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ABSTRACT 
Over time, robots degrade because of age and wear, leading 

to decreased reliability and increased the potential for faults and 

failures. The effect of faults and failures impacts robot 

availability. Economic factors motivate facilities and factories to 

improve maintenance techniques and operations to monitor robot 

degradation and detect faults, especially to eliminate unexpected 

shutdowns. Since robot systems are complex, with sub-systems 

and components, it is challenging to determine these constituent 

elements’ specific influences on the overall system performance. 

The development of monitoring, diagnostic, and prognostic 

technologies, which is collectively known as Prognostics and 

Health Management (PHM), can aid manufacturers in 

maintaining the performance of robot systems by providing 

intelligence to enhance maintenance and control strategies. This 

paper presents the strategy of integrating top level and 

component level PHM to detect robot performance degradation 

(including robot tool center accuracy degradation), supported by 

the development of four-layer sensing and analysis structure. 

The top level PHM can quickly detect robot tool center accuracy 

degradation through the advanced sensing and test methods 

developed at the National Institute of Standards and Technology 

(NIST). The component level PHM supports the deep data 

analysis for root cause diagnostics and prognostics. A reference 

data set is collected and analyzed using the integration of top 

level PHM and component level PHM to understand the 

influence of temperature, speed, and payload on robot’s accuracy 

degradation. 

 

INTRODUCTION 
Robot systems play important roles in many manufacturing 

environments including automotive, electronics, consumer 

packaged goods, and aerospace manufacturing [1, 2]. The 

applications of robots in manufacturing systems bring benefits 

through both improving flexibility and reducing costs [3-5]. 

Robot work cells have become more complex, especially when 

considering robot-robot and human-robot operations [6-9]. More 

complexity leads to more sources of faults and failures, which 

can compromise the efficiency, quality, and productivity of a 

manufacturing system. Moreover, new innovative technologies 

are making robot work cells more accurate and intelligent, 

enabling them to be applied to some new applications [4, 10, 11]. 

New applications include material removal, high precision 

assembly, two-side drilling and fastening, in-process inspection, 

and three-dimensional (3D) composite material layout. New 

technologies often introduce new types of challenges that may 

not be fully understood. The afore-mentioned applications 

require high accuracy in both robot position and path. The 

degradation of robot tool center accuracy can lead to a decrease 

in manufacturing quality and production efficiency. It is 

important to understand robot accuracy degradation so that 

maintenance and control strategies can be optimized.  

There are many challenges in developing monitoring, 

diagnostics, and prognostics for robot tool center accuracy 

degradation. First, robot tool center accuracy degradation may 

be difficult to detect, in a timely manner, because the robot may 

still be operating without any obvious signs of degradation, e.g., 

the robot being frozen or performing an undesirable activity. 

Second, with more diverse systems, sub-systems, and 

components integrated to increase robot work cell capabilities, 

further challenges are introduced in determining an element’s 

specific influence(s) on the overall system performance [12, 13]. 

Third, continuous changes to an existing system give rise to new 

relationships that may lead to greater complexity. This 

complexity may include, dynamic robotic configurations (e.g., 

reconfiguration of the instrument layout and production 

processes), working parameters (e.g., program changes, 

temperature, payload, speed, part/grasp changes which causes 

force and torque changing), controller changes (e.g., control 

strategy, proportional–integral–derivative (PID) tuning), and 

worn parts [14]. To address these barriers and challenges, 
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measurement science is needed, including performance metrics, 

use case scenarios, test methods, reference datasets, and software 

tools, to promote unbiased assessment of robot system accuracy 

degradation and to verify and validate health assessment 

strategies. Health monitoring, diagnostics, prognostics, and 

maintenance, which is collectively known as Prognostics and 

Health Management (PHM), have gained more and more 

attention within the robot system domain. The objective of PHM 

for robotics is to maintain the performance of robot systems by 

providing intelligence to enhance maintenance and control 

strategies. Robot systems within manufacturing environments 

can benefit from PHM where PHM technologies can reduce 

unscheduled downtime and costs.  

