CIMATER
INTRLH KTEL

International Journal of Computer Integrated

wwaswen: | Manufacturing

ISSN: 0951-192X (Print) 1362-3052 (Online) Journal homepage: https://www.tandfonline.com/loi/tcim20

Taylor & Francis

Taylor & Francis Group

Factory optima: a web-based system for
composition and analysis of manufacturing service
networks based on a reusable model repository

Alexander Brodsky, Mohamad Omar Nachawati, Mohan Krishnamoorthy,
William Z. Bernstein & Daniel A. Menascé

To cite this article: Alexander Brodsky, Mohamad Omar Nachawati, Mohan Krishnamoorthy,
William Z. Bernstein & Daniel A. Menascé (2019): Factory optima: a web-based system

for composition and analysis of manufacturing service networks based on a reusable

model repository, International Journal of Computer Integrated Manufacturing, DOI:
10.1080/0951192X.2019.1570805

To link to this article: https://doi.org/10.1080/0951192X.2019.1570805

@ Published online: 06 Feb 2019.

N
CJ/ Submit your article to this journal &

P

() View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=tcim20

https://www.tandfonline.com/action/journalInformation?journalCode=tcim20
https://www.tandfonline.com/loi/tcim20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0951192X.2019.1570805
https://doi.org/10.1080/0951192X.2019.1570805
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2019.1570805&domain=pdf&date_stamp=2019-02-06
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2019.1570805&domain=pdf&date_stamp=2019-02-06

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING
https://doi.org/10.1080/0951192X.2019.1570805

Taylor & Francis
Taylor &Francis Group

ARTICLE

W) Check for updates

Factory optima: a web-based system for composition and analysis of manufacturing
service networks based on a reusable model repository

Alexander Brodsky
and Daniel A. Menascé ©®°

3, Mohamad Omar Nachawati®, Mohan Krishnamoorthy?, William Z. Bernstein®

aDepartment of Computer Science, George Mason University, Fairfax, VA, USA; PSystems Integration Division, NIST, Gaithersburg, MD, USA

ABSTRACT

This paper reports on the development of Factory Optima, a web-based system that allows manufac-
turing process engineers to compose, optimise and perform trade-off analysis of manufacturing and
contract service networks based on a reusable repository of performance models. Performance models
formally describe process feasibility constraints and metrics of interest, such as cost, throughput and
CO, emissions, as a function of fixed and control parameters, such as equipment and contract proper-
ties and settings. The repository contains performance models representing (1) unit manufacturing
processes, (2) base contract services and (3) a composite steady-state service network. The proposed

ARTICLE HISTORY
Received 3 July 2018
Accepted 14 December 2018

KEYWORDS

Performance models; model
repository; optimisation;
analytics; decision support;
service composition

framework allows process engineers to hierarchically compose model instances of service networks,
which can represent production cells, lines, factory facilities and supply chains, and perform determi-
nistic optimisation based on mathematical programming and Pareto-optimal trade-off analysis. Factory
Optima is demonstrated using a case study of a service network for a heat sink product which involves
contract vendors and manufacturing activities, including cutting, shearing, Computer Numerical Control
(CNC) machining with milling and drilling operations, quality inspection, finishing, and assembly.

1. Introduction

Smart manufacturing can be defined as ‘the synthesis of
advanced manufacturing capabilities and digital technologies
to improve the productivity, agility, and sustainability of man-
ufacturing systems’ (Helu and Hedberg 2015). To realise such
a vision, the digitisation of manufacturing environments is
a necessity. One method for realising a smart manufacturing
ecosystem is to employ an over-arching cloud-based infra-
structure that supports decision-making (Wu et al. 2013).
Such infrastructure must support a wide variety of analytical
tasks across the entire organisational hierarchy, including
manufacturing units, cells, production lines, factories and sup-
ply chains (Salvendy 2001). Considering the plethora of poten-
tial players across an enterprise’s supply chain, it is critical to
effectively and efficiently combine manufacturing services ...
in multiple-factory production environments’ (Wu et al. 2013).
Developing tools and methods for service composition remains
an ongoing research area and requires generic and robust
model representations to perform advanced analysis, e.g. opti-
misation (Wu et al. 2013).

