
  

 

A Survey on Knowledge Transfer for Manufacturing Data Analytics  

 
1,3Seung Hwan Bang, 1Ronay Ak, 2Anantha Narayanan, 1Y. Tina Lee, and 3Hyunbo Cho 

1Systems Integration Division, Engineering Laboratory, National Institute of Standards and 

Technology (NIST), Gaithersburg, MD, 20899, USA 

2Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, 

USA 

3Department of Industrial and Management Engineering, Pohang University of Science and 

Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea 

 

 

 

Abstract 

 

Data analytics techniques have been used for numerous manufacturing applications in various areas. 

A common assumption of data analytics models is that the environment that generates data is 

stationary, that is, the feature (or label) space or distribution of the data does not change over time. 

However, in the real world, this assumption is not valid especially for manufacturing. In non-

stationary environments, the accuracy of the model decreases over time, so the model must be 

retrained periodically and adapted to the corresponding environment(s). Knowledge transfer for data 

analytics is an approach that trains a model with knowledge extracted from data or model(s). 

Knowledge transfer can be used when adapting to a new environment, while reducing or eliminating 

degradation in the accuracy of the model. This paper surveys knowledge transfer methods that have 

been widely used in various applications, and investigates the applicability of these methods for 

manufacturing problems. The surveyed knowledge transfer methods are analyzed from three 

viewpoints: types of non-stationary environments, availability of labeled data, and sources of 

knowledge. In addition, we categorize events that cause non-stationary environments in 

manufacturing, and present a mechanism to enable practitioners to select the appropriate methods 

for their manufacturing data analytics applications among the surveyed knowledge transfer methods. 

The mechanism includes the steps 1) to detect changes in data properties, 2) to define source and 

target, and 3) to select available knowledge transfer methods. By providing comprehensive 

information, this paper will support researchers to adopt knowledge transfer in manufacturing. 

 

 

Keywords: Data analytics, Manufacturing, Non-stationary environments, Knowledge transfer 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

1. Introduction 

 

Data analytics (DA), which is a process to discover useful information from data, has been 

increasingly applied in manufacturing in recent years due to advances in Internet of Things (IoT), 

sensor technology, and DA (i.e., data mining or machine learning) techniques [1]. DA models have 

been widely used to guide decision making in manufacturing, such as supporting engineering design, 

shop floor control, fault detection, machine maintenance, and product quality improvement [2]. DA 

models often assume that the environment of data generation is stationary, which means that the 

feature (or label) space or distribution of data does not change over time, because it is difficult to 

account for changes in the environment before they occur, when training models. However, in the 

real world, that assumption does not hold [3]. In manufacturing, changes in product design or 

production processes, adding new sensors on machines, or the effect of aging in sensors (or machine 

parts) can cause changes in the feature (or label) space or changes in distribution of data [4-7]. These 

changes in data properties can be characterized as non-stationary (evolving or drifting) phenomena 

[3]. 

 In non-stationary environments, most DA models need to be retrained using newly-collected 

data. If a model does not adapt to changes in its environment, the model accuracy will degrade. If 

the model degrades, its analysis will be inaccurate and unreliable for decision making. A traditional 

approach to manage the degradation due to changes in environment is to retrain the DA model with 

data collected from the new environment. However, collecting sufficient data from the new 

environment for retraining the model is often difficult and time consuming. In highly stabilized and 

automated manufacturing processes (e.g., semiconductor manufacturing process), data collection 

from the new environment can be a straightforward task [8]. However, collecting sufficient data is 

challenging and time consuming when 1) an infrastructure to automatically collect data does not 

exist [8], 2) the production process is in its commissioning stage, or 3) combining distributed data 

or time synchronizing of data is complicated [9]. Therefore, when data availability is limited due to 

the situations that data collection or labelling is expensive or inaccessible, effective and efficient 

methods for training the new model are needed [10]. 

Knowledge transfer for DA is particularly good for dealing with degradation in the accuracy of 

the model in non-stationary environments [3]. When the accuracy of the model is below the accuracy 

boundary or a new model is needed due to changes in data properties (e.g., changes in the feature 

space), training a new model should be initiated (see Fig. 1). The traditional approach trains the new 

model using newly-collected data, which might have different properties compared to the existing 

data from the old environment. Compared to the traditional approach, knowledge transfer approach 



  

 

trains the new model using the newly-collected data as well as knowledge extracted from the existing 

data or model(s). 

There are two major knowledge transfer approaches: transfer learning and incremental learning 

(online learning), which are the focus of this paper. Strictly speaking, incremental learning and 

online learning are different, but incremental learning refers to online learning strategies [11]. Thus, 

in this survey, we treat both learning approaches as the same concept. Also, there are other terms or 

knowledge transfer approaches such as domain adaptation and covariate shift. Transfer learning 

covers the area of domain adaptation, and covariate shift is a subset of incremental learning; thus, 

we do not mention model adaptation and covariate shift separately. Transfer learning focuses on 

maximizing the use of knowledge in data or in similar models with limited information from a new 

environment. On the other hand, incremental learning focuses on continuously and incrementally 

adapting to a new environment with knowledge inherent in the existing model and small amount of 

data collected from the new environment. Many studies have shown that transfer learning [10, 12, 

13] and incremental learning [3, 11, 14, 15] can be beneficial to learning in non-stationary 

environments. Most of these studies have focused on specific applications such as text classification 

and image recognition.  

 

 

Fig. 1 Concept of knowledge transfer approach compared to traditional approach. 

 

In this paper, we review and analyze transfer learning and incremental learning methods with a 

focus on supporting knowledge transfer in manufacturing. The result of the analysis could provide 

great benefit when designing and managing DA models with non-stationary environments in 

manufacturing. 



  

 

The rest of the paper is organized as follows. In Section 2, the non-stationary environments are 

described, and knowledge transfer methods are categorized and discussed. Also, benefits of 

knowledge transfer in manufacturing are presented. In Section 3, current research on the topic of 

knowledge transfer, including changes in data properties, availability of labeled data, and knowledge 

sources is reviewed. Our comprehensive analysis and findings are summarized. In Section 4, we 

describe events that cause changes in data properties in manufacturing, and present a mechanism to 

guide practitioners to select appropriate knowledge transfer methods for DA. Finally, Section 5 

concludes the paper and presents ideas for future work. 

 

2. Overview of Knowledge Transfer 

 

In this section, we provide an overview of non-stationary environments, and introduce the concept 

of knowledge transfer. Notations to define non-stationary environments are described. Two 

representative approaches of knowledge transfer are presented and these approaches are defined in 

terms of data and model. Also, we discuss the benefits of applying knowledge transfer in 

manufacturing. 

 

2.1. An Overview of Non-Stationary Environments  

 

In this section, we introduce the definition of domain, task, and other terms that are frequently used 

in knowledge transfer. We use the notations and definitions defined by Pan and Yang [10].  

Changes in data properties causing non-stationary environments can be defined using a domain 

D = {𝜒, 𝑃(𝑋)} and a task T = {𝒴, 𝑓(∙)}. The domain 𝐷 consists of two components, which are a 

feature space 𝜒 and a marginal probability distribution 𝑃(𝑋), where 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ 𝜒. For 

example, if the problem is to classify product failure, 𝑥𝑖 is the 𝑖th feature vector that corresponds to 

a product failure, 𝑛 is the number of feature vectors in a particular learning sample 𝑋, and 𝜒 is the 

space of all the feature vectors. The task 𝑇 is defined by a label space 𝒴 and a predictive function 

𝑓(∙), which is learned from training data that consists of pairs {𝑥𝑖, 𝑦𝑖}, where 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝒴. 

Referring to the example of product failure classification, 𝒴 is the set of labels (‘good’ or ‘scrap’), 

and 𝑓(∙) can be used to predict a label for a given product. From a probabilistic viewpoint, 𝑓(𝑥) is 

a predicted label for newly-collected data 𝑥, and it can be re-written as 𝑃(𝑦|𝑥). 

In this paper, source refers to the existing model or data from which the knowledge is extracted, 

and target refers to a new model or new data of a new environment (see Fig. 1). The source-domain 

data is defined as 𝐷𝑆 = {(𝑥𝑆1, 𝑦𝑆1), … , (𝑥𝑆𝑛, 𝑦𝑆𝑛)}, where 𝑥𝑆𝑖 ∈ 𝜒𝑆  is the 𝑖th data point of 𝐷𝑆  and 

𝑦𝑆𝑖 ∈ 𝒴𝑆  is the corresponding class label of 𝑥𝑆𝑖 . The target-domain data is defined as 𝐷𝑇 =

{(𝑥𝑇1, 𝑦𝑇1), … , (𝑥𝑇𝑛, 𝑦𝑇𝑛)}, where 𝑥𝑇𝑖 ∈ 𝜒𝑇  is the 𝑖 th data point of 𝐷𝑇  and 𝑦𝑇𝑖 ∈ 𝒴𝑇 . The source 

task is 𝑇𝑆, the target task is 𝑇𝑇, the source model is 𝑓𝑆(∙), and the target model is 𝑓𝑇(∙). 

Now, we define types of changes in data properties causing non-stationary environments by 

referring where incremental learning and transfer learning are concentrated on. Incremental learning 

in non-stationary environments refers to concept drift. The meaning of concept drift is that the 

statistical properties of data change over time. Probabilistic definition of concept drift is divided into 

two categories depending on ‘what’ is changed: real drift and virtual drift [16]. In real drift, 𝑃(𝑦|𝑥) 



  

 

changes over time independently from 𝑃(𝑋) due to changes in the relationship between features and 

labels. In virtual drift, 𝑃(𝑋) changes without affecting 𝑃(𝑦|𝑥) and can happen when the collected 

data points are not evenly distributed. Transfer learning in non-stationary environments covers both 

changes in 𝑃(𝑋) and 𝑃(𝑦|𝑥). In addition, transfer learning focuses on changes in feature and label 

spaces [10].  

Changes in data properties can be categorized into four types: 

1) Change in feature space (𝜒𝑆 ≠ 𝜒𝑇): the feature space of source 𝜒𝑆 is different from the feature 

space of target 𝜒𝑇. The feature space can be changed when changing the variables to be used for 

DA due to 1) addition of new sensors, 2) changing production machines or processes, 3) adapting 

an existing DA model to a new production process or new factory, or 4) using a different 

representation to describe data.  

2) Change in marginal probability distribution ( 𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇) ): the marginal probability 

distribution of source 𝑃(𝑋𝑆)  is different from the marginal probability distribution of target 

𝑃(𝑋𝑇). The marginal probability distribution may change due to sensors’ and machines’ aging 

effects or changes in a new machine setup.  

