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Abstract 

Propagation of cost-effective water level sensors powered through the Internet of Things (IoT) has 

expanded the available offerings of ingestible data streams at the disposal of modern smart cities. 

StormSense is an IoT-enabled inundation forecasting research initiative and an active participant 

in the Global City Teams Challenge seeking to enhance flood preparedness in the smart cities of 

Hampton Roads, VA for flooding resulting from storm surge, rain, and tides. In this study, we 

present the results of the new StormSense water level sensors to help establish the “regional 

resilience monitoring network” noted as a key recommendation from the Intergovernmental Pilot 

Project. To accomplish this, the Commonwealth Center for Recurrent Flooding Resiliency’s 

Tidewatch tidal forecast system is being used as a starting point to integrate the extant (NOAA) 

and new (USGS and StormSense) water level sensors throughout the region, and demonstrate 

replicability of the solution across the cities of Newport News, Norfolk, and Virginia Beach within 
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Hampton Roads, VA. StormSense’s network employs a mix of ultrasonic and radar remote sensing 

technologies to record water levels during 2017 Hurricanes Jose and Maria. These data were used 

to validate the inundation predictions of a street-level hydrodynamic model (5-m resolution), while 

the water levels from the sensors and the model were concomitantly validated by a temporary 

water level sensor deployed by the USGS in the Hague, and crowd-sourced GPS maximum 

flooding extent observations from the Sea Level Rise app, developed in Norfolk, VA.  

Keywords: 

Hurricane Maria, Hurricane Jose, King Tide, Hydrodynamic Modeling, Internet of Things, Smart 

City, Global City Teams Challenge, Replicability, Citizen Science, Sea Level Rise 

1. Introduction 1 

The modern smart city of today is tantamount to a complex system. Such systems are frequently 2 

subjected to innumerable non-linear influences on how to efficiently allocate their limited resources 3 

(Rhee, 2016). The protocols by which these cities respond to emergency inundation conditions in 4 

the near-future could be adapted using models informed and validated by an expanded water level 5 

sensor network to advise how best to prepare for the imminent flood-related disasters of the future 6 

(Fig. 1). Analysis of the local sea level trend from the longest period record in Hampton Roads at 7 

Sewells Point in the City of Norfolk depicts a long-term linear increase in mean sea level of 8 

4.59±0.23 mm/year since its establishment in 1928 (Fig. 2). The data from a new sea level trend 9 

study conducted at the Virginia Institute of Marine Science (VIMS) focuses on trends since the 10 

Anthropocene (1969-present) to suggest that rising sea levels will inevitably exacerbate flooding 11 

conditions from storm events in the nearer-future than initially projected by the IPCC’s fifth 12 

assessment report, leading to a linear increase in mean sea-level of 0.29 m by 2050 (Mitchell et al., 13 

2013; NOAA Tides and Currents, 2017). When considering a quadratic fit of these data, the curve 14 
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suggests an elevated trend of 0.49m by 2050 (Fig. 2) (Boon et al., 2018). Cities, counties, town 15 

governments, local institutions, and private contractors, provide myriad solutions, each of which 16 

must be evaluated in its own way. However, provision of these serviceable flooding solutions often 17 

impacts the availability of other services citizens rely upon.  18 

Many existing smart cities solutions are designed to have a measurable impact on specific key 19 

performance indicators relevant to their communities. Because many of today’s smart 20 

city/community development efforts are isolated and customized projects, the National Institute of 21 

Standards and Technology (NIST) launched the Global City Teams Challenge (GCTC) to 22 

encourage collaboration and the development of standards for smart cities. The GCTC’s long-term 23 

goal is to demonstrate a scalable and replicable model for incubating and deploying interoperable, 24 

adaptable, and configurable Internet of Things (IoT)/Cyber-Physical Systems technologies in smart 25 

cities/communities.  This program aims to help communities benefit from working with others to 26 

improve efficiency and lower costs. NIST also created the Replicable Smart City Technology 27 

(RSCT) cooperative agreement program to provide funding to enable awardee City/Community 28 

Partners to play a lead role in the team-based GCTC effort to pursue measurement science for 29 

replicable solutions (RSCT, 2016). The RSCT program was designed to support standards-based 30 

platform approaches to smart cities technologies that can provide measurable performance metrics. 31 

Together these two programs work to advance state-of-the-art of smart city standards. 32 