Cloud-enabled manufacturing has already shown significant
promise through the deployment of distributed computing
resources (Xu 2012). In the Prognostics and Health
Management (PHM) community specifically, recent develop-
ments aim to build fully aware and resilient manufacturing
systems that react quickly and appropriately to environmental
signals through cloud-based resources (Lee et al. 2014). Wu
et al. (2018) demonstrated the use of the cloud for performing
advanced data analytics to predict tool wear during machining

operations (Wu et al. 2018). However, lack of standard guide-
lines for the underlying architecture, such as sensor selection,
data transmission and database creation, limit cloud-based
architectures’ scalability, reproducibility and interoperability
(Gao et al. 2015; Lee 2003). This leads to high-cost and long-
duration development of manufacturing analysis and optimisa-
tion solutions, and results in models and algorithms that are
difficult to modify, extend and reuse. A key contributor to these
deficiencies is the diversity of underlying computational tools,
each designed for a different task such as data manipulation,
statistical learning, data mining, optimisation and simulation.
Because of this diversity, modelling using computational tools
often requires the use of specialised low-level mathematical
abstractions. As a result, the same manufacturing knowledge
is often modelled multiple times wusing different
specialised abstractions, instead of being modelled once using
a uniform abstraction. Moreover, the modelling expertise
required for the low-level abstractions and languages is typi-
cally not within the realm of knowledge of manufacturing users.
A recent state-of-the-art review on cloud manufacturing
emphasised these points by listing six primary research direc-
tions (He and Xu 2015): (1) additional standards development,
(2) multi-cloud integration, (3) security policies, (4) resource
utility management, (5) systems integration and (6) stakeholder
adoption. Echoing these challenges, Ren et al. presented the
primary characteristics associated with fully implementing
a cloud manufacturing environment, across the entirety of
a large aerospace company operating over 600 subsidiary com-
panies (Ren et al. 2017).

CONTACT Alexander Brodsky @ brodsky@gmu.edu
© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-0312-2105
http://orcid.org/0000-0002-4085-6212
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2019.1570805&domain=pdf

2 (&) A BRODSKY ET AL.

Solving the core challenges of the digitisation of manufac-
turing and promoting flexibility and more rapid innovation
can be facilitated by modular simulation and modelling tech-
niques (Brettel et al. 2014). Recently, work has focused on
realising fundamental techniques in this direction. For exam-
ple, Otto et al. presented a simulation-based method that
attempts to re-use existing software components used to
formally characterise seemingly disparate production realisa-
tions to test new reconfiguration designs (Otto, Vogel-Heuser,
and Niggemann 2018). Similarly, Denno and Kim presented an
ontology-based approach for re-using components of predic-
tive models for optimising the performance of a selective laser
sintering process (Denno and Kim 2016). However, while simu-
lation-based modelling approaches have advantages of mod-
ularity, reusability and easy visualisation, simulation-based
optimisation is inferior to mathematical programming (MP)
solvers. In terms of quality of optimisation results and compu-
tational efficiency, MP solvers significantly outperform simula-
tion-based solvers for optimisation problems expressed in
closed analytic form (Amaran et al. 2016; Klemmt et al. 2009).

In response to these trends, the focus of this paper is the
development of a standards-oriented approach for the reusa-
bility and reproducibility of manufacturing process models, and
composable service network models. This approach is based on
adopting an extension of the unit manufacturing process (UMP)
information model (Bernstein, Lechevalier, and Libes 2018;
ASTM International 2016), a standard representation of process
models designed for reusability. The key idea is to allow mod-
ular, composable and reusable simulation-like predictive mod-
els, yet to achieve the performance of MP solvers through
symbolic analysis of simulation code to machine-generate MP
models that are optimised using MP solvers.

The proposed approach follows the idea of an architectural
design of Brodsky et al. (2017) proposed for the fast develop-
ment of software solutions for descriptive (‘what happened?’),
diagnostic (‘why did it happen?’), predictive (‘what will hap-
pen?’) and prescriptive (‘how to make it happen optimally?’)
analytics of dynamic production processes based on
a reusable, modular and extensible knowledge base (KB) of
simulation-like process performance models, and machine
translatable into MP models. However, Brodsky et al. (2017)
lacked a systematic design of a UMP repository and its archi-
tecture, and an ecosystem around it. Furthermore, the UMP
models were abstracted in Brodsky et al. (2017) by piecewise-
linear functions whereas real-world process models, which are
typically physics-based, require non-linear arithmetic.