3) Change in label space (𝒴S ≠ 𝒴T): the label space of source 𝒴S is different from the label space 

of target 𝒴T. The label space may change when a label (criterion) is added or removed in the 

target domain. In the product defects classification example, the label space changes when the 

categories of product defects are changed from {good, major} to {minor, major, critical}, where 

‘minor’ defect means small and insignificant issues that do not affect function of the product, 

‘major’ defect means considerable issues that could adversely affect performance of the product, 

and ‘critical’ defect means critical issues that could render the product unusable. 

4) Change in conditional probability distribution ( 𝑃(𝑦𝑆|𝑥𝑆) ≠ 𝑃(𝑦𝑇|𝑥𝑇) ): the conditional 

probability distribution of source 𝑃(𝑦𝑆|𝑥𝑆) is different from the conditional probability 

distribution of target 𝑃(𝑦𝑇|𝑥𝑇). The conditional probability distribution might change when there 

is a change in relationship between features and labels. For example, when a product design being 

produced does not change, but the existing machine setup does not guarantee the same level of 

product quality as before, we can speculate that the relationship between the product failure and 

the machine setup has changed. 
 

In all types of changes in data properties mentioned above, newly-collected data is needed to 

retrain a new DA model. However, it is not always easy to collect sufficient data for retraining DA 

model. In this situation, knowledge transfer could play an important role.  

 

2.2. Concept of Knowledge Transfer 

 

Knowledge transfer for DA (see Fig. 1) is an approach that allows training a DA model to a new 

environment. This approach is particularly useful when limited information available from the new 

environment. Knowledge transfer can be redefined as transferring knowledge extracted from 𝐷𝑆 or 

𝑇𝑆 when training 𝑓𝑇(∙). 

As mentioned before, this paper focuses on the two major approaches: transfer learning and 

incremental learning. Given 𝐷𝑆 with a corresponding 𝑇𝑆, and 𝐷𝑇 with a corresponding 𝑇𝑇, transfer 



  

 

learning is an approach of training 𝑓𝑇(∙) by exploiting the related knowledge from 𝐷𝑆 and 𝑇𝑆, where 

𝐷𝑆 ≠ 𝐷𝑇 or 𝑇𝑆 ≠ 𝑇𝑇 [13]. Incremental learning is an approach of updating or improving 𝑓𝑇(∙) by 

referring to 𝑇𝑆 [14]. Transfer learning focuses more on knowledge from 𝐷𝑆 than knowledge from 𝑇𝑆, 

whereas incremental learning focuses on knowledge from 𝑇𝑆 . From the perspective of ‘what to 

transfer’, transfer learning transfers knowledge from data and model, and incremental learning 

transfers knowledge from model. Thus, we investigate knowledge transfer methods by focusing on 

both sources of knowledge: data and model. 

When transferring knowledge from data (see Fig. 2 (a)), the target model is trained using the 

target-domain data with the knowledge from the source-domain data. Knowledge transfer methods 

differ depending on how knowledge is extracted from the source-domain data and utilized. For 

example, quality assurance of wafers is an important issue in the semiconductor manufacturing 

process. Virtual metrology (VM) technologies have been developed to monitor the quality of wafers 

[17]. A new VM model is needed for a new process, however, collecting labeled data is not a 

straightforward task due to time consuming labelling process. When wafer records (labels) of the 

target-domain data is not sufficient, previously collected data that involves sets of process variables 

(e.g. process parameters) and inspection variables (e.g., inspection results) can be used. Thus, data 

points that have similar data properties to the target-domain data are selected as the source-domain 

data for training the target model. 

When transferring knowledge from model (see Fig. 2 (b)), the source model is transferred as 

knowledge to train the target model. Sometimes, the source-domain data is also transferred together 

with the source model to calculate the difference between the source and target domains, but the 

source-domain data is not always required. The target-domain data is commonly used to evaluate 

the suitability of the source model to a new environment (target), and the model is modified 

accordingly. In the above VM model example, the target model can also be trained using knowledge 

acquired from previously established VM models of other sets of process settings. For example, if 

the previous VM models were trained based on neural networks (NN), feature representations and 

model weights (optimal parameters) could be considered as the knowledge. Both types of knowledge 

are used for model initialization, and the weights are updated using the target-domain data only.  

 



  

 

 

Fig. 2 The role of knowledge sources in knowledge transfer. 

 

Knowledge transfer approaches are different depending on knowledge sources, but all related 

methods require target-domain data to train the target model. Knowledge transfer can be used when 

both sufficient and limited labeled target-domain data is available. We use the term ‘labeled data’ if 

all target data points are labeled, ‘limited labeled data’ if the target data points are partially labeled, 

and ‘unlabeled data’ if none of the target data points are labeled.  

Depending on the availability of the labeled data, machine learning algorithms are categorized 

as supervised, semi-supervised, and unsupervised learning. Zhu and Goldberg [18] define supervised 

learning as a task to train a function 𝑓 ∶  𝜒 →  𝒴 with given input and output data pairs  {(𝒙𝑖, 𝑦𝑖)}𝑖=1
n , 

which is also called training dataset. The goal is to obtain a function that predicts the true label y on 

future data x. Semi-supervised learning is halfway between supervised and unsupervised learning. 

The training dataset consists of points and corresponding responses (labels), {(𝒙𝑖, 𝑦𝑖)}𝑖=1
n , in 

addition to the points {(𝑥𝑗)}
𝑗=𝑛+1

m
 the labels of which are not known. Unsupervised learning works 

on data points {(𝑥𝑖)}𝑖
n without associated responses. The goal is to find patterns in the data without 

prior information or supervision of correct answers. 

Machine learning tasks can also be categorized as supervised learning, unsupervised learning, 

and reinforcement learning (RL) [22]. Supervised learning uses the ground truth labels or responses, 

whereas there are no labels available for unsupervised learning tasks. RL allows machines and 

software agents to automatically determine the ideal behavior within a specific context, in order to 

maximize their performance. Unlike supervised learning, which trains on labeled datasets, RL 

achieves its stated objective by receiving positive or negative rewards for the actions taken.  

The definition of each category in knowledge transfer can be defined differently with respect to 

the availability of labeled data, according to Weiss et al. [13]. For example, there are studies [19, 20] 



  

 

that define semi-supervised transfer learning as a learning task with labeled source-domain data and 

unlabeled target-domain data. Blitzer et al. [21] defined semi-supervised learning as the case of 

labeled source-domain data and limited labeled target-domain data. Thus, for consistency, we have 

used the terms labeled, limited labeled, and unlabeled to categorize knowledge transfer methods 

instead of supervised, unsupervised, and semi-supervised (or RL). 

In most cases of DA applications in manufacturing supervised learning algorithms are 

dominantly used due to availability of domain experts [23]. However, collecting sufficient labeled 

data takes time, and often not an easy task [5, 17]. This task might be very labor intensive and prone 

to human errors.  For example, in the product defect classification problem [24], to determine 

whether products have defects or not, they must be inspected individually through performing a full 

inspection manually or using sensors. Either way, collecting inspection data is not an easy task. In 

addition, a very small percentage of parts in a production process are defective in general. It is 

expected that having sufficient labeled data about defective parts is scarce, especially within a short 

period. Therefore, knowledge transfer can promise benefits for manufacturers where target data 

points are limited labeled or unlabeled, and when an existing DA model is needed to be trained 

quickly to adapt dynamic changes in the manufacturing process. 

  

2.3. Benefits of Knowledge Transfer in Manufacturing 

 

Product quality management [5, 6, 25] and maintenance of machines [26, 27] are two particular 

manufacturing application areas where knowledge transfer methods have been used. Depending on 

the application area, different knowledge from data or model(s) can be transferred. In this section, 

we present benefits of knowledge transfer in the above areas of manufacturing and briefly describe 

what knowledge can be transferred. Examples of transferred knowledge are summarized in Table 1.  

 

2.3.1. Product Quality Management 

 

These days, product designs frequently change in response to market demands [28]. When a newly-

designed product is in the production process, a new DA model might be needed to classify or predict 

defects (or failures) of the new product.  

In response to the changes in product designs, Sankavaram et al. [6] proposed a knowledge 

transfer framework to detect faults in automotive systems. When a new DA model of a vehicle (or 

different design of a vehicle) is being produced, it is important to diagnose new types of faults in the 

early stage of production. However, it is difficult to collect sufficient data in the automotive industry 

because faults in vehicles rarely occur. Thus, they applied AdaBoost [29] and Learn++.NC [30] to 

build the new model to help early-stage fault detection in non-stationary environments with limited 

newly-collected data.  

Pulong et al. [25] proposed a method based on incremental learning algorithm for support vector 

machine (SVM) to recognize faults of a high voltage circuit breaker (HVCB). Their method to 

update the classifiers is incrementally updating support vectors (SVs) using newly-collected data. 

Since HVCB faults do not happen very often, it is not easy to obtain sufficient fault samples. By 

applying knowledge transfer, new faults can be added into the SVM model effectively.  



  

 

Ramakrishnan and Ghosh [5] proposed a framework called distributed dynamic elastic nets 

(DDEN) to understand trends of features affecting product conditions in dynamic environments. In 

the ramp-up phase of an assembly line, dynamic environments are common due to continuous 

changes in underlying conditions that might lead to defects. The underlying trends of the features 

are considered to stabilize the fluctuation of parameter weights while optimizing the model, and a 

stabilized model can increase yield during the ramp-up phase of the production process.  

 

2.3.2. Maintenance  

 

Maintenance in machines plays a key role in reducing manufacturing costs, minimizing downtime 

of machines, improving product quality, and increasing productivity [31]. DA models can be used 

to monitor and diagnose the condition of a machine; replacement or repair of the machine can be 

done by following the results of the DA analysis. The replacement and repair might cause changes 

in the environment of the data generating process. Aging effects of sensors for condition monitoring 

may also cause changes in data. 

Due to these changes in data, Vilakazi and Marwala [26] applied Learn++ [32] to train a 

prediction model for fault diagnosis of machines about high voltage bushing condition. The 

prediction model accommodates newly-collected data or new labels presented in the newly-collected 

data by adding new classifiers to the existing model. By adopting knowledge transfer, the prediction 

model can be retrained with a new set of ensemble classifiers, and the machine conditions will be 

predicted when the environment change. 