Degradation monitoring, diagnosis, and prognosis at a 

system’s highest level are defined as top level PHM. The same 

efforts at the component level are defined as component level 

PHM [15]. The top level PHM is difficult due to the great 

complexity and from the interactions among multiple sub-

systems and components that comprise the system. A 

considerable body of knowledge has been accumulated on 

component level PHM. Researches are conducted in the 

development of reasoning algorithms and in establishing failure 

precursors for components [15-18]. Research approaches for 

solving PHM problems (for both top level PHM and component 

level PHM) are typically either physics-based or data-driven; 

while a hybrid combination also exists, it is but usually 

dominated by one of them [8, 19]. Physics-based approaches 

typically involve building technically comprehensive 

mathematical models to describe the physics of a system and its 

failure modes. For most industrial applications, physics-based 

approaches might not be the most practical solutions, especially 

for component level PHM, since the fault type in question is 

often unique from one component to another. It might also be 

hard to identify the fault without interrupting operations (e.g., 

needing special instruments to measure a component’s 

performance or health that may interrupt the production 

operations) [20]. Data-driven approaches attempt to derive 

models directly from routinely-collected condition monitoring 

data instead of building models based on comprehensive system 

physics and human expertise. They are built using historical 

information and produce prediction outputs directly in terms of 

condition monitoring (CM) data [21]. Data-driven approaches 

may be the more available solution in many practical cases since 

it is easier to gather data than to build accurate system physics 

models [20]. However, data-driven approaches raise the 

questions of what data to collect, when to collect, how to collect 

(what sensors to use), and how to quantify the impact of 

degradation on the output of the robot work cell (process or final 

products). 

One research effort at NIST is the Prognostics, Health 

Management, and Control (PHMC) project, which is developing 

the measurement science to promote advanced monitoring, 

diagnostic, and prognostic strategies within the manufacturing 

domain [22]. Part of the research effort for robot system PHM, 

                                                           
1 https://www.universal-robots.com/ 

from the PHMC project, is presented in this paper. The Research 

Background and Approach section presents the development of 

the PHMC for robot systems structure and its four-layer data 

sensing. The Integration of Top Level and Component level PHM 

section presents the development of using top level PHM to 

directly detect tool center accuracy degradation, and using 

component level PHM for deep data analysis (including root 

cause analysis) and PHM solution development. The Reference 

Data Collection and Analysis section presents the data sets 

collected on a Universal Robot 1  (UR5) to measure the 

degradation of the robot tool center position accuracy. The 

Conclusion wraps up the paper and highlights future work. 

RESEARCH BACKGROUND AND APPROACH 
 

PHMC for robot systems research is being conducted at 

NIST. The efforts include the development of performance 

metrics, test methods, reference datasets, and supporting tools to 

help the manufacturing community enhancing their PHM 

capabilities [12]. The research effort includes: 1) identifying data 

and information needed to make an informed decision with 

respect to robot systems setting and updating control points; 2) 

determining appropriate structure, organization, and analysis of 

data to gain actionable intelligence for robot systems; 3) enabling 

feedback of intelligence through the robot system to update 

control for optimal production; and 4) developing use cases to 

implement PHMC for robot systems in industrial applications. 

The goal is to deliver vendor-neutral approaches and plug-and-

play solutions to improve decision-making support and 

automation [13]. 

 

Structure for the Robot Performance Degradation PHM 

As a subset of the research, a structure and the key building 

elements are developed for robot performance degradation PHM 

(including robot tool center accuracy degradation) as shown in 

Fig. 1. The first key building element is an advanced sensing 

module shown in the upper left of Fig. 1. PHM efforts cannot be 

performed without proper sensing to understand the status of the 

system and components. The advanced sensing module provides 

important inputs for the research to promote monitoring, 

diagnosing, and predicting the system’s health. This module has 

four layers of sensing that will be detailed in the next subsection. 

The second key building element is the data processing module 

as shown in the second upper left of Fig. 1. This module centers 

on reference algorithms development to fuse data. Data are 

captured from multiple sensors that are employed in the 

advanced sensing module. The third key building element is the 

development of algorithms for robot system health assessment, 

which is collectively shown in the cost function, degradation, 

prognostic, and visualization tools modules in Fig. 1. The 

purpose is to develop algorithms for robot system health 

assessment. The cost function works on solving robot error 

model to identify the possible root causes of faults and failures. 
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The fourth key building element presents a closed-loop 

implementation of the PHM solution within the control, which is 

shown as the action module and the PHM remedy module in Fig. 

1.   

Expanded from the first key building element, the advanced 

sensing module consists of four layers of data sensing and 

analysis as shown in the callout picture at the bottom of Fig. 1. 