To address these limitations, a software architecture
reported in Brodsky et al. (2016a) was developed for a software
architecture for (1) a reusable repository of UMP performance
models and (2) their analysis and optimisation using the Unity
Decision Guidance Management System (Unity DGMS). Unity
DGMS is an integrated analytics platform that aims to simplify
the development of intelligent, decision-making systems
(Nachawati, Brodsky, and Luo 2017). The architecture was
demonstrated using the case of Computer Numerical Control
(CNC) machining. However, Brodsky et al. (2016a) did not
address the important problem of how to compose reusable
UMP models into a hierarchy of service networks, including
production cells, lines, factories and supply chain.

To overcome this, in Brodsky et al. (2017) the authors
reported on extending the functionality developed in
Brodsky et al. (2016a) with a software framework that allows
hierarchical composition of service networks based on
a reusable model repository for (1) production services, such
as manufacturing processes, assembly and inspection and (2)
contract services, such as vending, manufacturing, packaging,
repair and transportation. However, to compose such service
networks and to perform analysis, Brodsky et al. (2017) pro-
vided a low-level Integrated Development Environment (IDE)
user-interface. Such an interface is not suitable for end users
such as process engineers and operators, who do not have
a software development background. Lifting this limitation is
exactly the focus of this paper.

More specifically, the contribution of this paper is the design
and development of Factory Optima, a web-based system that
allows manufacturing process engineers to compose, optimise
and perform trade-off analysis of manufacturing and contract
service networks based on a reusable repository of performance
models. Performance models formally describe process feasibil-
ity constraints and metrics of interest, such as cost, throughput
and CO, emissions, as a function of fixed and control parameters,
such as equipment and contract properties and settings. The
repository contains performance models representing (1) unit
manufacturing processes, (2) base contract services and (3)
a composite steady-state service network.

Factory Optima allows process engineers to hierarchically
compose model instances of service networks, which can
represent production cells, lines, factory facilities and supply
chains, and perform deterministic optimisation and Pareto-
optimal trade-off analysis. Factory Optima is demonstrated
using a case study of a service network for a heat sink product
which involves contract vendors and manufacturing activities,
including cutting, shearing, Computer Numerical Control
(CNC) machining with milling and drilling operations, quality
inspection, finishing, and assembly.

The novelty and uniqueness of Factory Optima are in its
ability to perform optimisation and trade-off analysis on
arbitrary user-composed service networks, similar to flexible
and modular simulation-based approaches, yet achieving the
quality of optimisation results and computational efficiency
of mathematical programming solvers, which significantly
outperform simulation-based solvers (e.g. (Amaran et al.
2016) and (Klemmt et al. 2009)). This unique capability of
Factory Optima is achieved by machine generation of math-
ematical programming models, instead of manually crafting
them - a demanding task which is typically outside the skill
set of process engineers. This paper can be viewed as
a significant extension of the authors’ conference publication
(Brodsky et al. 2017).

The rest of the paper is organised as follows. Section 2
presents the concept of manufacturing and contract service
networks, and outlines its possible ecosystem and workflows.
Section 3 presents the system functionality through a case
study of a service network of a heat sink assembly. Section 4
overviews the software architecture for the system. Section 5
presents the service network performance model and
explains its structure. Section 6 concludes with some future
research directions.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 3

2. Service networks: ecosystem and workflows

In the proposed framework, the manufacturing activity is
represented as a network of service-oriented components
that are linked together to produce products or product
service systems (PSS) to meet some specified demand. In
the performance model knowledge base, this network is
referred to as the Service Network. Service network stake-
holders include both manufacturers and suppliers (Aurich,
Fuchs, and Wagenknecht 2006). The following terms are
used to describe the various components of a service
network.

® Vendor: describing an organisation that provides
a finished product, e.g. raw material, bar stock or fully
realised components, at some cost.

® Contract Manufacturer: describing an organisation that
provides a manufacturing service, e.g. precision welding,
mould-making and precision machining, at some cost.