Yu [27] developed an adaptive hidden Markov model (AHMM) method for condition-based 

maintenance (CBM). When a new machine health state is detected, the proposed method learns 

online about such change in its machine health. Thus, through applying AHMM, the model supports 

recognizing the new type of health degradation at an early stage and allows for timely maintenance 

service.  

 

2.3.3. Examples of Transferred Knowledge  

 

The benefits mentioned above can be obtained by using the knowledge from data or model. This 

section presents a set of examples that use knowledge to train the DA models. In Table 1, application 

area means a field where knowledge transfer is used. We describe the type of changes in data 

properties, knowledge sources, and transferred knowledge.  

Most of the example studies in product quality management and machine maintenance use model 

as the knowledge source. They focus on continuously updating models when the marginal 

probability distributions change. In manufacturing, model parameters or structures, which are 

containing relations between features and labels, are used as the knowledge transferred from model. 

In case of knowledge transfer from data, relations between features and labels are used to train a 

new model.  

 



  

 

Table 1 Examples of transferred knowledge depending on application areas and changes in data properties. 

Application 

Area 
Authors 

Changes in 

Data Properties 

Knowledge 

Source 

Transferred Knowledge  

Used to Train Models 

Product 

Quality 

Management 

Sankavaram 

et al. [6] 

𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇) Data Relations between vehicle operating 

conditions and faults of vehicle 

𝒴𝑆 ≠ 𝒴𝑇 Model Model parameters for classifying non-

changed labels (categories of faults) 

Pulong et 

al. [25] 

𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇) Model Valid classifiers on all source-domain 

data (Relations between machine 

conditions and HVCB faults) 

Ramakrishn

an and 

Ghosh [5] 

𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇) Model Model parameters (weights) used to 

classify labels (good or bad) in the 

source 

Maintenance Vilakazi 

and 

Marwala 

[26] 

𝒴𝑆 ≠ 𝒴𝑇 Model Model parameters for classifying non-

changed labels (categories of faults)  

Yu [27] 𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇) Model Hidden state and Gaussian components 

that represent existing failures 

 

Knowledge transfer methods of the above examples are applied not only in manufacturing but 

also in other domains for various applications. For example, Vilakazi and Marwala [26] applied 

Learn++ [32] to train the model for fault diagnosis of machines. The training data set involves sets 

of process settings and inspection results. Learn++ has been also applied in image detection of video 

events in order to adapt the model to any new class of video events [33]. In other words, knowledge 

transfer methods are not limited to a certain application, some can be applied for knowledge transfer 

in manufacturing by various applications in different areas including manufacturing.  

In addition, knowledge transfer is commonly used for tasks such as object classification, 

detection, and text classification. In this regard, similar methods can be applied to solve 

manufacturing problems. Ferguson et al. [24] used different convolutional neural networks (CNN) 

architectures to detect and localize casting defects. Instead of solely using a relatively much smaller 

data set of casting X-ray images, the authors have transferred the knowledge from different CNN 

architectures that were pre-trained using common object images (e.g., person, bicycle, and car). That 

allowed the authors to obtain high accuracy in object detection and localization with a smaller data 

set. 

While the above examples show that knowledge transfer is beneficial to manufacturing, there is 

limited research on this topic for manufacturing applications. The survey discussed in this paper 

does not solely focus on manufacturing applications, but on various applications of different areas. 

However, the survey results could support researchers who perform knowledge transfer for 

manufacturing applications. We also categorize and summarize knowledge transfer methods from 

the survey to support researchers to easily adopt knowledge transfer in manufacturing applications. 

 

3. Knowledge Transfer Methods in Non-Stationary Environments 

 



  

 

In this section, we explore the knowledge transfer methods for classification and regression 

problems through a literature survey. The methods for transferring knowledge from data or model, 

presented in the survey are listed in Tables 2 and 3 respectively; the approach, data-related 

information, and application of each method are also included in the tables. Table 4 summarizes all 

the surveyed methods in terms of types of changes in data properties, availability of labeled data, 

and knowledge sources.  

 

3.1. Knowledge Transfer from Data 

 

Knowledge transfer methods with knowledge from data aims at finding “good” data points or feature 

representations to increase the prediction accuracy and the credibility of the target model. The 

knowledge transfer methods with knowledge from data are divided into two groups: instance-based 

knowledge transfer and feature-based knowledge transfer (see Fig. 3) [10]. Instance-based 

knowledge transfer [20, 34-38] is an approach that uses weighted source-domain data and target-

domain data to train a target model. The weights are used to compensate for the differences between 

the source and target domains, and they are calculated by comparing the marginal probability 

distributions or the conditional probability distributions. Feature-based transfer [39-45] is an 

approach to discover a meaningful feature representation of data points in the source and target 

domains. By using feature representation, the differences between the source and target domains 

could be reduced. Like instance-based transfer, feature-based transfer exploits knowledge that is 

inherent in the source-domain data, but it can be used when the features of the source and target 

domains are different. 

 

 
Fig. 3 Two categories of knowledge transfer from data: Instance-based transfer and Feature-based transfer. 

 

 

3.1.1. Instance-based Knowledge Transfer 

 



  

 

Dai et al. [34] proposed an instance-based transfer algorithm, TrAdaBoost, which extends AdaBoost 

[29]. AdaBoost is a method that improves error of the target predictive model by iteratively giving 

weights on the training data points. AdaBoost assumes that the distributions of the source domain 

and the distributions of the target domain are identical. On the other hand, TrAdaBoost assumes that 

the marginal probability distribution of the target domain is different from the marginal probability 

distribution of the source domain, even though the source and target have the same feature and label 

spaces. The classifier is trained using sufficient labeled source-domain data and small amounts of 

newly-labeled data in the target domain. The key idea is iteratively reweighting the source-domain 

data to filter out source data points which have different distributions from the target domain. The 

SVM algorithm was used in this surveyed paper as a basic learner, but any classification algorithm 

can be used instead of the SVM algorithm.  

In the process of extracting and transferring knowledge from a single source, if the source and 

target domains are not related enough, the dissimilar knowledge can cause a negative impact on the 

target model. This situation is formally defined as negative transfer [13], i.e., the accuracy of target 

the model trained only with target-domain data is greater than the accuracy of the target model 

trained by knowledge transfer. Yao and Doretto [35] proposed Multisource-TrAdaBoost that extends 

TrAdaBoost [34] to extract knowledge from multiple sources to decrease the negative impact. In the 

learning system, not only the knowledge extracted from a single-source domain but also the 

knowledge extracted from relevant multiple-source domains can be used to train the target model 

(𝑓𝑇(∙)) (see Fig. 4). Multisource-TrAdaBoost aims to find a weak classifier from the sources that 

appears to be the most related to the target in each iteration, and then the final weak classifier is 

chosen to minimize the target classification error.  

 

 
Fig. 4 Comparison of knowledge transfer from a single source and multiple sources. 

 

Pardoe and Stone [36] proposed an instance-based transfer algorithm called TrAdaBoost.R2 that 

is inspired by ExpBoost [46] and TrAdaBoost [34] for regression on the knowledge extracted from 

multiple sources. ExpBoost, an extension of AdaBoost [29] is designed for sequential learning tasks. 

For multiple sources, TrAdaBoost.R2 combines all source-domain data into a single dataset and 

handles reweighting of each training data point separately. Also, they found that accuracy of 

TrAdaBoost.R2 decreased when the number of boosting iterations increased. To address this 



  

 

problem, they proposed a two-stage TrAdaBoost.R2 to adjust weights. In the first stage, cross 

validation is used to adjust the weights of the source data points. In the next stage, the weights of all 

source data points are frozen while the weights of the target data points are updated using 

AdaBoost.R2 [47]. They used multivariate regression prediction (M5P) model trees or NN as a basic 

learner. 

Chattopadhyay et al. [37] also proposed a method, conditional probability based multi-source 

domain adaptation (CP-MDA), for knowledge transfer from multiple sources. The goal of the 

method is to train the target model using data points from multiple-source domains and a few labeled 

data points in the target. The key idea is computing the labels of the unlabeled data points in the 

target, called ‘pseudo labels’ by integrating multiple-source domains using a set of weights. Finally, 

the target model is trained from both pseudo and labeled target-domain data. The proposed method 

is compared with other multi-source knowledge transfer methods: locally weighted ensemble (LWE) 

[19] and domain adaptation machine (DAM) [48].  

Jiang and Zhai [38] proposed a knowledge transfer method for the situation when the conditional 

probability distribution of the source is different from the conditional probability distribution of the 

target. The key idea is removing ‘misleading’ data points from the source, assigning more weights 

to the labeled data points in the target, and augmenting data points in the source with pseudo labeled 

data points in the target. Several parameters are introduced, which indicate 1) similarity of 

conditional probability distributions between the source and target, 2) how to adjust weights of each 

data point, and 3) how to assign pseudo labels. Also, three approximation methods are proposed, 

and the target model is trained by controlling the contributions of each approximation method to the 

target model using introduced parameters. The proposed method is tested with three different natural 

language processing (NLP) tasks, which are part-of-speech (POS) tagging, entity type classification, 

and personalized spam filtering. 

Hu et al. [20] proposed multi-domain adaptation algorithm based on the class distribution 

(MACD). The method uses all possible source-domain data to train a new binary classifier. When 

the distribution of the labels in the target domain is known but the target-domain data is not labeled, 

MACD is used to train the classifier of target domain. Base classifiers of each source domain are 

trained using traditional machine learning methods. Relative classifiers of the source domains are 

selected to obtain pseudo labels of the target by comparing the distribution of the labels. Then, the 

pseudo labeled target data points are added to the relevant source domains, and the base classifiers 

of each source are updated. Lastly, a classifier of the target domain is obtained by combining the 

base classifiers using voting rule [49]. 

 

3.1.2. Feature-based Knowledge Transfer 

 

To cope with the change in the marginal probability distributions, Duan et al. [39] proposed a domain 

transfer multiple kernel learning (DTMKL) method. The method trains a classifier by minimizing 

the structural risk functional [50] on both the domains. Maximum mean discrepancy measure [51] 

is used to minimize the difference of marginal probability distributions between the source and target 

domains. DTMKL can be applied in any kernel method, SVM is used to implement the DTMKL 

method. The experimental results show that the proposed method can outperform other cross-domain 



  

 

learning algorithms including kernel mean matching [52], cross-domain SVM [53], adaptive SVM 

[54], and feature replication [55].  