The StormSense project brings together municipal governments in Hampton Roads, Virginia, 33 

including: Newport News, the RSCT grant recipient, Norfolk, Virginia Beach, Hampton, 34 

Chesapeake, Portsmouth, Williamsburg, and York County along with the Virginia Institute of 35 

Marine Science (VIMS), to develop a regional resilience monitoring network, with the installation 36 

of 28 new publicly-broadcasting water level sensors. This was a notable recommendation from the 37 
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Intergovernmental Pilot Project’s working group (Steinhilber et al., 2016). StormSense is poised to 38 

develop the network as Phase 1, and develop a street-level flood forecasting and monitoring solution 39 

across the entire region for Phase 2, which begins with integration of observed water-levels into 40 

VIMS’ Tidewatch tidal forecasting system, which now operates under the Commonwealth Center 41 

for Recurrent Flooding Resiliency (CCRFR) (Fig. 1).  42 

Hampton Roads, VA, experiences nuisance flooding fatigue with such frequency that it is easy to 43 

forget that flooding events cost our cities, their first responders, and their residents time and money 44 

(VanHoutven et al., 2016). In one neighborhood in the City of Newport News that is subjected to 45 

frequent flooding, typically many emergency responders were required to assist in evacuating the 46 

complex (Lawlor, 2012; Alley, 2017). However, by remotely alerting residents that the water was 47 

rising quickly on the local stream, the past two flooding events have not required any emergency 48 

responders to assist in evacuating and were subsequently able to dedicate their emergency services 49 

elsewhere (Smith, 2016; Alley 2017). The goal of establishing a flood monitoring network can be 50 

expensive, but in the long term, the anticipated benefits of improved quality of life for a region’s 51 

citizens are monumental. The goal is to replicate this level of success throughout the cities of 52 

Hampton Roads by providing a greater density of water level sensors. As an added benefit, more 53 

publicly-available water level sensors empower property owners to take responsibility for their 54 

assumed risk of living adjacent to floodplains. This has resulted in a marked spike in the number of 55 

residents who have opted for flood insurance, with 2,231 claims totaling $25M in damage attributed 56 

to 2016 Hurricane Matthew (FEMA, 2016). Many of these properties are insured through the 57 

Federal Emergency Management Agency’s (FEMA) National Flood Insurance Program (NFIP), 58 

but many properties outside of the designated floodplain do not have preferred risk policies 59 

(VanHoutven et al., 2016). 60 

http://www.floodingresiliency.org/
http://www.floodingresiliency.org/
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A stakeholder workshop conducted on January 19, 2016, with representatives from Hampton Roads 61 

regional emergency management, storm water engineering, and planning municipal staff, as well 62 

as academic and non-government organization partners uncovered a need for near-term, locally 63 

scaled, and ‘realistic’ scenarios to communicate risk (Flooding Mitigation Stakeholder Workshop, 64 

2016). Emergency managers are currently limited in their communications tools and know them to 65 

be inadequate (CoreLogic, Inc., 2015; Yusuf et al., 2017). A better understanding of the decisions 66 

people are making to adapt to flooding is needed. Differences are expected in both flood perception 67 

and behavior between urban and rural audiences. A pilot study conducted in 2015 examining 68 

information logistics for drivers on flooded roads in Norfolk found that decisions made about 69 

driving were strongly situational, based upon the importance, timing, and location of the driving 70 

plans, but that a regional approach to communication was needed and lacking (CoreLogic, Inc., 71 

2015). Time living in Hampton Roads was an important factor in risk perception and that 72 

information comes from local knowledge, recognized sources of information, and sometimes a 73 

haphazard mix of both. Examining these issues in Hampton Roads and these recent studies, the 74 

context of flood communication and further elucidating the currently vague appropriate flood model 75 

parameters for accurate inundation prediction using hydrodynamic models at the street-level scale 76 

in a broader context is needed. This leads to the following flood research questions:  77 

• How should bottom friction be appropriately parameterized for high-resolution street-level sub-78 

grid inundation models?    79 

• How should percolation/infiltration of rainwater through different density surfaces present in 80 

urban and rural environments be accurately accounted for in a high-resolution sub-grid model? 81 
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• How should model results be disseminated to enhance flood preparedness, and what 82 

communication methods and messages influence flood risk decision-making and behaviors 83 