® Internal Manufacturer: describing an internal activity
‘controlled’ by the original equipment manufacturer
(OEM) of the PSS.

® Production Line: describing a chain of Internal
Manufacturer activities. It is assumed that a production
line is also ‘controlled’ by the OEM.

These terms are used to describe various decision paths to
realise the delivery of the PSS based on its demand. Figure 1
provides an example of a service network for an assembly of
a heat sink product, consisting of an aluminium base, a heat
sink component and a set of fasteners. This service network
was derived to the authors’ best knowledge borrowing parts
of its configuration from literature (Tan and Khoo 2005).
Within the service network, each activity and physical good
is represented by an image and a labelled circle, respectively.
Vendors can provide raw material, i.e. Alumina Powder, or the
finished components, i.e. Accessory Package. As an example of
a contract manufacturer, the HS Base Contract Manufacture
provides the service of machining a part for the product’s

final assembly. Within service networks, it is likely that there
are multiple paths that provide the same physical good. Often,
this is referred to as a multi-echelon supply chain (Tsiakis,
Shah, and Pantelides 2001). Procuring the Heat Sink Base pre-
sents an example of such a situation. The Heat Sink Base can
either be provided by a contract manufacturer or it can be
provided by the OEM’s own production line, shown in the
dotted box in the middle of the diagram. This production
line includes two unit manufacturing processes, namely shear-
ing and drilling. Another such example is the procurement of
the Aluminum Plate, wherein the OEM operates its own smelt-
ing plant or the aluminium bar stock is cut to specifications by
another contract manufacturer. The Heat Sink’s service net-
work culminates in a relatively complex production line that
includes five activities, namely shearing, anodising, CNC
machining, quality inspection and final assembly.

After formally characterising the service network, perfor-
mance models can be constructed that represent each activity
depending on its individual characteristics. More information
on what parameters of each performance model (PM) can be
tuned to find optimal settings for the network are explained in
the following section. The concept of representing each activ-
ity as a PM introduces the possibility of posing what-if ques-
tions, optimising activity-specific parameters to meet some
global objectives and incorporating advanced analytics while
lessening the barrier to access such analysis for domain
experts, e.g. process engineers and operation managers. The
consistent representation across different manufacturing
stages offers engineers a reusable toolbox to evaluate process
designs and plans. Considering the current trends in cloud-
based manufacturing (Wu et al. 2013; Wang, Térngren, and
Onori 2015), allowing for on-demand analytics is required for
the full realisation of smart manufacturing.

The idea of invoking composite services to form a network
of services in a programmatic way through web services was
discussed in (Menasce 2004a). This along with the work in
(Menasce 2004b) discuss how global performance metrics
can be computed when analyzing a network of services. The
structure of the network and the specific performance

Aluminum Plate Contract

Alumina (L2)

e [

Alumina
Powder
Accessories (L2)
| Accessory
Package

Supply (L1)

Manufacture (L2)
(L3)

S

HS Base Contract
Manufacture (L2)

Manufacturing (L1)

Heat Sink Supply Chain (L0)

HS Base Shearing

inum
Plate

HS Base Dirilling (L3)
HS Base PL (L2)

i HS Shearing
E - (L3)
Anodizing
(L3)

-

CNC
Machining
(L3)

Demand (L1)

Heat Sink
Base

Quality
Inspection
(L3)

Finished
Heat Sink
Part

Assembly
(L3)

HS PL (L2)

Figure 1. Graphical representation of the Heat Sink service network, adopted from (Brodsky et al. 2017). Each labelled circle relates to a physical good to be
procured. All images represent individual activities. Arrows represent a possible path for procuring a physical good or meeting a specified demand. L# refers to the

hierarchical level of the service network composition.

4 A. BRODSKY ET AL.

characteristics of individual services, specified in terms of con-
tracts, are necessary to compute composite performance
metrics. In this work, a service network hierarchy is con-
structed, representing a network of manufacturing activities
recursively. The approach for service network composition is
explained in detail in Section 3.3.