Pan et al. [40] proposed a knowledge transfer method to minimize the difference between the 

source and target domains using a latent space. Maximum mean discrepancy embedding (MMDE), 

which is a new dimension reduction method, is proposed to learn the latent space. Principal 

component analysis (PCA) is used to construct low-dimensional representations by selecting the 

leading eigenvectors. Finally, a traditional machine learning method is used to train the target model 

using mapping between the target-domain data in the latent space and the labels of the source. 

To transfer knowledge when marginal and conditional probability distributions change, Long et 

al. [41] proposed a Joint Distribution Adaptation (JDA) method. The key idea is jointly adapting 

changes in both the distributions in a principled dimensionality reduction procedure. A classifier of 

the source is used to estimate the unlabeled data points in the target. To reduce the difference in the 

distributions, they adopt maximum mean discovery (MMD) [56] as a distance measure and integrate 

it with the PCA algorithm that constructs feature representation. The method is tested for image 

classification using related algorithms including transfer component analysis (TCA) [57] + NN and 

transfer subspace learning (TSL) [58] + NN.  

Long et al. [42] also proposed a knowledge transfer method, which is an adaptation 

regularization-based transfer learning (ARTL) framework, to reduce the difference in the marginal 

and conditional probability distributions. In the framework, a supervised classifier finds pseudo 

labels of the unlabeled target-domain data. Similar to the JDA [41] method, MMD [56] is adopted 

to measure the difference in the marginal and conditional probability distributions. Joint distributions 

of the source and target and the structural risk functional on the source data points are minimized, 

and the manifold consistency is optimized to train an adaptive classifier.  

Pan et al. [43] proposed a spectral feature alignment (SFA) method, which is a feature-based 

knowledge transfer method when the feature spaces of the source and target domains are different. 

The key idea of the method is finding a new feature representation to reduce the difference between 

the source and target domains. SFA identifies domain-independent features occurring frequently and 

acting similar in both domains, and uses the features as a bridge between the source and target. Also, 

the method identifies domain-specific features that are only used in one specific domain, and a 

bipartite graph between domain-specific features and domain-independent features is constructed. 

A spectral clustering on the graph is used to align domain-specific features and domain-independent 

features to the same cluster, and the target model is trained based on the new representation with 

clusters. 

Shi et al. [44] proposed a heterogeneous spectral mapping (HeMap) to address the differences in 

the feature and label spaces and the changes in the marginal probability distribution. A common 

feature space between the source and target domains is constructed using spectral transformation 

technique to make both data similar. Related data points in the projected space are selected as 

training data by applying a clustering-based sample selection method [59], and the relationship 

between the different feature spaces is modeled using a Bayesian-based approach. 

Zhou et al. [45] proposed a knowledge transfer method called hybrid heterogeneous transfer 

learning (HHTL), which allows knowledge transfer across domains even though the corresponding 

data points are biased across the domains. Once the weights of the source and target data points to 

hidden representation are calculated, a feature map between the source and target is trained. Then, 



  

 

the distribution bias between the source and target is reduced by discovering a latent representation. 

The experimental results show that the accuracy of the proposed method is better than the following 

methods: SVM-source-correspondence (SVM-SC), cross-lingual kernel canonical component 

analysis (CL-KCCA) [60], HeMap [44], and marginalized stacked denoised autoencoder-CCA 

(mSDA-CCA). 

 

3.1.3. Summary of Knowledge Transfer from Data 

 

Knowledge transfer methods using knowledge extracted from data are summarized in Table 2. Table 

2 presents the name, the approach to extract knowledge from data (transfer approach), the 

availability of labeled data in the source and target domains (e.g., labeled, limited labeled, and 

unlabeled), and the applications where the method was demonstrated. All the methods listed in the 

table need labeled source-domain data. However, knowledge transfer is possible if target-domain 

data is not labeled. In general, knowledge transfer from data are applied in text classification and 

image recognition. 

 

3.2. Knowledge Transfer from Model 

 

Knowledge transfer methods with knowledge from model focuses on adapting parameters or 

structures of models to a new environment, instead of transferring knowledge purely from data. 

Knowledge transfer methods that transfer knowledge from model can be classified into single-

instance setting and batch setting. They are distinguished based on how many target data points are 

used for training 𝑓𝑇(∙) in the learning system. In a single-instance setting [61-66], the knowledge 

transfer occurs when training 𝑓𝑇(∙) with a single data point (𝑥𝑇1, 𝑦𝑇1), whereas in a batch setting 

[19, 32, 67-71], the knowledge transfer uses multiple data points 

{(𝑥𝑇1, 𝑦𝑇1), (𝑥𝑇2, 𝑦𝑇2), … (𝑥𝑇𝑛, 𝑦𝑇𝑛)}. In either setting, knowledge transfer methods are chosen 

based on ‘what to transfer’. SVs of SVM [61, 64, 67, 68, 71] or support vector regression (SVR) [62, 

63], prior distributions of Naïve Bayesian models [19, 70] or Gaussian process regression (GPR) 

[66], model structures of NN [32, 69], and other knowledge from models [65] can all be used as 

knowledge. 

 



  

 

Table 2 Knowledge transfer methods with knowledge from data. 

Method 
Transfer 

Approach 

Source 

Data 
Target Data Applications 

TrAdaBoost [34] Instance-based Labeled Limited labeled Classification of news documents 

and mushrooms 

Multisource-

TrAdaBoost [35] 

Instance-based Labeled Limited labeled Object image classification / 

Vehicle image detection 

TrAdBoost.R2 [36] Instance-based Labeled Labeled Regression of concrete strength, 

house price, fuel efficiency, and 

automobile price 

CP-MDA [37] Instance-based Labeled Limited labeled Fatigue detection 

Domain Adaptation 

for NLP [38] 

Instance-based Labeled Limited labeled Natural language processing tasks 

MACD [20] Instance-based Labeled Unlabeled Sentiment classification 

DTMKL [39] Feature-based Labeled Unlabeled Video concept detection / 

Classification of new documents 

and spam emails 

MMDE [40] Feature-based Labeled Unlabeled Wi-Fi localizations,  

Classification of news documents 

JDA [41] Feature-based Labeled Unlabeled Classification of handwritten 

images, face images, and object 

images 

ARTL [42] Feature-based Labeled Unlabeled Classification of news documents, 

handwritten images, and face 

images 

SFA [43] Feature-based Labeled Limited labeled Sentiment classification of 

product reviews 

HeMap [44] Feature-based Labeled Limited labeled Drug efficacy prediction /  

Object image classification 

HHTL [45] Feature-based Labeled Unlabeled Sentiment classification of 

product reviews 

 

 

3.2.1. Knowledge Transfer in a Single-instance Setting 

 

Cauwenberghs and Poggio [61] proposed an incremental SVM learning method to update the model 

on a new data point. The key idea is to retain the Karush-Kuhn-Tucker (KKT) conditions on all 

previous data points, while updating the SVM model with newly-collected data. When a new data 

point goes into the learning system, the new data point is checked for meeting KKT conditions. If 

the new data point is satisfying the current KKT conditions, the existing model would be used 

continuously without model updating. On the contrary, the new data point is used to update the 

kernel matrix accordingly. Diehl and Cauwenberghs [72] extended the incremental SVM learning 

method [61] to a general framework.  

Ma et al. [62] proposed an accurate on-line support vector regression (AOSVR) method that 

extends the method proposed by Cauwenberghs and Poggio [61] for online SVR. The learning 

strategy of AOSVR is not much different from the incremental SVM learning method [61], but the 



  

 

method is extended for dealing with regression problems. The difference between the incremental 

SVM learning method [61] and the AOSVR method is a bookkeeping procedure, which is a step to 

determine the amplitude for changing the category membership of vectors (from reserve to 

margin/error, from margin to reserve/error, and from error to reserve/margin). The coefficient 

parameters of the kernel function are being updated until the new data point meets KKT conditions, 

while ensuring the existing data points also meet the KKT conditions.  

Liu and Zio [63] proposed an online learning approach for SVR using the feature vector selection 

(FVS) method and incremental and decremental learning (Online-SVR-FID) method. The proposed 

method combines FVS method [73] and the knowledge transfer method proposed by Cauwenberghs 

and Poggio [61]. The key idea is 1) to judge whether a new data point is a new pattern or a changed 

pattern, and 2) to modify the model adaptively while retaining the KKT conditions. The new data 

point is a new pattern if it cannot be represented by existing patterns in the reproducing kernel Hilbert 

space (RKHS). The new data point is a changed pattern if the data point in RKHS is represented by 

existing patterns but the predicted value is biased. When the new data point is a new pattern, the new 

data point (new pattern) is directly used to update the model. If the new data point is a changed 

pattern, the existing patterns are updated using the new data point, and the changed patterns are used 

to train the model. Liu and Zio compared Online-SVR-FID with the knowledge transfer method 

proposed by Cauwenberghs and Poggio [61], Naïve online regularized risk minimization algorithm 

(NORMA) [74], sparse on-line Gaussian processes (SOGP) [75], and kernel-based recursive least 

square tracker (KRLS-T) [76]. The results show that the accuracy of Online-SVR-FID is higher and 

learning time is faster than other methods. 

Zheng et al. [64] proposed an online incremental SVM (OI-SVM) method, which does not need 

to train the model at every new data point. The concept of OI-SVM is similar to Online-SVR-FID 

[63], but they use prototypes to represent the original data instead of FVs. The prototypes are learned 

to fit the density of the training data; they are updated when the distance between existing data points 

and the new data point is larger than thresholds. Then, the model is trained using the prototypes to 

generate SVs. Both Online-SVR-FID [63] and OI-SVM [64] do not require the original data for 

knowledge transfer. Also, they can handle large-scale data effectively. 

Vijaykumar and Schaal [65] proposed locally weighted projection regression (LWPR), which is 

a method focusing on finding local projections for local model training. Locally weighted partial 

least squares (PLS) regression is used to determine the linear model parameters in high-dimensional 

feature spaces. Next, a nonlinear model is trained by combining local linear models. When a new 

data point goes to the learning system, the key idea is to find an optimal projection direction to 

update the model. If the current projections cannot represent the new data point, a new projection is 

added. Then, the local models are updated according to the projections.  

Nguyen-Tuong et al. [66] proposed a local approximation to the standard GPR in a single-

instance setting, called local GPR (LGP). The proposed method combines the concept of GPR and 

LWPR, which is a widely used real-time learning method in high dimensional spaces [77]. To reduce 

the computational time for model training, the method clusters existing data points. The basic 

concept is that data points in the same cluster belong to the same local region, and GPR models are 

trained for those regions. When updating the model with a new data point, the proximity between 

all available centers of the local region and the new data point is calculated to select the nearest local 

model. If the proximity to the nearest model is bigger than the threshold, the new data point is 

allocated to the nearest local region, and the center of the region is updated with the new data point. 