These layers are: the controller layer sensing and analysis, the 

environmental layer sensing and analysis, the add-on layer 

sensing and analysis, and the upper layer sensing and analysis. 

From the upper layer to the controller layer, information is 

becoming more granular by detailing sensing information in 

specific elements of the system. 

 

Details for the Advance Sensing Module 

Upper layer sensing and analysis aim to actively assess the 

health of the overall system by taking into account the system 

architecture, system functions, and process-related parameters 

[23]. For upper layer accuracy degradation analysis, integrated 

sensors are needed to efficiently assess the overall system’s 

health degradation. Using multiple 1-D (one dimensional) or 2-

D (two dimensional) sensors should be avoided since the setup 

is complex and will introduce error stacking. The research 

approach at this layer emphasizes the development of advanced 

sensing and test methods (including models and analysis 

algorithms) that can quickly and efficiently assess the tool center 

accuracy degradation. 

Add-on layer sensing and analysis are developed to collect 

pre-designed features, e.g., using force and torque sensors to 

understand the influence of payload and the unbalanced tool 

mounting, from the targeted sub-systems. The add-on sensing 

promotes the involvement of additional sensors for additional 

information that the controller and upper layers may not provide. 

The research at this layer emphasizes the key subsystem/module 

(e.g., motor within a robot arm) identification and suitable 

sensing methodology selection. The design of the add-on system 

needs to be easily integrated into the system’s controller(s) 

without complex interfaces or wirings.  

Figure 1. Structure and the key building elements for robot performance degradation PHM 
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The environmental layer sensing and analysis are developed 

to collect information about environmental conditions and 

settings when a robot is performing a task. Information includes 

design data (e.g., the program that a robot is running), process 

data, system integration control data, and external programmable 

logic controller (PLC) data. The environmental layer sensing and 

analysis can help to clarify the operational settings of the robot 

(e.g., speed of the robot, payload changes, etc.) when an anomaly 

is detected (by the upper layer sensing and analysis), or the 

parameters of an on-going robot operation when a dataset is 

collected from a controller. There are still challenges of how to 

integrate and align the environmental layer data with the 

controller layer data and the add-on layer data for deeper data 

analysis.    

Controller layer sensing and analysis extracts data, for 

example, commanded and actual joint positions, commanded 

and actual speed, joint current, etc., from the robot controllers 

and/or embedded sensors. The controller layer sensing is not the 

direct measurement of the tool center accuracy degradation, but 

can highlight issues in the system through data analysis. NIST’s 

research at this layer is to develop methods and algorithms for 

deep data analysis, including root cause analysis. 

After the four-layer sensing and analysis are structured, a 

strategy is developed to use the structure to support the 

monitoring, diagnostics, and prognostics for robot tool center 

accuracy degradation. The next section will present the idea of 

integrating the top level PHM and the component level PHM by 

utilizing the four-layer sensing and analysis. 

INTEGRATION OF TOP LEVEL AND COMPONENT 
LEVEL PHM    

The integration of the top level PHM and the component 

level PHM is adopted for this robot tool center accuracy 

monitoring, diagnostic, and prognostic research. Instead of using 

stacks of data from components to quantify the robot tool center 

accuracy degradation, which may miss some influencing 

components since the measurements are indirect, the tool center 

accuracy degradation is directly measured from the upper layer 

sensing and analysis. The measured deviation errors can be 

directly used as a comparison against the robot’s task 

specification and tolerance to aid in the prediction of faults and 

failures. Top level PHM can quickly detect problems and give 

the robot tool center a quick health assessment if the condition 

of environmental conditions changes, or reconfigurations occur 

for the work cell, or manufacturers need to make sure the robot 

has not experienced a degradation when an important part is put 

in the work cell. At the same time, the component level PHM is 

needed because once a problem is detected from the top level 

PHM, the root cause needs to be found, and remedies can be 

applied to the problematic components by understanding the 

components’ health status, e.g., a calibration needs to be 

performed (components are in good condition, but the 

mechanical relationship between them needs to be recalibrated) 

or a gearbox needs to be changed (components have some 

failure). 