3. System functionality and a case study

In this section, Factory Optima’s functionality is described from the
perspective of a process engineer that is weighing decision alter-
natives in the context of the Heat Sink service network depicted in
Figure 1. The key concept in the system is the performance model,
for a service network and its base service components, which are
described in detail in Section 5. Generally, a PM formally describes
process feasibility constraints and metrics of interest, such as cost,
throughput and CO, emissions, as a function of fixed and control
parameters, such as equipment and contract properties and set-
tings. For example, in the Heat Sink service network in Figure 1,
fixed parameters include the type of material used, its dimensions,
the number of holes during the HS Base Dirilling activity, depth of
cut in the CNC Machining activity, among others. Control para-
meters in the service network include the cutting speed in an HS
Shearing activity, cutting speed in an HS Base Drilling activity and
the amount produced by the Aluminum Plate Contract
Manufacture, to name a few.

In this section, the Factory Optima system functionality is
described using the scenario of composing and optimising the
Heat Sink service network shown in Figure 1. To compose this
service network, the system needs to recursively capture the hier-
archy of processes under the root service network process, and
capture the fixed parameters, control parameters and flow of items
among the processes using input and output flows. The optimisa-
tion problem for this scenario can be described according to the
following: find all the control parameters of the service network so
as to minimise the total cost of the service network operation
subject to the satisfaction of all feasibility constraints (of the service
network and its components, including UMPs involved).

The web-based user interface of Factory Optima is shown in
Figure 2. The toolbar at the top contains functions to create and
manage content, which are Artifact, Analytics, New, Save,
Properties, Manage and Run. To compose a service network as
the one shown in Figure 1, a process engineer uses the Artifact
function from the toolbar to create an artefact for a specific
instance for the PM input containing fixed and control parameters
of the process. To perform analysis such as optimisation over the
service network, a process engineer uses the Analytics function
from the toolbar to create an analytics input instance for the
corresponding analysis type. The New function in the toolbar
allows the creation of both instance artefacts and analytics input.
The Save, Properties and Manage functions in the toolbar allow the
process engineer to view and manage content within Factory
Optima. Finally, the Run function in the toolbar allows the process
engineer to perform analysis such as optimisation by running the
currently active analytics input. The subsections below describe
the tabs and panes of the Factory Optima user interface, and then
demonstrate the composition, optimisation and trade-off analysis
of the Heat Sink service network from Figure 1 using this interface.

3.1. Ontology of industry knowledge base

The industry KB contains well-accepted and validated PMs
from the industry. These PMs are organised in an ontology
and one such organisation is shown in the left pane of Figure
2. In this organisation, the industry KB contains PMs of service
network components under ServiceNetworkPerformanceModel
and PM-based representations of UMPs under
UnitManufacturingProcessPerformanceModel. The UMPs in the
industry KB are organised based on the Manufacturing Service
Description Language (MSDL) ontology (Ameri and Dutta
2006). The process engineer models the Heat Sink service
network from Figure 1 by creating input instances for the
PMs stored in the industry KB. For example, the Smelting, HS
Shearing and CNC Machining processes in Figure 1 are
instances of the UMP PMs Smelting, Shearing and
CompositeMachining respectively. Similarly, the Alumina, HS
Base Contract Manufacture and Heat Sink Service Network pro-
cesses in Figure 1 are instances of the service network PMs
VendingService, MfgService and CompositeService respectively.

3.2. Repository

The process engineer stores the instances of the PMs from
the industry KB into the repository. An organisation of the
repository is shown in the left pane of Figure 3. In this
organisation, the repository is divided into product work-
space (see ProductWorkspace in the left pane of Figure 3)
and enterprise catalogue (see ACME/Enterprise in the left
pane of Figure 3). The enterprise catalogue encapsulates
the input instances of different UMPs and service network
components present in the enterprise by capturing their
capabilities, i.e. capturing instantiated fixed parameters and
annotated control parameters of the PM inputs. Such inputs
are also called variable annotated inputs. For example, the
hs_base_contract_manuf is a variable annotated input of the
contract manufacturing PM, MfgService. Similarly, accessor-
ies_vendor and cnc_machining are variable annotated input
of the vendor PM VendingService and the UMP PM of
CompositeMachining respectively. On the other hand, the
process engineer (or the engineer's team) can store
a number of different artefacts such as service network
compositions, results of the analysis, and other design and
downstream processes in the product workspace. This forms
a workspace that the process engineer (or team) can use to
store data pertaining to a specific manufacturing project or
product. For instance, the process engineer stores the input
instance of the production lines and other components of
the Heat Sink service network, as well as the results of the
optimisation problem in the product workspace.