(including information-seeking and adaptive response)?  84 

To attempt to address these questions, examples from a recent installment of 10 water level sensors 85 

by the United States Geological Survey (USGS) in the City of Virginia Beach, along with 5 new 86 

street inundation sensors and 1 tide gauge in Norfolk, and 7 new water level sensors in Newport 87 

News through StormSense will be compared during Hurricanes Jose and Maria in Hampton Roads 88 

in September 2017.  89 

2.    Study Area and Model Inputs  90 

Hampton Roads, VA, is the second-largest population center at risk from sea level rise in the 91 

United States. The region has more than 400,000 properties that are exposed to flood or storm 92 

surge inundation (Sweet et al., 2014). The region has a population of over 1.7 million people, 93 

living and traveling on roads exposed to both severe and increasing frequent chronic “nuisance” 94 

flooding (Ezer and Atkinson, 2014; Ezer and Atkinson, 2017). Existing flood communication and 95 

messaging systems have not yet responded to the changing risk patterns brought by sea level rise 96 

and have not been able to meet the diverse needs of a growing populous in an expanding floodplain. 97 

A better understanding of flood risk perception, information seeking behavior and decision-98 

making can inform the development of new communications tools and flood risk messaging (Wahl 99 

et al., 2015). This is the percieved intersect between new IoT-technologies and emerging flood 100 

model validation methods. For each storm event, water levels driven via 36-hour Tidewatch 101 

forecasts provided by VIMS at Sewells Point were used to drive surge and tides, alongside wind 102 

and pressure inputs used to drive the model atmospherically, similar to Loftis, Wang, and Forrest 103 
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(2016). VIMS employs a street-level hydrodynamic model, which incorporates a non-linear solver 104 

and variable sub-grid resolutions, capable of being embedded with lidar-derived topography to 105 

scale resolution for inundation where it is needed down to 5 m or even 1 m resolution in known 106 

areas where flooding frequency is high. The model has been used to simulate every major storm 107 

event in Hampton Roads that has occurred in the last 20 years, and has been used in many other 108 

places along the U.S. East and Gulf Coasts as well (Loftis, 2014; Wang et al., 2014; Wang et al., 109 

2015; Loftis et al. 2016; Loftis et al., 2017). For more information on the model, please refer to 110 

these cited studies.    111 

2.1    Groundwater Inputs 112 

Recent advancements in hydrodynamic computation have enabled models to predict the mass and 113 

movement of flood waters to predict water velocities at increasingly finer scales. However, the 114 

current version of the sub-grid inundation model VIMS has developed does not fully incorporate 115 

a comprehensive groundwater model that slowly returns flood waters that infiltrate through the 116 

soil back to the nearest river (Loftis, 2014). This is a valuable aspect of flooding relevant for city 117 

planning perspectives using sub-grid hydrodynamic modeling that has been successfully 118 

developed and employed throughout the Netherlands, Germany, and Italy (Casulli, 2015). There 119 

is an array of groundwater wells that exist in the Hampton Roads Region, bored and monitored by 120 

the USGS (USGS Groundwater Monitoring Sites, 2017). These temporally-varying values for 121 

hydraulic conductivity could provide some valuable input information for the hydrodynamic 122 

model via Richard’s equation (Loftis et al., 2016). However, this does not currently account for 123 

the standard practice of near-surface groundwater displacement via pumping prior to anticipated 124 

flooding events conducted by cities with residents in the floodplains where a high water table 125 

regularly exacerbates even minor rainfall events (Loftis et al., 2017). Nevertheless, values 126 
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observed near these sites prior to forecast simulations were used as the model’s initial condition to 127 

estimate infiltration through pervious surfaces, to counterbalance precipitation inputs, similar to 128 