  

 

If the proximity is below than the threshold, a new local GPR model is trained with the new data 

point. The prediction is performed by weighted averaging the prediction results of each GPR model, 

and the weights are obtained by calculating the proximity of the new data point to each GPR model. 

 

3.2.2. Knowledge Transfer in a Batch Setting 

 

If methods suitable for a single-instance setting are used in a batch setting, the methods would be 

repeated to train the model for each data point, and the computational cost of model training would 

be increased. Karasuyama and Takeuchi [67] proposed a multiple incremental and decremental SVM 

(MID-SVM) learning method, which incrementally adapts an SVM-based model to a new 

environment and works efficiently for multiple data points. Like SVM-based knowledge transfer 

methods in a single-instance setting [61, 62], each data point is checked for whether it can be 

classified by using the existing classifier. If the classifier is working, the data point is not used for 

model update. The key idea of the method is determining the directions and length of changes in 

Lagrange multipliers, while satisfying KKT conditions. The experimental results show the proposed 

knowledge transfer method is faster than other knowledge transfer methods [61, 78] suitable for a 

single-instance setting. The method proposed by Karasuyama and Takeuchi [67] cannot be used 

when the label space of the source is different from the label space of the target. 

Wen and Lu [68] proposed a knowledge transfer method that can be used when the label spaces 

of the source and target are different. The method, which is called incremental learning by classifier 

combining (ILbyCC), enables SVM to adapt to a new environment by combining classifiers, while 

the method does not require access to previously used data points. A new classifier is trained using 

new data points, and averaged Bayes method [79] is used to combine each classifier. Finally, using 

the combined classifier, the posterior probability of each data point to all classes is calculated.  

Polikar et al. [32] proposed Learn++ that can be used when the source and target have different 

label spaces, which is a method of incrementally training NN classifiers. Learn ++ does not require 

access to the original data (source-domain data), while preserving previously acquired knowledge. 

The method is inspired by the AdaBoost [29], it generates weak hypotheses by training a weak 

learning algorithm when new data points come into the learning system. Errors of each hypothesis 

on their training data are calculated, and voting weights are computed based on the errors to combine 

each hypothesis. Composite hypothesis makes model updating possible when data points with new 

classes of the label space are introduced. Learn++ was extended to various versions, Muhlbaier et 

al. [80] proposed Learn++.MT for reducing the number of classifiers while improving the 

performance of classifiers, Muhlbaier et al. [30] proposed Learn++.NC for learning new classses 

(NC) of the label space, and Elwell and Polikar [81] proposed Learn++.NSE for change in class 

definitions over time under non-stationary environments.  

Bruzzone and Fernàndez Prieto [69] proposed a knowledge transfer method based on Radial 

Basis Function (RBF) NN that can be used when the source and target have different label spaces. 

To train an initial network, the method clusters data points, and prototypes are generated for each 

partitioned cluster. The prototypes correspond to Gaussian kernel functions which are associated 

with hidden neurons. The connection between the hidden neurons and the output units are defined 

by minimizing the sum-of squared errors (SSE). After the initial network is trained, the retraining of 

the model proceeds using new data points and the prototypes. The most similar prototypes for each 



  

 

data point are selected, and the prototypes are updated using the data point. When new data points 

cannot be represented by the current prototypes, a new prototype is generated. To update the weights 

between hidden neurons and output units, SSE before updating the prototype, and SSE after updating 

the prototype are used.  

So far, we have described knowledge transfer methods focusing on how to quickly adapt to a 

new environment by incrementally and constantly updating models. However, if information of the 

new environment is not sufficient, models in the similar sources can be used for knowledge transfer. 

Dai et al. [70] proposed a knowledge transfer method based on the Expectation-Maximization (EM) 

algorithm and Naïve Bayes classifier, which is called Naïve Bayes transfer classification algorithm 

(NBTC). The Naïve Bayes classifier is trained using the source-domain data to predict the label of 

the target when the target-domain data is unlabeled, and the classifier is modified to meet the 

distribution of the target-domain data based on EM algorithm. Kullback leibler (KL)-divergence is 

used to measure the distribution difference between the source and target. The experiments are 

conducted with two semi-supervised methods: transductive SVM (TSVM) [82] and traditional EM-

based Naïve Bayes classifier (ENBC) [83]. Like knowledge transfer from data, the knowledge from 

multiple-source models can also be utilized. 

Gao et al. [19] proposed a locally weighted ensemble (LWE) framework that uses knowledge 

extracted from multiple models via local structure mapping. The key idea of the method is 

formulating similarity between the multiple-source models (general Bayesian models for 

classification) and the unknown target model. Clustering is performed on the target-domain data, 

and neighborhood graphs between the clusters and source models are constructed. The similarity 

between the source models and the target-domain data is calculated using the graphs, the weights 

between models and data points of the target is computed.  

Tommasi et al. [71] proposed LS-SVM-based model adaptation method for utilizing knowledge 

from multiple models. The prior knowledge, which is hyperplanes of the classifiers, is transferred 

by minimizing weighted error rate (WER) based on leave-one-out (LOO) error. LOO error is an 

unbiased estimator and can be used for model selection [84]. 

 

3.2.3. Summary of Knowledge Transfer from Model 

 

Knowledge transfer methods using knowledge extracted from model are summarized in Table 3. 

Table 3 presents the method name, basic learner, data arrival manner (e.g., single instance and batch), 

and the applications of the knowledge transfer method. The knowledge transfer methods were 

developed based on the selected learning algorithms, i.e., basic learners. A basic learner is an 

algorithm used to train the source model. Data arrival manner means number of target data points 

used to train 𝑓𝑇(∙). Comparison methods are methods used to evaluate the proposed methods. 

Applications refers to a problem implemented by authors to test proposed methods.  

 



  

 

Table 3 Knowledge transfer methods with knowledge from model. 

Method Basic Learner 
Data Arrival 

Manner 
Applications 

Incremental SVM [61] SVM Single instance - 

AOSVR [62] SVR Single instance Regression analysis of fuel efficiency and 

house price 

Online-SVR-FID [63] SVR Single instance Leak flow classification 

OI-SVM [64] SVM Single instance Classification of image, text, vehicle ID, 

cylinder misfire, and income 

LWPR [65] PLS regression Single instance Robot Control 

LGP [66] GPR Single instance Robot Control 

MID-SVM [67] SVM Batch Classification of diabetes, income, forest 

cover type, and cylinder misfire 

ILbyCC [68] SVM Batch Classification of text, type of vehicle, and 

circular region 

Learn ++ [32] NN Batch Classification of text image, type of 

vehicle, and circular region / Gas sensing 

Incremental NN [69] NN Batch Remote sensing image classification 

NBTC [70] Naïve Bayes 

classifier 

Batch Classification of news documents 

LWE [19] Bayesian model Batch Spam filtering / Text classification / 

Intrusion detection 

LS-SVM based Model 

Adaptation [71] 

LS-SVM Batch Object image classification 

 

 

3.3. Analysis and Findings 

 

So far, we have provided an overview of the current knowledge transfer methods that extract 

knowledge from data or model. Table 4 provides a summary of those methods that is categorized to 

availability of labels in target and types of changes in data properties. Availability of labels specifies 

the availability of labels in the target-domain data. Types of changes in data properties specifies the 

way in which the source and target domains are different. According to the availability of labels and 

the types of changes in data properties, available knowledge transfer methods are presented. 

Knowledge source, as mentioned in Section 2, specifies which type of knowledge is used to train 

𝑓𝑇(∙). 

In summary, knowledge transfer methods differ according to the availability of labels and the 

type of changes in data properties. The methods are categorized into two types: using knowledge 

from data and using knowledge from model. The common assumption of methods transferring 

knowledge from data is that the knowledge is inherent in data. Thus, the methods are different 

depending on how to extract and transfer the inherent knowledge while reducing the difference (gap) 

between the source and target. The methods are often limited to specific applications because each 

method should be able to handle the characteristics of data collected from each domain. Knowledge 

transfer methods transferring knowledge from model are suitable when data arrives as a continuous 

stream over time. A few methods can be used when the target-domain data is unlabeled. These 



  

 

methods extract knowledge from the source-domain data in the form of model and transfer 

knowledge from the model to deal with the limited information of the current environment. The 

appropriate method for knowledge transfer depends on the basic learner, and the availability of labels 

in the target-domain data, not the characteristics of data. 

 

Table 4 A summary of knowledge transfer methods. 

Availability of 

Labels in Target 

Types of Changes in 

Data Properties 
Knowledge Transfer Methods 

Knowledge 

Source 

Labeled 𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇) TrAdaBoost.R2 [36] Data 

Incremental SVM [61]  

AOSVR [62]  

Online-SVR-FID [63]  

OI-SVM [64]  

LWPR [65]  

LGP [66] 

MID-SVM [67] 

Model 

Model  

Model  

Model  

Model 

Model  

Model 

𝒴𝑆 ≠ 𝒴𝑇 ILbyCC [68] 

Learn ++ [32]  

Incremental NN [69] 

NBTC [70] 

Model 

Model 

Model 

Model 

P(𝑌𝑆|𝑋𝑆) ≠ 𝑃(𝑌𝑇|𝑋𝑇) LS-SVM based Model Adaptation [7] Model 

Limited Labeled χS ≠ χT SFA [43] 

HeMap [44] 

Data 

Data 

𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇) TrAdaBoost [34] 

Multisource-TrAdaBoost [35] 

HeMap [44] 

Data 

Data 

Data 

𝒴𝑆 ≠ 𝒴𝑇 HeMap [44] Data 

P(𝑌𝑆|𝑋𝑆) ≠ 𝑃(𝑌𝑇|𝑋𝑇) CP-MDA [37] 

Domain Adaptation for NLP [38] 

Data 

Data 

Unlabeled χS ≠ χT HHTL [45] Data 

𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇) MACD [20] 

DTMKL [39] 

MMDE [40] 

JDA [41] 

ARTL [42] 

HHTL [45] 

Data 

Data 

Data 

Data 

Data 

Data 

NBTC [70] 

LWE [19] 

Model 

Model 

P(𝑌𝑆|𝑋𝑆) ≠ 𝑃(𝑌𝑇|𝑋𝑇) JDA [41] 

ARTL [42] 

Data 

Data 

4. Knowledge Transfer in Manufacturing 

 

Knowledge transfer can be an effective solution in supporting manufacturing DA. Methodologies 

[3, 85] to perform knowledge transfer for DA were previously proposed.  