To support the integration of top level PHM and the 

component level PHM, the four-layer sensing and analysis have 

the following functionalities:  

- Upper layer sensing and analysis: perform quick health 

assessment 

- Add-on layer sensing and analysis: provide extra 

information that is missing from other layers of sensing 

- Environmental layer sensing and analysis: identify key 

environmental information needed for PHM purpose 

- Controller layer sensing and analysis: collect/monitor robot 

controller data. 

 

Top Level PHM - the Quick Health Assessment Methodology 

Supported by Upper Layer Sensing and Analysis 

The upper layer sensing and analysis support the top level 

PHM through the development of the quick health assessment 

methodology [24]. The quick health assessment methodology 

assesses the robot tool center position and orientation accuracy 

degradation. Developments of the quick health assessment 

include: 1) advanced sensing to measure the tool center position 

and orientation; 2) test methods and model to assess the health 

status of the full robot working volume using limited 

measurements; and 3) algorithms to solve the test method model, 

which handles the geometric and non-geometric robot errors, and 

the uncertainties of the measurement system [24]. 

The advanced sensing developed at NIST is a 7-D (seven 

dimensional - time, X, Y, Z, roll, pitch, and yaw) measurement 

system, which includes a vision-based measurement instrument 

and a special target (under consideration for a patent). The 

developed advanced sensing system can quickly acquire the 

position and orientation information of a robot tool center 

accuracy [24]. Existing position and orientation measurement 

technologies include laser tracker systems and optical tracking 

systems [10, 25]. These systems are expensive. The laser 

tracking systems need to keep the line-of-sight of its laser beam. 

Otherwise, the loss-and-reconnect beam processes significantly 

slow down the measurement speed. The beam may be easy to 

break if a target is mounted on the robot’s end effector when the 

robot arm rotates. As for the condition of the optical tracking 

systems, optical tracking uses infrared (IR) technology. The 

accuracy and efficiency are influenced by ambient lights. Since 

objects that need to be tracked are equipped with retro-reflective 

markers, the images of the optical tracker’s IR image sensor can 

only contain the markers. They cannot see the measurement 

objects or an environment. When ambient lights exist, the 

reflected lights from ambient objects or targets will be treated as 

real targets. There is no redundancy when applications are used 

under a complex industrial environment. The 7-D measurement 

system developed at NIST is a vision-based system. The 7-D 

measurement instrument uses two high-speed color cameras. 

The reasons to use vision-based design are because: (1) a vision-

based system can measure position and orientation information 

simultaneously; (2) novel camera technologies enable the 

achievement of camera sub-pixel accuracy. The sub-pixel 

accuracy converts to the measurement system’s high degree of 

accuracy after optical triangulations; and (3) camera technology 
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is getting mature. A vision-based system is relatively cost-

effective to integrate [26]. The 7-D measurement system doesn’t 

use infrared cameras, but selected high-speed color cameras. 

Redundant information from color images and advanced color 

image processing technologies are utilized to get more accurate 

target detection results. A high-performance computer will be 

used to perform the image processing. A special target is 

designed to work with the measurement instrument to measure 

the robot position and orientation information. Software tools are 

developed to perform the measurements. The 7-D information is 

captured with a time synchronization feature. Data 

synchronization is important for fusion of this data with the data 

from other layers to support root cause analysis [27-29].  

Test methods and algorithms are developed to analyze the 

tool center accuracy degradation in a volumetric way (i.e., 

evaluate tool center errors from different directions in 3D space) 

because the error magnitudes and directions are different 

depending on the specific joint movements to achieve the desired 

tool center. A robot arm fixed loop motion is designed. The fixed 

loop motion needs to be evenly distributed in both joint space 

and Cartesian space within the robot working volume [24]. The 

even distribution in joint spaces prevents any errors from being 

missed or from being too heavily weighted. The even distribution 

in Cartesian spaces enables the evaluation of the arm accuracy 

and rigidity throughout the robot working volume, including 

near positions or fully extended positions. While the tool center 

is moving to these pre-programmed positions, the 7-D 

measurement system captures the position and orientation 

information of the robot tool center. Ideally, periodic data would 

be collected to track accuracy degradation with minimal 

disruptions to production. Analyzed time, position, and 

orientation data will be used to measure the robot tool center 

accuracy degradation when compared to original specifications 

and prior measurements.  