Loftis et al. (2016).   129 

In forecast approaches, groundwater influence is usually neglected, since typically storm surge is 130 

a short-term event, and groundwater recharge is more of a delayed and long-term process, 131 

however, it is becoming increasingly important to also consider in forecasting longer-term 132 

extratropical flooding events such as nor’easters where flooding and high winds can persist for 5 133 

or more tidal cycles. VIMS has been incorporating different forms of percolation of flood waters 134 

through different types of ground cover ranging from vegetated to impervious within the sub-grid 135 

model in recent years (Loftis et al., 2016; Loftis, Wang, and DeYoung, 2013). It is worth noting 136 

that there are potential applications for storm water systems that could be manually added to the 137 

existing sub-grid model version to account for surge flooding backups through storm water 138 

drainage without sufficient backflow prevention (Loftis et al., 2017).  139 

2.2    Precipitation Inputs 140 

The inundation model could be used to guide decisions related to storm water management by 141 

using existing sensor-derived precipitation data in several cities. This could be expanded to include 142 

data observations from rain gauges that are currently operating on sewer and storm water pump 143 

stations in the localities, and from the Hampton Roads Sanitation District (HRSD), which 144 

combined currently amounts to ~130 sensors. With an iteratively interpolated series of 145 

precipitation measurements, further research could also be conducted with these sensors and the 146 

new water level sensors to model the impacts of localized microburst precipitation events, like 147 

those experienced during 2016 Hurricane Matthew, or most recently on August 29, 2017, in some 148 

neighborhoods in southside Hampton Roads. This could aid researchers to help model ways that 149 
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the city’s systems could potentially be augmented for greater resilience to precipitation-induced 150 

flooding threats in the future. In the simulations presented herein, model results are calculated with 151 

temporally-varying precipitation inputs from the currently-private rain gauge data provided by 152 

HRSD.  153 

3.    Water Level Sensors 154 

StormSense has recently deployed 28 IoT-bridge-mounted ultrasonic and microwave radar water 155 

level sensors in Newport News, Virginia Beach, and Norfolk, as outlined on the StormSense 156 

project’s website at: http://www.stormsense.com. These sensors will complement the previously 157 

installed array of 6 gauges operated by NOAA, 19 relatively new gauges recently installed in 2015-158 

2016 via Hurricane Sandy relief funds operated by the USGS, and 1 gauge operated by VIMS in 159 

Hampton Roads. While the extant remote sensors in the region are largely radar sensors transmitting 160 

data through satellite signals, the new StormSense IoT-sensors enlist the use of ultrasonic sensors 161 

and transmit data via cellular transmission protocols or Long Range (LoRa) Wireless Area 162 

Networks (WAN), with the focus of creating a replicable cost-effective network of sensors. Some 163 

realized utilities for a dense network of water level sensors are noted as follows: 164 

1) Archiving of water level observations for flood reporting 165 

2) Automated targeted advance flood alert messaging  166 

3) Validation/inputs for hydrodynamic flood models 167 

3.1    Sensor Types and Applications 168 

A collaboration between VIMS and the partner cities of: Newport News, Hampton, Norfolk, 169 

Virginia Beach, Portsmouth, Chesapeake, Williamsburg, and York County, in Hampton Roads, 170 

VA, will provide a prototype for strengthening emergency response times by providing spatial 171 

flood extent predictions in interactive map form at 5 m resolution. The plan for integrating the 172 

http://www.stormsense.com/
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inundation model into a more permanent warning system involves planned connection with the 173 

new sensors to the cities’ current Everbridge notification systems for alert messaging when the 174 

sensor observes flooding at user-specified elevations, and integration with model predictions for 175 

timely forecasted tidal inundation alerts through Tidewatch once the sensors are tidally-calibrated. 176 

Fig. 3 shows an internal look at some sensors in Newport News, VA. The city employed a mix of 177 

2 radar sensors (Fig. 3A) and 6 ultrasonic sonar sensors (Fig. 3B) from Valarm, a California-based 178 

sensor vendor with a cloud-based virtual alarm messaging platform. The Valarm Tools cloud 179 

platform will use the newly-installed sensors to provide subscriber-based alerts (Fig. 3C) based 180 

upon water level observations (and eventually tidal forecast predictions once incorporated into 181 

Tidewatch), to provide a unique flood-preparedness service to their citizens and potentially bolster 182 

the flood warning portion of their FEMA NFIP application to participate in the Community Rating 183 

System (CRS). This is important, as each higher participation level the city achieves in the 184 

hierarchical CRS program is commensurate with an additional 5% decrease in flood insurance 185 

premiums for the citizen homeowners in participating communities.  186 

 This approach demonstrates the benefits of replicating shared smart city solutions across multiple 187 

cities and communities that are facing similar flood challenges and it aligns with the goals of 188 

GCTC and RSCT programs. For a different innovative example, Fig. 4A shows a map of Norfolk’s 189 