  

 

Das et al. [85] proposed a methodology for adapting a predictive model to understand the process 

in unstable environments (e.g., a ramp-up phase in an assembly line) in manufacturing. A probability 

function (e.g., posterior probability function) is used to detect concept drifts of data. When the 

concept drifts are detected, it builds an adapted version of the predictive model based on the 

estimated drifts. The methodology focuses on designing a system for automatic model adaptation, 

which includes interacting mechanisms between the manufacturing processes, sensors, controllers, 

and database.  

Another methodology which is called active approach has been proposed by Dizler et al. [3] for 

updating DA models in non-stationary environments. It is similar to the methodology proposed by 

Das et al. [85], but the active approach focuses on algorithms to detect changes in data and to update 

models in detail. The active approach is divided into three phases: feature extraction, change 

detection (detector), and adaptation. The feature extraction aims at extracting features to detect 

changes and to use them for classification or regression. The change detection identifies features 

affected by the concept drift. The model adaptation phase is activated to update or rebuild DA 

models. 

The above methodologies were designed for certain scenarios; and they have some limitations 

for knowledge transfer in manufacturing. First, both methodologies only target on the events that 

cause changes in probability distributions (marginal and conditional). In manufacturing, the feature 

or label space changes occasionally, but changes in feature or label space are not considered in both 

methodologies. Second, after the changes in data properties are detected, a source and target to 

perform knowledge transfer should be defined in advance. In these methodologies, no clear guidance 

on what can be used as the knowledge source was provided. Lastly, depending on types of changes 

in data properties and availability of labeled data, available knowledge transfer methods might be 

different. However, both methodologies only provide learning algorithms that can adapt models to 

changes in probability distributions.  

In this section, we categorize types of events that cause changes in data properties in 

manufacturing processes, and present additional considerations to overcome these limitations. The 

considerations are presented within a mechanism by modifying the active approach designed by 

Dizler et al [3]. The concept of the mechanism is shown in Fig. 5, it includes three steps: detecting 

changes in data properties, defining source and target with determining difference in data properties, 

and selecting methods for knowledge transfer in manufacturing. The proposed mechanism does not 

cover entire steps for training a new model [86], it only describes steps to select knowledge transfer 

methods in non-stationary environments of manufacturing.  

 

4.1. Events Causing Changes in Data Properties in Manufacturing Process 

 

In manufacturing processes, a large amount of data is generated in the physical systems including 

machines and sensors [87, 88]. Also, data related to product designs and operation plans can be used 

together with data generated in the physical system for DA in manufacturing.   



  

 

 

Fig. 5 A mechanism for selecting knowledge transfer methods in a non-stationary environment. 

 

Properties of data generated in the manufacturing process can change when a new event occurs. 

Events causing changes in data properties can be classified into two types; predictable or 

unpredictable according to whether the occurrence of event is known in advance. For example, when 

an engineer adds a new sensor to acquire data which have not been collected in the manufacturing 

process, the activity adding a new sensor is a predictable event that causes changes in the feature 

space. When a sensor has an aging effect, the aging effect is an unpredictable event because 

engineers cannot know before changes in probability distributions of data occur.  

The definition of the structure in predictable and unpredictable events can be applied to other 

applications areas (e.g., medical healthcare and finance), but sometimes, only one of the types of 

events is predominant. For example, in the case of analyzing medical images [89], changes in data 

properties will be known in advance if different images are used for knowledge transfer. On the 

other hand, in the case of spam filtering [38], an emergence of a new type of spam can be categorized 

as an unpredictable event. 

Data of which properties often change due to the occurrence of event can be grouped into 

categories, which are quality management data (e.g., product defect), productivity and maintenance 

data (e.g., machine states), and traceability data (e.g., raw materials) [90]. Various events can cause 

changes in data properties in the manufacturing process, we describe examples of the events to help 

manufacturing engineers to understand their non-stationary environment in Table 5. Table 5 presents 

the data categories, the type of events, example events according to the data category and type of 

events, and changed data properties caused by the events. 

 

 

 



  

 

Table 5 Examples of the events that cause changes in data properties in manufacturing.  

Data 

Categories 

Type of 

Events 
Example Events 

Changed Data 

Properties 

Quality 

management 

Predictable A new type of product defect occurs due to a new 

product design being produced 

Probability 

distributions 

  Adding a new sensor to machines for detecting (or 

classifying) product defects 

Label space 

 Unpredictable Constant level of product quality cannot be 

guaranteed during the same product design being 

produced without changes in operation settings 

Label space 

Productivity & 

maintenance 

Predictable Adding a new sensor to machine for collecting a 

new data related to machine status 

Feature space 

  Data collected from machines (or sensors) is shifted 

due to machine maintenance 

Probability 

distributions 

 Unpredictable Data collected from machines (or sensors) is shifted 

due to their aging effects 

Probability 

distributions 

Traceability Predictable Patterns of product defects change due to different 

raw materials of products being used 

Probability 

distributions 

 

 

4.2. A Mechanism for Selecting Knowledge Transfer Methods 

 

In this section, we present a mechanism for selecting methods to perform knowledge transfer in 

manufacturing.  

 

4.2.1. Detecting Changes in Data Properties 

 

Detecting changes in data properties phase focuses on whether a change has happened and what has 

changed. Depending on the types of events (predictable or unpredictable), approaches to detect the 

events causing changes in data properties are different. In case of the predictable events, it is a 

straightforward task to detect when the changes in data properties occur because engineers have 

known when the events will occur. To assert changes in the feature or label space, comparing the 

feature or label space of the previous event with the post event can be used. Changes in probability 

distributions can be detected by comparing the previous and post events using statistical techniques 

summarized by Dizler et al. [3]. 

In case of the unpredictable events, monitoring of the manufacturing process is necessary to 

detect when data properties have changed. To assert changes in the feature or label space, monitoring 

only needs to check whether data corresponding to the features or labels is being collected. Changes 

in probability distributions can be detected using the scoring results of the DA model being used in 

the manufacturing process. When the results of the model deviate from the predefined accuracy 

boundary, it means that newly-collected data used for scoring have different data properties 

compared to data used to train the model. The point at which a new model is needed can be used as 

the occurrence of the event. If a model being used does not exist, statistical techniques [3] can be 

used to determine when the new model is needed.  



  

 

4.2.2. Defining Source and Target 

 

Once changes in data properties are detected, the source and target for knowledge transfer should be 

defined. The source and target can be identified based on the occurrence of the event. The data or 

model of the previous events (the old environment) belong to the source-domain data or source 

model, while data of the post event can belong to the target-domain data.  

First of all, differences in the feature and label spaces should be determined because the 

distributions of data depend on the features and labels. We assume that the label space is determined 

by a set of labels used when collecting data in the manufacturing process. The difference in the label 

space can be determined by comparing the labels in the source and target. To define the difference 

in the feature space, features to be used in the target are determined in advance. Features for training 

the model can be selected through methods summarized by Guyon and Elisseeff [91]. The authors 

categorized the methods into three approaches: variable ranking, subset selection, and space 

dimensionality reduction. However, there are additional considerations to determine the feature 

space of the target domain. Four possible cases (see. Fig. 6) exist depending on the availability of 

the source-domain features in the target domain. 

 

 

Fig. 6 Relations of available features between the source and target domains. 

 

When all features of the source domain exist in the target domain (see Fig. 6 (a)), the features of 

the source domain are a subset of the features of the target domain. When the target features are 

identical to the source features, we can use knowledge transfer methods by adjusting differences in 

distributions. On the other hand, for example, if the correlation between the feature 𝑥2
T and target 



  

 

labels are high enough, the features of the target domain can be {𝑥1
C, 𝑥2

C, 𝑥3
C, 𝑥2

T}. When more features 

that only exist in the target domain are included in the feature space of the target, more data of the 

target domain can be utilized. However, the difference between the source and target domains will 

increase.  

When some features of the source domain do not exist in the target domain (see Fig. 6 (b) and 

(c)), the feature spaces of the source and target domains are always different. Thus, in both cases, it 

is not easy to use models as the knowledge source. Two different types of features exist in the target 

domain: features which are elements of the intersection of the source and target domains and features 

which are only elements of the target domain. Similar to the case of Fig. 6 (a), when more features 

that exist in both domains are used, the source and the target become more similar. On the other 

hand, when more features that only exist in the target domain are used, more target data can be 

utilized, but the difference between the source and target domains will increase. 

When there is no element in the intersection of the source and target domains (see Fig. 6 (d)), 

then the selected features of the source and target are completely different. Unlike the above three 

cases, the features of the source domain do not need to be considered. The feature space of the target 

domain can be determined in the same way of selecting features in the source domain. In this case, 

knowledge transfer from source domain to target domain would be more challenging [21]. 

We assume that the feature space of the source does not change. Target features can be 

determined by considering four cases above. Once the features of the target are determined, 

differences in marginal and conditional probability distributions are defined according to the 

selected target features. In case of the target features that exist in both the source and target, 

differences in distributions can be defined using methods summarized by Cha [92]. If the target 

features do not exist in the source, differences in distributions cannot be defined due to the lack of 

features to be compared.  

 

4.2.3. Selecting Knowledge Transfer Methods 

 

After defining source and target, knowledge transfer method selection is performed by first 

identifying the availability of labeled data in the target domain. The availability of labeled data in 

the target domain can be determined by considering the expected profit of DA with labeled data and 

the expected time (cost) to get the labels. If newly-collected data is not labeled, we should decide 

whether it is worth collecting labelled data. When the profit is smaller than the loss, using limited 

labeled or unlabeled target-domain data would be appropriate for avoiding time investment in 

labelling target-domain data. However, it is often difficult to get the value of profit and loss, the 

availability of labeled data might rely on domain experts’ knowledge and experiences. 

The availability of labeled data in the target domain and the difference in data properties are 

considered to choose appropriate knowledge transfer methods. Table 4 summarizes knowledge 

transfer methods using the above two major factors, thus referring Table 4 can be a possible way to 

choose a method for knowledge transfer. Even if the availability of labeled data and difference in 

data properties are identical, there could be methods transferring knowledge from different 

knowledge sources. When the time requirement of the model adaptation is important and changes in 

environments occur frequently, it is appropriate to select methods using a model as the knowledge 



  

 

source to update the model continuously, that is, using model as the knowledge source follows the 

learning strategy of online (incremental) learning.  