3.3. Service network composition

In this section, the composition of the Heat Sink service net-
work shown in Figure 1 using the Factory Optima interface is
described. The Heat Sink service network is a hierarchical
process, and L# in the names of the processes in Figure 1
refers to the hierarchical level of the service network composi-
tion. The Heat Sink service network was chosen since it

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 5

& ACME / ProductWorkspace - U X +

«<)=> C @ localhost:8080/unity-server/ACME/ProductWorkspace/tree

ke FactoryOptima > ACME > ProductWorkspace

0 D + New Artifact 4 Analytics ~ save @ Properties ¥ Manage ~ 4 Run

£l ACME / ProductWorkspace

b=

Repository Ontology

4 @ PerformanceModel
4 R ServiceNetworkPerformanceModel
b &Y ProductionService
& CompositeService
4 P ContractService
> & EngService
b &) MfgService
b &9 PackagingService
> & QCService
> &) RepairService
> &) TransportService
> & VendingService
4) UnitManufacturingProcessPerformanceModel
4 Y ShapingProcess
& AdditiveProcess
4 R SolidificationProcess
) Casting
4 P MetalPowderSolidfication
& Smelting
& Molding
4 P SubtractionProcess
4 Y MechanicalSubtraction
&) AbrasiveMachining
4 Y Separating
> & Blanking
b & Piercing
& Shearing
& MultiPointCutting
&) CompositeMachining
& SinglePointCutting
& ChemicalSubtraction

ED ThavanalCohéeandine

Figure 2. Factory optima screen with the ontology tab selected.

6 A. BRODSKY ET AL.

]

& ACME / ProductWorkspace - U X ‘ +

(& & © localhost:8080/unity-server/ACME/ProductWorkspace/tree

lea FactoryOptima > ACME > ProductWorkspace

Gt () + New [Artifact 4 Analytics ~ save @ Properties ¥ Manage ~ # Run

B / acMme ProductWorkspace

[B

Repository Ontology

4 [E] ProductWorkspace
B MaterializedViews
B8 ProductServiceSystem
B Runs
[ontology.owl
Y package.json
4 4 @ACME/Enterprise [master]
4 B Catalog
4 B ContractServiceProviders
4 I MfgServiceProviders
[aluminum_plate_contract_manuf.json
[hs_base_contract_manuf.json
4 @ VendingServiceProviders
D accessories_vendor.json
[} alumina_vendor.json
4 @ ProductionServiceResources
4 B Demand
[demand_l1.json
4 B PhysicalResources
4 @ OnelnOneOutUMPService
[} anodizing.json
[cnc_machining.json
[hs_base_drilling.json
[hs_base_shearing.json
[} hs_shearing.json
[smelting.json
[} assembly.json
[dr_input.json
[drilling.json
3 quality_inspection.json
4 I ProductionLines

™ hant cink hara aradiictian lina ican

Figure 3. Factory optima screen with the repository tab selected.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 7

represents a simple supply chain comprising multiple produc-
tion lines and factory facilities. To compose such a hierarchical
process, an engineer recursively initialises its subprocesses as
well the input and output item ids of the composite processes
at all the hierarchical levels. For instance, Figure 4 shows the
subprocesses as well the input and output item ids for the
Heat Sink service network at different hierarchical levels of
composition. At L0, the subprocesses of the Heat Sink service
network are initialised with process ids of supply_11, manufac-
turing_11 and demand_11. At L1, the subprocesses of manu-
facturing_11 are initialised with process ids of
alum_plate_contract_manu_12, hs_base_pl_12, smelting_12,
hs_pl_12 and hs_base_contract_manuf_12, and also the inputs
to this process is initialised with item ids of Alumina and
Accessories package, and outputs with item id, Heat Sink.
Such initialisations are recursively performed until all the pro-
cesses at the leaf of the service network hierarchy are
instances of an atomic PM such as anodising_13 (see L3 in
Figure 4). Finally, the fixed and control parameters in the input
instances of the composite and atomic PMs are initialised at all
the hierarchical levels within the Heat Sink service network.