LoRaWAN ultrasonic sensor network established in The Hague, in August 2017. The sensor 190 

network is currently comprised of one tide monitoring sensor mounted over The Hague walking 191 

bridge near where the USGS mounts their temporary rapid deployment gauge, and five inundation 192 

sensors, strategically positioned over frequently flooded streets (Fig. 4B). The LoRaWAN sensors 193 

were purchased through a Norfolk-based vendor, GreenStream, Inc., and use long range WiFi 194 

instead of cellular data transmissions, and like the Newport News sensors. They are currently 195 

https://www.usgs.gov/media/images/a-usgs-hydrologic-technician-installs-a-rapid-deployment-gauge
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publicly reporting water level observations in Tidewatch, as depicted in Fig. 4C. Public Application 196 

Programming Interface (API) URLs are available at: http://www.vims.edu/people/loftis_jd/ 197 

HRVASensorAssets/index.php. 198 

It is the hope that the recent installation of water level sensors provided by the efforts of the USGS 199 

can be used as an opportunity to demonstrate some of the benefits of added water level sensors 200 

using these ultrasonic sensors will be evaluated as reputable and replicable monitoring methods 201 

after a longer-term study. In pursuit of this, Fig. 5 shows three examples of temporary StormSense 202 

ultrasonic sensors deployed on the same bridges as the USGS’ radar sensors over tidal rivers and 203 

creeks throughout the City of Virginia Beach. A later paper will evaluate the differences between 204 

these sensor accuracies and types, fault tolerance in data transmissions, and solar power 205 

management schemes. An initial comparison with a temporary Rapid Deployment Gauge (RDG) 206 

established by the USGS allowed for a favorable short-term data comparison with Norfolk’s 207 

LoRaWAN sensor collocated there during a nine-day overlap period during Hurricane Maria in 208 

Fig. 6.  209 

3.2    Sensor Configurations, Accuracies, and Costs 210 

After an evaluation period of 6-9 months, these sensors will be relocated to unique monitoring 211 

locations in Virginia Beach. A small number of white papers and vendor brochures evaluate the 212 

accuracies of the ultrasonic and radar sensors in laboratories or for the application of level 213 

monitoring of water treatment reservoirs or chemical vats. However, these are not comparable to 214 

tidal water bodies or areas with significant wave action, such as during the extratropical storm 215 

surge events presented in this study during Hurricanes Jose and Maria.  216 

A cursory comparison from the initial deployments of the sensors in Summer 2017 revealed that 217 

the ultrasonic sonar units are from Valarm are accurate in the lab to a Root Mean Squared Error  218 

http://www.vims.edu/people/loftis_jd/HRVASensorAssets/index.php
http://www.vims.edu/people/loftis_jd/HRVASensorAssets/index.php
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(RMSE) of ±5 mm, and accurate in the field to an average of ±18 mm, while the two radar sensors 219 

in Newport News are accurate in the lab to ±1 mm and accurate as deployed in the field to ±9 mm. 220 

The cost to purchase a solar-powered cellular transmission station was approximately $3000/each 221 

for the ultrasonic sensors, and $4400/each to purchase the radar units. The street inundation sensors 222 

employed in Norfolk through the vendor, Green Stream, are accurate in the lab to approximately 223 

±15 mm, and accurate in the field ±45 mm, and sensors were purchased for $400/each, plus the 224 

cost of the LoRa transmission gateway, which has an effective transmission range of 225 

approximately one mile, less the distances occluded by high-rises and buildings (Loftis, Wang, 226 

and Forrest, 2017).  227 

3.3    Water Level Sensor Data Comparisons 228 

A comparison of the five new street inundation sensors and one water level sensor in Norfolk, and 229 

eight new water level sensors in Newport News were used to temporally and vertically validate a 230 

street-level hydrodynamic model’s predictions during the offshore passage of Hurricanes Jose and 231 

Maria, which detected increased water levels in Hampton Roads by 76.2 cm. (2.5 ft.) and 60.9 cm. 232 

(2 ft.), respectively. These six gauges resulted in an aggregate vertical RMSE of ±8.93 cm. over a 233 