When choosing a method from Table 4, Tables 2 and 3 are used to get related information for the 

method. In some cases, it may be necessary to modify the knowledge transfer method depending on 

specific needs. 

 

5. Conclusions and Future Work 

 

Since most manufacturers are facing competitive markets, continuous changes in the product design 

or production process occur to add value to products. Continuous changes in product design and 

production process also cause changes in data generation, collection, and processing. In this regard, 

it has become important for DA models to have the capability of responding to continuous and rapid 

changes in data. In case of degradation in the accuracy of the DA model(s) due to non-stationary 

data generation and collection environment(s), knowledge transfer could be a good approach to train 

or update a DA model using knowledge from source data or model, with limited information from 

the new environment. Knowledge transfer allows a new DA model to be trained efficiently and 

effectively in non-stationary environments.  

In this paper, we have explained the concept of knowledge transfer, and reviewed several 

knowledge transfer methods that are widely used in various applications. Also, we have introduced 

benefits of knowledge transfer, and summarized examples of transferred knowledge. Knowledge 

transfer methods are reviewed considering three factors: knowledge sources, types of non-stationary 

environments, and availability of labeled data. Among these three factors, we have distinguished 

knowledge transfer methods based on ‘what to transfer’ (knowledge sources), and investigated the 

methods corresponding to each source. From the summary of the methods, we have presented a 

mechanism to select knowledge transfer methods for manufacturing DA with benefits of reducing 

or eliminating the degradation in the accuracy of the model in presence of non-stationary 

environments. 

The studies surveyed in this paper have mainly concentrated on problems of classification and 

regression. Knowledge transfer methods related to clustering problems have not been discussed 

although clustering algorithms have been used for certain manufacturing problems. Knowledge 

transfer methods can be selected based on the proposed mechanism, however, a more in-depth 

theoretical analysis of a generated and extended mechanism to utilize knowledge transfer is required 

and is under development. The extended mechanism will include a guideline to locate a similar 

source for knowledge transfer to decrease the negative impact. 

Knowledge transfer of DA models is a relatively new paradigm in the manufacturing. This paper 

can be seen as an initial step towards understanding knowledge transfer and its requirements for 

manufacturing problems. To utilize knowledge transfer, data and models should be properly stored. 

In the case of data, storing all generated data points is expensive. It would be cost effective if data 

is stored in a form that can represent whole data points while reducing the size of data. Also, there 

could be a difference between scoring engines and communication protocols. If the model 

presentation is not interoperable, additional time might be required to interpret the model before 

knowledge transfer. Thus, to store models using a standard format (e.g., Predictive Model Markup 

Language by Data Mining Group) would enable practitioners to deploy DA models in a faster and 



  

 

easier way. Designing a repository to store data and models appropriately is considered as a future 

work. Additionally, similarity measures to find appropriate sources whose information is stored in 

the repository will be considered. To measure the similarity between the source and target in 

manufacturing, the context (e.g., what and how-to machine) as well as characteristics of data (e.g., 

feature and label spaces, distributions) should also be taken into consideration. It is necessary to 

understand the contribution of the features in the manufacturing context. Thus, developing a 

similarity analysis method to compare manufacturing environments for knowledge transfer would 

be an important topic of future research.   
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the views of NIST or any other supporting U.S. government or corporate organizations.  

 

 

References 

 

[1] Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in predictive manufacturing 

systems in big data environment. Manufacturing Letters, 10(1), 38-41.  

[2] Harding, J. A., Shahbaz, M., Srinivas, & Kusiak, A. (2006). Data mining in manufacturing: A review. 

Journal of Manufacturing Science and Engineering, 128(4), 969–976.  

[3] Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary environments: A survey. 

IEEE Computational Intelligence Magazine, 10(4), 12–25.  

[4] He, S.-G., He, Z., & Wang, G. A. (2013). Online monitoring and fault identification of mean shifts in 

bivariate processes using decision tree learning techniques. Journal of Intelligent Manufacturing, 24(1), 

25–34.  

[5] Ramakrishnan, N., & Ghosh, R. (2015). Distributed dynamic elastic nets: A scalable approach for 

regularization in dynamic manufacturing environment. In IEEE 2015 Conference on Big Data (pp. 2752-

2761). Santa Clara. 

[6] Sankavaram, C., Kodali, A., Pattipati, K. R., & Singh, S. (2015). Incremental classifiers for data-driven 

fault diagnosis applied to automotive systems. IEEE Access, 3, 407–419.  

[7] Seera, M., Lim, C. P., & Loo, C. K. (2016). Motor fault detection and diagnosis using a hybrid FMM-

CART model with online learning. Journal of Intelligent Manufacturing, 27(6), 1273–1285.  

[8] Moyne, J., Samantaray, J., & Armacost, M. (2016). Big data capabilities applied to semiconductor 

manufacturing advanced process control. IEEE Transactions on Semiconductor Manufacturing, 29(4), 

283–291. 

[9] Windmann, S., Maier, A., Niggemann, O., Frey, C., Bernardi, A., Gu, Y., Pfrommer, H., Steckel, T., Krüger, 

M., & Kraus, R. (2015). Big data analysis of manufacturing processes. Journal of Physics: Conference 

Series 659(1), 1-12. 

[10] Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data 

Engineering, 22(10), 1345–1359. 



  

 

[11] Gepperth, A., & Hammer, B. (2016). Incremental learning algorithms and applications. In Proceedings 

of the 24th European Symposium on Artificial Neural Networks, Computational Intelligence, and 

Machine Learning. Bruges. 

[12] Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., & Zhang, G. (2015). Transfer learning using computational 

intelligence: A survey. Knowledge-Based Systems, 80, 14–23. 

[13] Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data 

3(9), 1-40. 

[14] Giraud-Carrier, C. (2000). A note on the utility of incremental learning. AI Communications, 13(4), 215–

223. 

[15] Joshi, P., & Kulkarni, P. (2012). Incremental learning: Areas and methods – A survey. International 

Journal of Data Mining & Knowledge Management Process, 2(5), 43–51. 

[16] Tsymbal, A. (2004). The problem of concept drift: Definitions and related work. Computer Science 

Department, Trinity College Dublin, 106(2). 

[17] Kang, S. (2018). On effectiveness of transfer learning approach for neural network-based virtual 

metrology modeling. IEEE Transactions on Semiconductor Manufacturing. 31(1). 149-155. 

[18] Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Morgan and Claypool 

Publishers. 

[19] Gao, J., Fan, W., Jiang, J., & Han, J. (2008). Knowledge transfer via multiple model local structure 

mapping. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery 

and data mining (pp. 283-291). Las Vegas. 

[20] Hu, K., Zhang, Y., & Hu, X. (2012). A multi-domain adaptation for sentiment classification algorithm 

based on class distribution. In IEEE 2012 Conference on Granular Computing (pp. 179-184). Hangzhou. 

[21] Blitzer, J., McDonald, R., & Pereira, F. (2006). Domain adaptation with structural correspondence 

learning. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing 

(pp. 120-128). Sydney. 

[22] Wuest, T., Weimer, D., Irgens, C., & Thoben, K.-D. (2016). Machine learning in manufacturing: 

advantages, challenges, and applications. Production and Manufacturing Research, 4(1), 23-45. 

[23] Lu, S. C.-Y. (1990). Machine learning approaches to knowledge synthesis and integration tasks for 

advanced engineering automation. Computers in Industry, 15(1-2), 105-120. 

[24] Ferguson, M., Ak, R., Lee, Y.-T. T., & Law, K. H. (2017). Automatic localization of casting defects with 

convolutional neural networks. In IEEE 2017 Conference on Big Data (pp. 1726-1735). Boston. 

[25] Pulong, G., Jiancheng, S., Chunyu, X., & Yu, Z. (2016). Fault pattern recognition method for the high 

voltage circuit breaker based on the incremental learning algorithms for SVM. In Proceedings of the 2016 

International Conference on Condition Monitoring and Diagnosis (pp. 693-696). Xi’an. 

[26] Vilakazi, C. B., & Marwala, T. (2007). Online incremental learning for high voltage bushing condition 

monitoring. In Proceedings of the 2007 International Joint Conference on Neural Networks. Orlando. 

[27] Yu, J. (2017). Adaptive hidden Markov model-based online learning framework for bearing faulty 

detection and performance degradation monitoring. Mechanical Systems and Signal Processing, 83, 149–

162. 

[28] Malaca, P., Rocha, L. F., Gomes, D., Silva, J., & Veiga, G. (2016). Online inspection system based on 

machine learning techniques: Real case study of fabric textures classification for the automotive industry. 

Journal of Intelligent Manufacturing, 1–11. 

[29] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an 

application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. 

[30] Muhlbaier, M. D., Topalis, A., & Polikar, R. (2009). Learn++ .NC: Combining ensemble of classifiers 

with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE 

Transactions on Neural Networks, 20(1), 152–168. 



  

 

[31] Bashiri, M., Badri, H., & Hejazi, T. H. (2011). Selecting optimum maintenance strategy by fuzzy 

interactive linear assignment method. Applied Mathematical Modelling, 35(1), 152–164. 

[32] Polikar, R., Udpa, L., Udpa, S. S., & Honavar, V. (2001). Learn++: An incremental learning algorithm 

for supervised neural networks. IEEE Transactions on Systems, Man and Cybernetics Part C: 

Applications and Reviews, 31(4), 497–508. 

[33] Wali, A., & Alimi, A. M. (2010). Incremental learning approach for events detection from large video 

dataset. In IEEE 2010 Conference on Advanced Video and Signal Based Surveillance (pp. 555-560). 

Boston.  

[34] Dai, W., Yang, Q., Xue, G.-R., & Yu, Y. (2007). Boosting for transfer learning. In Proceedings of the 

24th International Conference on Machine Learning (pp.193-200). Corvalis. 

[35] Yao, Y., & Doretto, G. (2010). Boosting for transfer learning with multiple sources. In IEEE 2010 

Conference on Computer Vision and Pattern Recognition (pp. 1855-1862). San Francisco. 

[36] Pardoe, D., & Stone, P. (2010). Boosting for regression transfer. In Proceedings of the 27th International 

Conference on Machine Learning (pp. 863-870). Haifa. 

[37] Chattopadhyay, R., Ye, J., Panchanathan, S., Fan, W., & Davidson, I. (2012). Multi-source domain 

adaptation and its application to early detection of fatigue. ACM Transactions on Knowledge Discovery 

from Data (TKDD), 6(4), 18. 

[38] Jiang, J., & Zhai, C. (2007). Instance weighting for domain adaptation in NLP. In Proceedings of the 45th 

Annual Meeting of the Association for Computational Linguistics (pp. 264-271). Prague. 