 

Detail Data Analysis – Integration of Component level PHM   

Once accuracy degradations are detected at the top level 

PHM, data from other layers are added to the analysis. The 

environmental layer, add-on layer, and controller layer sensing 

and analysis support the integration of the component level PHM 

to top level PHM, for deep data analysis (including root cause 

analysis) and proposed solutions. The environmental and add-on 

layer sensing and analysis provide the operational settings and 

system setups when an issue occurs (the environmental and add-

on layer sensing are not the focus of this paper, so they are 

minimally discussed). The controller layer sensing and analysis 

provide detailed component information about abnormal issues 

that may influence the robot’s tool center accuracy. When the 

robot is performing the fixed loop motion for top level PHM, the 

controller layer data are also collected, including joint positions, 

joint velocities, joint current, joint temperature, etc. The 

controller layer sensing and analysis will focus on the section of 

data where the degradation conditions are detected (by the top 

level PHM). With known quantified deviation detected by the 

top level PHM, multiple problematic conditions are analyzed to 

find the abnormal components to identify the factors that 

influence the system performance (for diagnostic purposes). 

These analyses can be used to build the knowledge for 

quantifying precursors used for the PHM prognostics purpose. 

During the occurrence of a fault or a failure, the combination of 

abnormal component features (for example, a particular pose, 

speed, and payload) is captured. When historical data exist, 

searches can be aimed using the condition under which the 

specific fault or failure occurred. It is more efficient for the 

targeted condition search, comparing with the general search of 

abnormal changes in the historical data, which is usually difficult 

without clear precursors.  

Historical data can be collected before and after 

maintenance is performed on a robot. The top level PHM can 

measure and record the robot’s performance changes before and 

after maintenance. Component level PHM data can capture the 

components’ performance changes, thereby understanding the 

influences from maintenance activities (e.g., a gearbox changes). 

This approach can help to develop the link of the top level PHM 

and component level PHM to automatically capture failure 

precursors that can be used for prognostic analysis.  

Data synchronization is important for the integration of top 

level PHM and component level PHM. Data are collected from 

different layers using different frequencies. It takes substantial 

effort to align unsynchronized data. A global timer is used to 

time-stamp all the data. In dynamic motion-related analyses, data 

synchronization has strict latency requirements. When robots are 

moving at fast speeds, the data may shift a lot even with a small 

amount of delay time. Controller layer data is collected at the 

highest allowable speed (e.g., 125 Hz for the robot used in this 

research). Both static and dynamic errors are captured, along 

with the transition errors (following error, gear cyclic errors, 

etc.). These data can provide insights of what from the robot’s 

controller is influencing the robot’s degradation.  

A test was conducted at NIST to provide an example and 

create reference data sets for the robot tool center accuracy 

degradation monitoring, diagnostics, and prognostics using the 

integration of top level PHM and component level PHM. 

REFERENCE DATA COLLECTION AND ANALYSIS 
A data set was collected from the UR5 robot to measure the 

degradation of robot tool center position accuracy. For this test, 

a precision checkerboard (20 µm accuracy) was mounted on the 

robot arm’s tool flange as shown in Fig. 2. The 7-D measurement 

system (shown in Fig 2. with two cameras mounted on a tripod) 

developed at NIST, was placed in front of the robot to detect and 

measure the center of the checkerboard. The tool center accuracy 

is described using six degrees of freedom (6DOF), containing 

position accuracy (3DOF - x, y, z) and orientation accuracy 

(anther 3DOF - yaw, pitch, and roll). For this test, only the tool 

center’s accuracy (x, y, and z) was measured using the 

checkerboard target by the 7-D measurement system. For the 

orientation accuracy (yaw, pitch, and roll), extra information 

need to be taken. A special target was developed (under 

consideration for a patent) to measure both position and 

orientation information (this will be presented in a future 

publication). For this test, the tool center accuracy degradation 
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can indicate a degradation in the robot’s accuracy health. Most 

of the robot operations in manufacturing need to guarantee the 

position accuracy (x, y, z). When position accuracy degrades, 

there is a possibility that some problems may exist in the 

orientation accuracy too.  

A motion path for the robot was preprogrammed using a 

simulator and offline programming software. A script program 

was generated from the offline programming software and later 

copied to the robot, which can run from the robot teach pendant. 

A software tool was developed to communicate with the robot 

controller. The 7-D measurement system software and the 

communication software tool used the same global time stamp 

allowing the tool center measurement and the controller data to 

be automatically aligned. When the script program started 

running, the robot moved along the preprogrammed path. At the 

same time, the controller data was captured at 125 Hz and saved 

to a file at the conclusion of the robot’s motion. A software tool 

was developed to use the collected, actual joint data from the 

controller to playback the robot motion in the simulator software. 