72-hour Hurricane Jose model forecast simulation (Loftis, Wang, and Forrest, 2017). The time 234 

series plots shown in Fig. 7A-E compared well with the maximum period of spatial inundation 235 

extents predicted by the model at 19:00 UTC on 9/19/2017 in Fig. 7F. The labeled location for 236 

each of the sensors in The Hague in Fig. 7F also shows the surface elevations of city-maintained 237 

light poles in ft. above NAVD88, which accounts for relative depths of flood waters and puddles 238 

detected by the sensors and the model. Interestingly enough, the sensor in Fig. 7E detects latent 239 

ponding of water on the outskirts of the intersection for several hours after the nearby over-water 240 

sensor at the walking bridge in The Hague shows the tidal-driven surge subsiding after the peak 241 
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of several tidal cycles. This is likely a result of storm water drainage backup in the storm drains 242 

nearest to the sensor.  243 

The seven gauges present during Hurricane Maria (including the USGS rapid deployment gauge 244 

installed from 9/21-9/29/2017) yielded a more favorable aggregate RMSE of ±6.28 cm when 245 

compared with the model. Both storms produced minimal surge-related coastal flooding, yet 246 

inundation impacts were equally profound in some tidal-connected inland areas, making the 247 

comparison with Norfolk’s new street inundation sensors interesting to observe and practical for 248 

verification of inland inundation extents and depths. Fig. 6A shows how the USGS RDG 249 

measurements temporarily co-located (similarly to Fig. 5) at the same site during Maria’s passage 250 

were used to apply a vertical adjustment of +4.5 cm. (0.15 ft.), based upon the Mean Absolute 251 

Error (MAE) as an offset, to improve the Root Mean Squared Error (RMSE) metric for this event, 252 

and likely many events in the future. This change resulted in an improvement in sensor estimated 253 

RMSE from 6.08 to 0.71 cm., a difference of 5.37 cm. (0.17 ft.).  254 

4.    Crowdsourced GPS Flood Extents during Hurricane Jose 255 

Hurricane Jose had a more significant storm surge measured by water level sensors in Hampton 256 

Roads and less rain, while the opposite was true for Hurricane Maria. The relatively new citizen 257 

science ‘Sea Level Rise’ mobile app provided 393 points of geospatial data for use with validating 258 

predicted flood extents in the Larchmont Neighborhood of Norfolk during Hurricane Jose (Fig. 8) 259 

with a favorable Mean Horizontal Distance Difference (MHDD) of ±3.36 m (Loftis, Wang, and 260 

Forrest, 2018). This indicates that the modeled maximum flooding extents calculated by the street-261 

level hydrodynamic model in the flood-prone Larchmont neighborhood of Norfolk compared 262 

reasonably well with these observations during the event, and the average depth of inundation in 263 
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this area reported by the model (and the underlying digital elevation model’s contour) was 24.4 cm. 264 

(0.8 ft.).  265 

The street-level model’s Lidar-derived DEM, embedded in the model’s sub-grid, was recently 266 

scaled to 1 m resolution in the Larchmont, Chesterfield Heights, and The Hague neighborhoods in 267 

Norfolk as part of an ongoing NASA Mid-Atlantic Resiliency Demonstration Study. Larchmont is 268 

positioned on a peninsula bounded by the Elizabeth River to the west and the Lafayette River to the 269 

north and east, and the area frequently experiences tidal ‘nuisance’ flooding. By measuring the 270 

horizontal distances from the GPS-reported points of maximum flooding extents from the ‘Sea 271 

Level Rise’ App, to the edge of the model predicted maximum flooding extent contour line, an 272 

assessment of geospatial accuracy may be reached with minimal processing effort using the 273 

standard distance formula (Loftis et al., 2016; Loftis et al., 2017). An inherent caveat of this 274 

geospatial MHDD approach is that it is only a relevant metric in areas with minimal surficial slope, 275 

like those that characterize Hampton Roads, VA. In areas with steeper slopes immediately adjacent 276 

to the shoreline, model over-prediction of several inches or even feet in the vertical may only 277 

manifest in minuscule increments of change on the horizontal scale (Loftis et al., 2016). 278 

5.  Discussion 279 

The hydrodynamic model in Hampton Roads, VA, was effectively validated using 5 street 280 

inundation  sensors and 2 water level sensors during the passage of Hurricanes Jose and Maria in 281 

September 2017. An aggregate of the results in Newport News during Hurricane Jose yielded a 282 