To compose the Heat Sink service network in Factory Optima,
the process engineer first creates an input instance of the
CompositeService PM from the ServiceNetworkPerformanceModel
section of the ontology of industry knowledge base by pressing
the Artifact function from the toolbar. In Factory Optima, this
creates the form as shown in the right pane of Figure 5. Then,
the process engineer initialises the configuration of the problem
under config, specifies the root process id of the problem as
heat _sink_part_service_network, and then proceeds to compose
its hierarchy as described above using Figure 4 by initialising the
subprocesses as well as the input item ids, output item ids, fixed
parameters and control parameters for each subprocess under kb.
The composed service network is stored as heat_sink_service_net-
work.json in the product workspace (see ProductWorkspace in the
left pane of Figure 5).

In Factory Optima, the process engineer can also import
predefined input instances of the subprocesses from the pro-
duct workspace or the enterprise catalogue. For instance, say
that the process engineer used the Factory Optima interface as
the one shown in the right pane of Figure 6 to compose the
manufacturing_11 process. The root here is manufacturing_11,
and the kb contains all the subprocesses, input item ids and
output item ids of the manufacturing_11 process (e.g. see the
subprocesses and item ids with manufacturing_11 as the root in
Figure 4). Additionally, the process engineer initialises the fixed

and control parameters in the input instances of the composite
and atomic PMs at all the hierarchical levels. The process engi-
neer stores this composed manufacturing_11 process in the
product workspace as heat_sink_manufacturing.json (see
ProductWorkspace in the left pane of Figure 5). When compos-
ing the Heat Sink service network, the process engineer can
choose the Import function above combined_manuf (see in right
pane of Figure 5) to import the heat_sink_manufacturing.json
from the product workspace as one of the subprocesses of the
Heat Sink service network. In this way, it is possible for the
process engineer to reuse input instances of atomic and com-
posite PMs into larger composite processes very easily.

3.4. Service network optimisation

To run the optimisation problem for finding the control para-
meters of the Heat Sink service network as to minimise the
total cost of service network operation subject to feasibility
and demand constraints, the engineer first composes the Heat
Sink service network as an input instance of the variable
annotated CompositeService PM. This instance is similar to
the instance described in section 3.3 except that the control
parameters in this instance are annotated as decision vari-
ables. Say that the process engineer saves this instance into
the product workspace as heat sink service network.json.

The Factory Optima interface to perform optimisation is
shown in Figures 7 and 8. The process engineer first chooses
the New function from the toolbar and then selects the Optimise
analytics resource as shown in Figure 7(a). This creates a new
optimisation view as shown in Figure 7(b). Then, the process
engineer inputs configuration and optimisation solver para-
meters in this optimisation view. After that, the process engineer
imports the variable annotated input instance of the Heat Sink
service network from the product workspace, i.e. the engineer
imports heat_sink_service_network.json into the optimisation
view using the interface shown in Figure 8(a). Upon importing
the variable annotated input instance, this instance gets copied
under the input of the optimisation view as shown in Figure 8(b).
Then, the process engineer can run this optimisation view using
the Run function from the toolbar. The Factory Optima screen
with the result of the optimisation run is shown in Figure 9. This
result is a fully instantiated Heat Sink service network input
instance where all the annotated control parameters are
replaced by values that minimise the objective cost subject to
feasibility and demand constraints.

LO supply_11 | manufacturing_11 | demand_11

Alumina —|

L1

Accessories package —*|

aluminum_plate_contract_manuf_12 hs_base_pl_12
smelting_12 | hs_pl_12

— Heat Sink
hs_base_contract_manuf_12

Aluminum Plate —»
|2 | Accessories package —

Heat Sink Base —»

hs_shearing_13 | cnc_machining_13

quality_inspection_13 | anodizing_13 | assembly_13

—> Heat Sink

L3 Cut Aluminum Plate 4—{ atomicPM }—» Anodized Plate

Figure 4. Heat Sink service network at different levels of hierarchica3l composition.