The change of joint angles was monitored within this software 

tool. When a joint angle change was bigger than one degree (e.g., 

user-defined criteria), a new “teach point” in the simulator was 

created. All of the teaching points created the playback path of 

the robot motion (as shown in Fig.3). Other factors (e.g., time), 

can also be used as the criteria to create “teach points.” For 

example, a “teach point” was created every 0.2 seconds. This 

kind of playback drew 3D paths of the robot’s real physical 

motion (as shown in Fig. 3). The playback can be saved and re-

played like a simulation program, but it reflects the real robot 

motions in its actual condition. Different from a video recording, 

the playback can be viewed from different angles and can call 

out detailed position and orientation information. The playback 

can be used as a user-friendly tool to help users understand the 

robot pre-programmed motion. Being user-friendly was an 

important requirement of the PHM tools developed at NIST to 

transfer the technology to the manufacturing community.  

In this test, the 7-D system measured the tool center’s x, y, 

and z positions using the checkerboard target. Measurements 

were taken when the robot arrives at a waypoint and remains 

stationary (dynamic measurements will be performed using the 

special target in future work). Deviations were calculated from 

the measured positions to the nominal positions. At the same 

time, controller data was collected. The controller data contained 

time information (the time elapsed since the controller was 

started - a global timestamp replaces the controller time when 

data collection starts), target joint positions, actual joint 

positions, target joint velocities, actual joint velocities, etc. 

Details are shown in Table 1. 

  

For the test, the same program ran with different conditions 

to understand the influences of position degradation from 

temperature, speed, and payload. A one-second motion halt was 

added to the script program at the waypoint positions. Since the 

controller retrieved data at 125 Hz, the one-second motion halt 

contained the continuous data stream of 125 samples. It is 

important to observe how soon the robot arm could stop 

Figure 3. Playback of robot motion 

Figure 2. Setup of the test in robot work cell 

 

7-D 

measurement 

system 

Robot arm 

Checker 

board 

Table 1 Controller data sets  
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completely at a waypoint. The 125 data-sample during this time 

showed the dynamic performance of the joint motor, especially 

under the influences from different speeds, temperatures, 

payloads, and the tool mounting configurations. Fig. 4 shows the 

tool center position deviation (combined changes of x, y, and z 

as distance deviation) calculated from the target joint position 

and the actual joint position during the motion halt status (all 

joint speeds are zero). Each cluster is one second worth of data 

(125 points). The x-axis of Fig. 4 is the number of points 

measured. The vertical axis shows the distance deviation in mm. 

The 7-D measurement system measured the static positions at 

the middle of motion halt as shown in Fig. 4 (the red dots labeled 

with 7-D measurement data). The deviations that the 7-D system 

measured are larger than the calculation error from joint 

kinematics (actual joint positions minus target joint positions). 

One reason is that the joint kinematics calculations didn’t include 

the imperfection of joints, links, and deformations. Another 

reason is that the arm is still not fully settled when the 7-D 

system began taking measurements. For this test, the robot works 

at the condition of cold start, full speed (1m/s), and payload of 2 

kg (maximum designed load of this platform is 5 kg). Fig. 4 

shows that there are significant fluctuations of the position 

deviation (from 80 µm to 180 µm) and overshoots when the 

robot stops at waypoints. To understand why the big deviations 

of tool center positions occurred, speed vs. joint deviation data 

were studied. Fig. 5 shows the joint’s deviation at the cold start, 

half of the full speed (the full speed is 1 m/s), and 2 kg payload 

condition.  

The target joint positions and the actual joint positions 

retrieved from the controller were used to calculate the change 

in joint positions (as shown in the primary y-axis on the left side 

of Fig. 5). This reflects the condition when a robot is 

programmed to move to a position; the arm actually moves to a 

position that is slightly deviated from the commanded position. 