RMSE of ±6.2 cm. as a primary time-honored model validation method that has been embraced by 283 

the hydrodynamic modeling community as a staple for determining the uncertainty of their 284 

predictions. The USGS provided a valuable service in the form of surveying and installing a 285 

temporary rapid deployment gauge during Hurricane Maria that provided an additional form of data 286 
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validation not present during Hurricane Jose the previous week. The data from this sensor, 287 

positioned on the same walking bridge in The Hague, compared quite well between the new 288 

ultrasonic sonar sensor and this temporary radar gauge, with an R2=0.9235, a MAE=4.57 cm., and 289 

an RMSE=6.08 cm. It was noted that an offset using the sensor’s MAE during Jose could be applied 290 

as a minor vertical adjustment of +4.5 cm. (0.15 ft.) to improve the statistical comparison during 291 

Jose to R2=0.9979, a MAE=0.01 cm., and RMSE=0.71 cm., along with likely improving future 292 

observations at the site, as suggested in the examples from Fig. 4. This minimal, yet consistent, bias 293 

of +4.5 cm. (1.8 in.) is likely due to minor measurement error or differences in vertical datum 294 

measurements at this specific site relative to the bottom of the sensor’s emitter to NAVD88, as its 295 

application to the other sites in Norfolk made inconsistent changes in results.  296 

Typically, the USGS collects valuable high water marks after major flood events. However, as none 297 

of these events were truly catastrophic flood events in Hampton Roads, VA, relative to if they had 298 

made landfall, high water marks in the form of GPS maximum flood extent points from the citizen 299 

science App, ‘Sea Level Rise’ were compared with the model instead as a secondary form of model 300 

validation. Results from 393 data points at one site in the western peninsula side of the Larchmont 301 

neighborhood in Norfolk during Jose yielded a favorable MHDD of ±3.36 m. This characterized 302 

the relative error as equivalent to approximately 2/3 of a single 5×5 m sub-grid cell pixel, from the 303 

model’s perspective.   304 

6.    Conclusions 305 

In the future, smart city systems could evaluate tenable candidate blueprint solutions for flood-306 

related problems, whether they be attributed to storm surge, heavy rainfall, and tides, as was the 307 

case during the offshore passage of Hurricanes Jose and Maria, using a decision matrix.  This could 308 

help key decision-makers make informed decisions regarding how flood-related solutions could be 309 
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best addressed with the new StormSense water level sensor network being integrated into 310 

Tidewatch to creating a resilience monitoring network throughout Hampton Roads, VA, to directly 311 

address a key recommendation from the Intergovernmental Pilot Project. Ways the new sensors 312 

could be used to drive a street-level inundation model and be parameterized for specific flooding 313 

scenarios are noted in italics below: 314 

• Combinations of gray and green infrastructure opportunities can be tested by changes to 315 

spatially-varying soil infiltration values in areas where modified green infrastructure lie 316 

• Increase in storm water “holding” management systems can be modeled by Digital Elevation 317 

Model modification and adding sources/sinks for new holding reservoirs/ponds 318 

• Reduction of impervious surfaces can be addressed by changes to spatially-varying soil 319 

infiltration values 320 

• Land use changes can be addressed by the model grid mesh modification to remove/add 321 

buildings/infrastructure AND changes to spatially-varying soil infiltration values 322 

In cases of heavy rainfall, the street-level sub-grid hydrodynamic modeling approach also performs 323 

the function of a hydrologic transport model to predict flow accumulation and aid in identification 324 

of areas that are most susceptible to flooding. This is useful for resilient building practices, as the 325 

model could also identify potential areas where development of green infrastructure could 326 

commence, with the understanding that a sub-grid model represents infrastructural features and 327 

many city lifelines better than most conventional hydrodynamic models. 328 
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Fig. 1. Map of 57 publicly-streaming water level monitoring stations throughout Hampton Roads, 

VA. The StormSense sensor network has contributed 28 sensors to the 29 existing sensors 

maintained by federal entities. Of these, NOAA has 6 (marked in blue) and USGS maintains 19 

(noted in green). Additionally, VIMS has 1, and WeatherFlow has 3 (also marked in red). Click 

Fig. or http://arcg.is/14aCe1  for interactive station map.  
 

http://arcg.is/14aCe1
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Fig. 2. Hampton Roads Sea Level Rise Projections for Sewells Point through 2050 from VIMS 

Anthropocene Sea Level Change Report at http://www.vims.edu/test/dlm/slrc/index.php (Boon 

et al., 2018). 

http://www.vims.edu/test/dlm/slrc/index.php
http://www.vims.edu/test/dlm/slrc/index.php
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Fig. 3. Internal look at Newport News’ sensor from Valarm: A) a standard bridge-mounted 

remote radar sensor control box configuration on the 16th St. Bridge over Salters Creek vs. B) a 

pole-mounted ultrasonic sonar sensor on a solid breakwater at Leeward Municipal Marina. C) 

The internal view of the control board and the sensor in panel A. 

