form is restored, see Fig. 8, which
is due to the fact that the perturbation to the medium becomes
localized (in dimensionless terms) around the pore, see the
curves for different L in Fig. 7.

In other words, there are finite-size effects and there are
finite-size effects: The perturbation to the medium is a non-
scaling finite size effect and the simulation cells need to be
sufficiently large to accommodate the perturbed region. An
alternative scaling ansatz could potentially be developed to
handle such cases, e.g., including the perturbing effect of lo-
cal fields. Its applicability would be more limited (unlike the
general forms, Eq. 12 or Eq. 8, which, however, may require
larger L to reach the scaling regime) but still helpful. Finite-
size effects related to truncating the access region or asym-
metric dimensions can be removed via Eq. 12 or Eq. 8 (for
H & L/f ), respectively.

MD Solution
We test Eqs. 12 for MD simulations with 1 mol/L KCl, a 1.81
nm radius graphene pore, and a 1 V applied bias. Figure 9
shows results for three different aspect ratios, 1.9,1.2 and 0.5,
and a cross-sectional length ranging from 9.6 nm to 14.4 nm.
Both equations hold for these all-atom simulations. Moreover,
we obtain the same golden aspect ratio for MD simulation
as we do for the continuum calculations with a rectangular
simulation cell.

IV. DISCUSSION

Ion transport properties can be difficult to compute with
all-atom molecular dynamics. In the dehydration limit, for in-
stance, large free energy barriers exist, which entails very long
(microseconds or more) simulations to accumulate enough ion
crossing events to determine the current with reasonable ac-
curacy [24, 25]. This applies even at elevated voltages [sim-
ulations are often done at 3 V or higher [69]], which risks
introducing nonlinearities and prohibits a direct comparison
with experiment. Contextual properties of ion transport –
fluctuations of the pore or membrane, localized dipoles or
charges, van der Waals interactions and dehydration, geomet-
rically “imperfect” pore shapes, etc. – make these simula-
tions even more difficult to understand and control (e.g., slow

20

24

28

32

9 10 11 12 13 14

R
(M

Ω
)

L(nm)

γ
L

(1.9 − 1.4± 0.1) + (26.9± 0.5) MΩ

γ
L

(1.2 − 1.2± 0.1) + (26.8± 0.5) MΩ

−γ 0.3±0.1
0.5L

+ (26.0± 0.6) MΩ

FIG. 9. MD results of the resistance versus L at an applied bias of
1 V and KCl concentration 1.0 mol/L, a = 1.81 nm, and aspect ra-
tios 1.9, 1.2 and 0.5 (from top to bottom). The raw resistance from
MD is shown as open circles. Due to the equilibration, the final cell
aspect ratios are not exactly 1.9, 1.2, and 0.5. The slight change in
height can be corrected for in order to set H = αL + hp. The data
with error bars show this slightly corrected data. The error bars rep-
resent ± 1 block standard error, see Ref. [68], which reflects error
due to finite sampling time. The legends show the fits to Eq. (12)
with the fit parameters shown in bold. The golden aspect ratio for
MD is ≈ 1.2, which is the same as that from continuum simulations
(for a rectangular cell). The scaling and/or golden aspect ratio simu-
lations yield a resistance in agreement with the classical expression,
2RHall +Rpore, as we demonstrated with the scaling procedure only
in Sahu et. al. [34].

fluctuations of pore structure require long times to acquire the
requisite statistics). To capture these effects, therefore, one
would like to keep the simulation size as small as possible but
without introducing excessive errors into the computation.

We have developed a scaling theory to extract both the pore
and access contributions to resistance without going to exces-
sively large simulation cells (i.e., L < 16 nm for linear re-
sponse). This theory was originally employed to determine
the access contribution – including how to properly define
the pore size in the presence of contextual properties – to
graphene nanopores with all-atom MD [34]. While this does
not correct for force-field effects and related issues (sampling,
conformational changes, etc.), it does solve for the geome-
try/dimensions of the setup. Using this theory, we demon-
strated that the “golden aspect ratio” – a special aspect ratio
where finite size effects are eliminated – exists in both con-
tinuum and all-atom simulations (and we expect in Brownian
dynamics as well). Previously, we only used an aspect ratio
close to an initial estimate of the golden aspect ratio (and, in-
deed, we had little variation of R with L) but large enough to
ensure we decrease from above to R∞ [34].

The golden aspect ratio gives a completely flat (i.e., with-
out non-monotonic or oscillatory behavior) resistance versus
simulation cell size. The value for the golden aspect ratio is
about α? = 1.07 for cylindrical cells and 1.2 for rectangular
(for both continuum and all-atom simulations). It is relatively
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insensitive to voltages and ion concentrations within experi-
mentally relevant regimes (i.e., around 0.1 V applied voltages
and 0.1 mol/L to 1.0 mol/L concentrations). For large voltages
and small concentrations, simulation cells must be sufficiently
large to remove non-scaling finite-size effects, after which the
scaling and the golden aspect ratio are restored.