[39] Duan, L., Tsang, I. W., & Xu, D. (2012). Domain transfer multiple kernel learning. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 34(3), 465–479. 

[40] Pan, S. J., Kwok, J. T., & Yang, Q. (2008). Transfer learning via dimensionality reduction. In Proceedings 

of the 23th AAAI conference on Artificial Intelligence (pp. 677-682). Chicago. 

[41] Long, M., Wang, J., Ding, G., Sun, J., & Yu, P. S. (2013). Transfer feature learning with joint distribution 

adaptation. In IEEE 2013 Conference on Computer Vision (pp. 2200-2207). Sydney. 

[42] Long, M., Wang, J., Ding, G., Pan, S. J., & Yu, P. S. (2014). Adaptation regularization: A general 

framework for transfer learning. IEEE Transactions on Knowledge and Data Engineering, 26(5), 1076–

1089. 

[43] Pan, S. J., Ni, X., Sun, J.-T., Yang, Q., & Chen, Z. (2010). Cross-domain sentiment classification via 

spectral feature alignment. In Proceedings of the 19th International Conference on World Wide Web (pp. 

751-760). Raleigh. 

[44] Shi, X., Liu, Q., Fan, W., Yu, P. S., & Zhu, R. (2010). Transfer learning on heterogenous feature spaces 

via spectral transformation. In IEEE 2010 Conference on Data Mining (pp. 1049-1054). Sydney. 

[45] Zhou, J. T., Pan, S. J., Tsang, I. W., & Yan, Y. (2014). Hybrid heterogeneous transfer learning through 

deep learning. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (pp. 2213-2220). 

Quebec. 

[46] Rettinger, A., Zinkevich, M., & Bowling, M. (2006). Boosting expert ensembles for rapid concept recall. 

In Proceedings of the 21th National Conference on Artificial Intelligence (pp. 464-469). Boston. 

[47] Drucker, H. (1997). Improving regressors using boosting techniques. In Proceedings of the 14th 

International Conference on Machine Learning (pp.107-115). San Francisco. 

[48] Duan, L., Tsang, I. W., Xu, D., & Chua, T.-S. (2009). Domain adaptation from multiple sources via 

auxiliary classifiers. In Proceedings of the Annual International Conference on Machine Learning (pp. 

289-296). Montreal. 

[49] Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 20(3), 226–239. 

[50] Vapnik, V. (1992). Principles of risk minimization for learning theory. In Advances in Neural Information 

Systems 4 (pp. 831-838). Morgan Kaufmann. 



  

 

[51] Bruzzone, L., & Marconcini, M. (2010). Domain adaptation problems: A DASVM classification 

technique and a circular validation strategy. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 32(5), 770–787. 

[52] Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M., & Scholkopf, B. (2007). Correcting sample 

selection bias by unlabeled data. In Advances in Neural Information Processing Systems 19 (pp. 601-

608). Cambridge: MIT Press. 

[53] Jiang, W., Zavesky, E., Chang, S.-F., & Loui, A. (2008). Cross-domain learning methods for high-level 

visual concept classification. In IEEE 2008 Conference on Image Processing (pp. 161-164). San Diego. 

[54] Yang, J., Yan, R., & Hauptmann, A. G. (2007). Cross-domain video concept detection using adaptive 

SVMs. In Proceedings of the 15th ACM International Conference on Multimedia (pp. 188-197). 

Augsburg. 

[55] Daumé III, H. (2007). Frustratingly easy domain adaptation. In Proceedings of the 45th Annual Meeting 

of the Association for Computational Linguistics (pp. 256-263). Prague. 

[56] Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. J. (2007). A kernel method for 

the two-sample-problem. In Advances in Neural Information Processing Systems 19 (pp. 513-520). 

Cambridge: MIT Press. 

[57] Pan, S. J., Tsang, I. W., Kwok, J. T., & Yang, Q. (2011). Domain adaptation via transfer component 

analysis. IEEE Transactions on Neural Networks, 22(2), 199–210. 

[58] Si, S., Tao, D., & Geng, B. (2010). Bregman divergence-based regularization for transfer subspace 

learning. IEEE Transactions on Knowledge and Data Engineering, 22(7), 929–942. 

[59] Shi, X., Liu, Q., Fan, W., Yang, Q., & Philip, S. Y. (2010). Predictive modeling with heterogeneous 

sources. In Proceedings of the 10th SIAM International Conference on Data Mining (pp. 814-825). 

Columbus. 

[60] Vinokourov, A., Shawe-Taylor, J. S., & Cristianini, N. (2003). Inferring a semantic representation of text 

via cross-language correlation analysis. In Advances in Neural Information Processing Systems 15 (pp. 

1497-1504). Cambridge: MIT Press. 

[61] Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental support vector machine learning. 

In Advances in Neural Information Processing Systems 13 (pp. 388-394). Cambridge: MIT Press. 

[62] Ma, J., Theiler, J., & Perkins, S. (2003). Accurate on-line support vector regression. Neural computation, 

15(11), 2683–2703. 

[63] Liu, J., & Zio, E. (2016). An adaptive online learning approach for support vector regression: Online-

SVR-FID. Mechanical Systems and Signal Processing, 76–77, 796–809. 

[64] Zheng, J., Shen, F., Fan, H., & Zhao, J. (2013). An online incremental learning support vector machine 

for large-scale data. Neural Computing and Applications, 22(5), 1023–1035. 

[65] Vijayakumar, S., & Schaal, S. (2000). Locally weighted projection regression: An O(n) algorithm for 

incremental real time learning in high dimensional space. In Proceedings of the 17th International 

Conference on Machine Learning (pp. 283-293). Stanford. 

[66] Nguyen-Tuong, D., Seeger, M., & Peters, J. (2009). Model learning with local Gaussian process 

regression. Advanced Robotics, 23(15), 2015–2034. 

[67] Karasuyama, M., & Takeuchi, I. (2010). Multiple incremental decremental learning of support vector 

machines. IEEE transactions on neural networks, 21(7), 1048–1059. 

[68] Wen, Y.-M., & Lu, B.-L. (2007). Incremental learning of support vector machines by classifier combining. 

In Proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 904-

911). Nanjing. 

[69] Bruzzone, L., & Fernàndez Prieto, D. (1999). Incremental-learning neural network for the classification 

of remote-sensing images. Pattern Recognition Letters, 20(11–13), 1241–1248. 

[70] Dai, W., Xue, G.-R., Yang, Q., & Yu, Y. (2007). Transferring naive bayes classifiers for text classification. 

In Proceedings of the 22nd National Conference on Artificial Intelligence (pp.540-545). Vancouver. 



  

 

[71] Tommasi, T., Orabona, F., & Caputo, B. (2010). Safety in numbers: Learning categories from few 

examples with multi model knowledge transfer. In IEEE 2010 Conference on Computer Vision and 

Pattern Recognition (pp. 3081-3088). San Francisco. 

[72] Diehl, C. P., & Cauwenberghs, G. (2003). SVM incremental learning, adaptation and optimization. In 

Proceedings of the International Joint Conference on Neural Networks (pp.2685-2690). Portland. 

[73] Baudat, G., & Anouar, F. (2003). Feature vector selection and projection using kernels. Neurocomputing, 

55(1–2), 21–38. 

[74] Kivinen, J., Smola, A. J., & Williamson, R. C. (2004). Online learning with kernels. IEEE Transactions 

on Signal Processing, 52(8), 2165–2176. 

[75] Csató, L., & Opper, M. (2002). Sparse online Gaussian processes. Neural Computation, 14(3), 641–668. 

[76] Vaerenbergh, S. V., Lazaro-Gredilla, M., & Santamaria, I. (2012). Kernel recursive least-squares tracker 

for time-varying regression. IEEE Transactions on Neural Networks and Learning Systems, 23(8), 1313–

1326. 

[77] Schaal, S., Atkeson, C. G., & Vijayakumar, S. (2002). Scalable techniques from nonparametric statistics 

for real time robot learning. Applied Intelligence, 17, 49–60. 

[78] Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions 

on Intelligent Systems and Technology, 2(3), 1–27. 

[79] Xu, L., Krzyżak, A., & Suen, C. Y. (1992). Methods of combining multiple classifiers and their 

applications to handwriting recognition. IEEE Transactions on Systems, Man and Cybernetics, 22(3), 

418–435. 

[80] Muhlbaier, M., Topalis, A., & Polikar, R. (2004). Learn++.MT: A new approach to incremental learning. 

In International Workshop on Multiple Classifier Systems (pp. 52-61). Cagliari. 

[81] Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary environments. 

IEEE Transactions on Neural Networks, 22(10), 1517–1531. 

[82] Joachims, T. (1999). Transductive inference for text classification using support vector machines. In 

Proceedings of the 16th International Conference on Machine Learning (pp. 200-209). Bled. 

[83] Nigam, K., Maccallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and 

unlabeled documents using EM. Machine Learning, 39(2), 103–134. 

[84] Cawley, G. C. (2006). Leave-one-out cross-validation based model selection criteria for weighted LS-

SVMs. In Proceedings of the International Joint Conference on Neural Networks (pp. 1661-1668). 

Vancouver. 

[85] Das, S., Lade, P., Srinivasan, S., & Ghosh, R. (2017). Model adaption and online learning for unstable 

environments. United States Patent US 2017/0206469. 

[86] Kurgan, L., & Musilek, P. (2006). A survey of knowledge discovery and data mining process models. 

The knowledge Engineering Review. 21(1). 1-24. 

[87] Liu, M., Ma, J., Lin, L., Ge, M., Wang, Q., & Liu, C. (2017). Intelligent assembly system for mechanical 

products and key technology based on internet of things. Journal of Intelligent Manufacturing, 28(2), 

271–299. 

[88] Lechevalier, D. Narayanan, A., Rachuri, S., & Foufou, S. (2018). A methodology for the semi-automatic 

generation of analytics models in manufacturing. Computers in Industry, 95, 54-67. 

[89] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A., 

van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis, 42, 60-

88. 

[90] Cutting-Decelle, A. F., Barraud, J. L., Veenenbaal, B., & Young, R. I. (2012). Production information 

interoperability over the internet: A standardized data acquisition tool developed for industries enterprises. 

Computers in Industry, 63, 824-834. 

[91] Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine 



  

 

Learning Research, 3, 1157–1182. 

[92] Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between probability density 

functions. International Journal of Mathematical Models and Methods in Applied Sciences, 4(1), 300-

307. 