A B 
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Fig. 4. A) Map of Norfolk’s LoRaWAN ultrasonic sensor network established in The Hague. The 

group currently consists of one tide monitoring sensor mounted over The Hague Walking Bridge 

near where the USGS mounts their temporary rapid deployment gauge, and five inundation 

sensors, strategically positioned over frequently flooded streets. One such street is featured in B) 

at the intersection of Boush St. and Olney Rd. during the King Tide flooding on the morning of 

Nov. 4, 2017. C) The sensor data are currently publicly reporting water level observations in 

Tidewatch and the user interface provided by the manufacturer, Green Stream, Inc. 

(https://greenstream.io/Dashboard).  

A 

B C 

https://www.usgs.gov/media/images/a-usgs-hydrologic-technician-installs-a-rapid-deployment-gauge
https://greenstream.io/Dashboard
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Fig. 5. Examples from three StormSense ultrasonic sonar sensors co-located in the field adjacent 

to USGS radar sensors in Virginia Beach for direct comparison of monitoring accuracy. These 

sensors will temporarily be stationed adjacent to each other for a period of 6-9 months to provide 

a long term data record for comparison of water level measurements, data transmission speeds, 

and solar power efficiency.    

  USGS Ka-Band Radar Sensor 

  USGS Ka-Band Radar Sensor 

  USGS Ka-Band Radar Sensor 

StormSense Ultrasonic Sonar Sensor   

StormSense Ultrasonic  

Sonar Sensor   

StormSense Ultrasonic  

Sonar Sensor   
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Before +4.572 cm (0.15 ft) NAVD88 adjustment: 

 
Statistical Comparison with USGS RDG: R2= 0.9235; MAE= 4.57 cm; RMSE= 6.08 cm 

 

After +4.572 cm (0.15 ft) NAVD88 adjustment:  

 
Statistical Comparison with USGS RDG: R2=0.9979; MAE= 0.01 cm; RMSE= 0.71 cm 

Fig. 6. Comparison of Norfolk LoRaWAN ultrasonic tide sensor (in red) with temporary Rapid 

Deployment Gauge (in green) installed by the USGS measuring water levels via radar at Hague 

Walking Bridge from 9/21-9/29/2017 during the passage of Hurricane Maria. Results in panel A) 

depict measurements recorded prior to a vertical adjustment of +4.572 cm (0.15 ft), which was 

applied for future reporting and improves results in B) after the sensor was consistently lower than 

the USGS sensor, temporarily mounted to the same bridge at the same site. Observations from 

NOAA’s Sewells Point sensor (in blue) represent the water levels at the mouth of the Elizabeth 

River as the next nearest tide gauge from the Hague located 12.39 km (7.7 mi) downriver.  
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.  
Fig. 7. Norfolk LoRaWAN ultrasonic street inundation sensor comparisons from 9/17-9/23/2017 

during the passage of Hurricane Jose. Each sensor’s observations featured in Panels A-E) are 

compared with the nearby LoRa tide gauge featured in Fig. 5 (in red) and the street-level 

hydrodynamic model’s predictions (in blue) at five locations in Norfolk’s Hague region. Panel F 

depicts the spatial inundation extents predicted by the model at 19:00 UTC on 9/19/2017, with the 

labeled location of each inundation sensor alongside surface elevations of city-maintained light 

poles in ft above NAVD88, which were used to aid decision-making for sensor placement. 
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Fig. 8. Street-level model flood prediction at 14:00 UTC on 09/19/2017 while Hurricane Jose 

was hovering offshore of just outside of the Chesapeake Bay mouth. The blue dots represent 393 

High Water Marks tracing the extent of inundation collected via citizen science volunteer users 

of the Sea Level Rise mobile App between 9:50-10:17 EDT (13:50-14:17 UTC).  