This scaling approach will be most useful when examin-
ing pores that do not have very high pore resistances – due to
dehydration or a long length channel – so that the access re-
sistance becomes a dominant or equal contributor rather than
a correction to the resistance. Graphene and other atomically
thin pores have a dominant or substantial access contribution
all the way down to the dehydration limit [34], and thus the
scaling approach is essential. Biological channels can fall into
either category, sometimes requiring a correct determination
of the access contribution. For instance, α-hemolysin pores
have a 1 GΩ resistance (at 1 mol/L KCl) [70], compared to
an estimated [from Eq. 1] 40 MΩ access contribution. On the
other hand, a sodium channel of radius 0.3 nm and effective
length 0.5 nm has both an access and pore resistance that are
nearly equal [27]. In low salt concentrations, access resistance
may become the dominating resistance in a wide variety of
cases [29]. While we have not simulated a biological ion chan-
nel here, a direct application of the golden aspect ratio would
take the simulation cell height to be 1.2 · L+ hp, with hp the
channel length. For instance, for α-hemolysin as a model bio-
logical channel, hp ≈ 10 nm, the simulation cell height should
be roughly on the order of 27 nm (for the cross-sectional di-
mension to be reasonably larger than channel width and pro-
tein assembly, L should be about 14 nm [70]). However, this
idea requires testing with different biological channels, as in
many cases (including α-hemolysin), the membrane thickness
and channel length are not the same. This distorts the equipo-
tential surfaces. Given the ease with which the scaling ap-
proach and golden aspect ratio can be employed (e.g., setting
H ≈ 1.2 · L+ hp and simulating a handful of different L), it
is reasonable to use it first even in the cases the where access
resistance is a correction.

Care must be taken, though, to work with sufficiently large
L in simulations, especially all-atom MD. For instance, a sim-
ulation cell that is too small may not have enough ions to prop-
erly screen localized dipoles or charges (or otherwise give a
cell boundary too close to these local electrostatic variations,
preventing proper Debye screening). Similarly, the partition-
ing of the voltage drop across the cell can yield a strong field
across the pore for small simulation cells (as there is less
voltage drop in the bulk medium), which can introduce non-
linearities in the transport properties. This further supports
the use of the scaling analysis, as it will also allow one to
identify these “non-scaling” finite size effects and eliminate
them when going to large enough simulation cells. Moreover,
it goes without saying that computations should be done as
close to experimental and biologically-relevant conditions as
possible. Our work gives new reasons to do simulations in the
linear response limit, as it is only then that some non-scaling
finite size effects are negligible for simulation cell sizes in the
16 nm regime.

In addition, the classical form of access resistance assumes

an infinite bulk, which fails for micro- and nano-scale sys-
tems. In particular, if one has a narrow (micro- or nano-
fluidic) constriction leading up to a membrane/pore or some
other “active” region, then access resistance no longer follows
Hall’s expression, but rather has to be corrected for the geo-
metric setup [71]. Our approach gives a method to map simu-
lations to experimental geometries (or vice versa), thus allow-
ing for contextual properties to be simulated with reasonable
computational power.

The primary power of MD is to study contextual properties
of pores, such as the effect of atomic/molecular fluctuations
of the pore/membrane and the presence of (partial) charges,
but requires extensive computational resources. The golden
aspect ratio and scaling approaches will allow the quantitative
extraction of both pore and access contributions to the
resistance with minimal resources. Its use has already shed
light on how to define pore size for geometrically imperfect
pores, including edge fluctuations and dehydration/van der
Waals interactions [34]. By extension, this will give the first
calculated values of access resistance in the presence of,
e.g., molecular-scale/protein fluctuations in biological ion
channels and other contextual properties (charges/dipoles)
and open a new era in comparing computed and measured
values of resistance.

Appendix: Access resistance in a finite region

Here, we calculate access resistance for a finite size region
while keeping the ellipsoidal symmetry. This problem can be
solved using the rotational elliptic coordinates. We begin with
oblate spheroidal coordinates, (µ, ν, φ), which are defined in
terms of the Cartesian coordiates as

x = a coshµ cos ν cosφ

y = a coshµ cos ν sinφ

z = a sinhµ sin ν (A.21)

Rotational elliptic coordinates, ξ = sinhµ and η = sin ν, are
related to the cylindrical coordinates as

z = aξη

ρ = a
√

(1 + ξ2)(1− η2), (A.22)

where a is the radius of the pore. Laplace’s equation in this
coordinate system is

∂

∂ξ

[
(1 + ξ2)

∂V

∂ξ

]
+

∂

∂η

[
(1− η2)

∂V

∂η

]
= 0 (A.23)

This equation can be solved via separation of variables, V =
H(η)Ξ(ξ), which gives

∂

∂ξ

[
(1 + ξ2)

∂Ξ

∂ξ

]
+ λΞ = 0 (A.24)

and

∂

∂η

[
(1− η2)

∂H

∂η

]
− λH = 0, (A.25)
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where λ is a constant. The boundary condition (ii), ∂V/∂η =
0 at η = 0, yields λ = 0. Integrating Eq. A.24 thus gives

V = H Ξ = H

∫
b1

1 + ξ2
dξ = H b1 tan−1 ξ + b2, (A.26)

where b1 and b2 are the constants of integration. Using the
boundary condition (i), V (ξ = 0) = 0, we get b2 = 0.
This simplifies the potential to V = H b1 tan−1 ξ. The
boundary condition (iii), V (ξ = l/a) = V0, gives V0 =
H b1 tan−1(l/a). Taking the ratio of these two expressions
gives Eq. 4 of the main text,

V

V0
=

tan−1 ξ

tan−1(l/a)
. (A.27)

The current through the pore is

I =
2π

γ

∫ a

0

∂V

∂z

∣∣∣
z=0

ρdρ =
2π

γ

∫ a

0

1

aη

∂V

∂ξ

∣∣∣
ξ=0

ρdρ

=
2πaVo

γ tan−1(l/a)
. (A.28)

Equations A.27 and A.28 give Eq. 5.

Raccess/2 =
γ tan−1(l/a)

2πa
≈ RHall −

γ

2πl
.
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