The smaller the deviation, the more accurate the robot joint 

moved. A small joint angle error can result in a large tool center 

position, and orientation deviation since the effect is enlarged 

with the kinematic chain of arm length. Velocity may also 

influence the deviation. The velocity is drawn on the secondary 

y-axis on the right side of Fig. 5 to show the relationship with 

joint position deviations. The x-axis presents the number of the 

point measured. Among the six joints of the test robot, the fifth 

joint (as shown in Fig. 3) shows large vibration patterns (as 

shown in Fig. 5 in the ROBOT_ACTUAL_JOINT_VELOCITIES 

data). The correlation of the velocity and joint position deviation 

shows that when the robot is moving, the deviation is about four 

times larger as compared to when the robot is stationary (the 

fluctuation range is ~0.04 degrees while moving compared to 

~0.01 degrees while static). Therefore, the tool center accuracy 

will be influenced by the fluctuation. If a robot is moving to 

perform material removal or a composite additive layout, any 

tool center position degradations will impact the part quality. 

Accuracy degradation during dynamic operations needs to be 

carefully monitored for these applications that require relatively 

high-precision motion. To understand the payload influences, the 

same test and analysis were performed after removing the 

payload. The phenomenon still existed. It was determined that 

payload was not the cause of joint vibration in this test.  

Fig. 6 shows the analysis when the system was allowed a 

two-hour warm-up where joint 5’s (J5) temperature increases by 

10 degrees Celsius. Under this temperature condition, Fig. 6 

shows when the robot is stationary, the deviation curve remains 

relatively “flat”; when the robot is moving, J5’s position 

deviation range increases to 0.06 degrees. The higher operating 

Joint position deviation (deg)  

 

Joint Velocity 

(m/s) 

Joint 5’s velocity vs. joint position deviation 

(2hour warm-up, half speed, and 2 kg payload) 

Figure 6. Temperature influence on delta joint position 

 

Joint position deviation (deg)  Joint Velocity 

(m/s) 

Joint 5’s velocity vs. joint position deviation 

(cold start, half speed, and 2 kg payload) 

Figure 5. Joint's velocity vs. joint position deviation 

 

 

Change in Distance 

(cold start, full speed, and 2 kg payload) Distance  

deviation (mm)  

points  

Figure 4. Tool center position deviation 
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temperature made the joint position degradation worse, 

especially when the robot was in motion. Fig. 7 presents the data 

when the joint’s velocity is at full speed. Under the full speed 

condition, J5’s position deviation range increased to 0.07 

degrees; when the robot is stationary, the deviation curve shows 

“bumps” as highlighted in the red circle in Fig. 7. These “bumps” 

can cause tool center position jitter. This jitter would need to be 

eliminated if the robot were to support some high accuracy 

applications. 

The above datasets show that a robot’s tool center position 

errors can be enlarged by various settings. When wear and tear 

exist, the change and degradation become more complex. On the 

factory floor, debugging and making parameter adjustment for 

robot programming/teaching is time-consuming, especially 

when new tasks are being programmed or changes are made to 

existing programs. Some task failures of low reliability 

(unexpected failures occur, although for most of the time the 

robot works fine) are due to the robot motion being influenced 

by the combinations of changes (speed, payload, unbalance tool 

mounting, etc.). In addition, robots of different models and from 

different manufacturers may have different levels of reliability.  

 

CONCLUSION 
Accuracy degradation impacts a robot’s performance. In this 

paper, the NIST’s development of measurement science to 

support the PHM for robot system performance degradation is 

presented. PHM outputs are expected to reduce unexpected 

downtime, improve productivity, efficiency, quality, and 

optimize maintenance strategy. The robot performance 

degradation PHM structure and its four-layer data sensing were 

constructed. Innovative approaches for advanced sensing (the 7-

D measurement system and special target), test methods, and the 

fusion of multiple layers’ sensing analysis were used. The 

integration of the top level PHM and the component level PHM 

was promoted. Data sets are collected to provide an example for 

robot degradation PHM. The next steps will continue the efforts 

of developing and the implementing the special target (used by 

the 7-D measurement system) to measure both position and 

orientation degradation in static or dynamic robot’s conditions. 

Additional use cases will be developed for further applications. 

Additionally, datasets will explore what can be accomplished in 

terms of generating actionable diagnostic and prognostic 

intelligence.  

 

NIST DISCLAIMER 
Certain commercial entities, equipment, or materials may be 

identified in this document in order to illustrate a point or 
concept. Such identification is not intended to imply 
recommendation or endorsement by NIST, nor is it intended to 
imply that the entities, materials, or equipment are necessarily 
the best available for the purpose. 
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