8 A. BRODSKY ET AL.

¥ ACME / ProductWorkspace « |

= c

b Factory Optima > ACME > ProductWorkspace

af o@D + New [Artifact 4~ Analytics ~ save @ Properties
B / ACME | ProductWorkspace | ProductServ
O Repository Ontology

4« B ProductWorkspace
B MaterializedViews
4 W@ ProductServiceSystem
® Design
B8 DownstreamProcess
4 Wm ServiceNetworks
4 W Production
4 W ProductionLines
[heat_sink_base_production_line.json
[heat_sink_production_line.json
[heat_sink_manufacturing.json
[heat_sink_service_network.json
[heat_sink_supply.json
B Runs
[ontology.owl
[package.json
4 4 @ACME/Enterprise [master]
4 W Catalog
4 @ ContractServiceProviders
I MfgServiceProviders
4 W VendingServiceProviders
[accessories_vendor.json
[alumina_vendor.json
4 W@ ProductionServiceResources
4 W Demand
[3 demand_l1.json
4 Im PhysicalResources
B OneinOneOutUMPService
[assembly.json
3 dr_input.json
[drilling.json

M miialit fmnnantine inan

XManage - # Run

heat_sink_service_network.json
[heat_sink_service_network.json

root @ # JSON # Properties Import

config O] # JSON # Properties Import

in pUt = # JSON # Properties Import

root
heat_sink_part_service_network
kb @ # JSON

Properties Import

heat_sink_part_service_network Steady state service network |+

2 # JSON # Properties Import

combined_supply Steady state service network v

O] # JSON # Properties Import

combined_manuf Steady state service network |~

O} # JSON # Properties Import
demand Steady state service network |~
1 0] # JSON # Properties Import

alumina_supplier Steady state service network ~

Figure 5. Factory Optima screen showing the composition of the heat sink service network (right) by reusing the input instances of its subprocesses from the
product workspace and enterprise knowledge base under the repository tab (left).

To provide this capability, Factory Optima invokes the opti-
misation service of Unity DGMS, see Figure 8(b), with the
arguments populated in the OptimisationView, as shown in
Figures 8(b) and 9. These arguments include the variable
annotated input instance, the performance model and the
objective to minimise (or maximise). The performance model
is implemented as a function in a high-level language, cur-
rently JSONiq, that takes the input instance as an argument
and computes performance metrics and constraints as a result.
In addition, the OptimisationView also allows the process
engineer to specify a particular solver to use, as well as any
solver-specific configuration parameters.

3.5. Trade-off analysis

The process engineer can use the instantiated controls obtained
by solving the optimisation problem above to set the machines
on the manufacturing floor. Additionally, it is also possible to
perform trade-off analysis between CO, emissions and cost of

a part to simulate a real manufacturing scenario through the use
of the system. Figure 10 displays Pareto optimal alternatives for
producing the Heat Sink assembly in terms of cost per part and
emissions per part to allow trade-off. The process engineer can
use the system described in this section to generate each alter-
native by solving an optimisation problem that minimises cost
per part subject to the corresponding bound to CO, emissions.
Using the Pareto optimal graph the process engineer can choose
the alternative that best suits the objectives of the organisation
or enterprise that he/she represents.

3.6. Overview of case study

Figure 11 presents an overview of the primary tasks required to
compose and then optimise a service network in Factory Optima.
One purpose of the case study is to demonstrate each task’s
delegation. In Figure 11, each task is categorised by whether it is
completed by (1) a human user denoted as a person icon, (2)
Unity DGMS denoted as a database icon and (3) the Factory

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 9

& ACME / ProductWorkspace - U X | 4=

&« ' KO localhost:8080/unity-server/ACME/ProductWorkspace/tree/ACME/ProductWorkspace/ProductServiceSystem/ServiceNetw

;e Factory Optima >

ACME > ProductWorkspace

s/heat_sink_manufacturing.json

i P + New [Artifact 4~ Analytics ~ Save @® Properties
g ACME | ProductWorkspace ' ProductServiceSystem /' ServiceNetworks

A

O Repository Ontology

4 B PerformanceModel
4 @ ServiceNetworkPerformanceModel
4 R ProductionService
& AssemblyService
@ InspectionService
& UMPService
4 @ CompositeService
@ SteadyStateServiceNetwork
4 P ContractService
& EngService
© MfgService
& PackagingService
®© QCService
& RepairService
& TransportService
& VendingService
4 @ UnitManufacturingProcessPerformanceModel
4 P ShapingProcess
& AdditiveProcess
4 g SolidificationProcess
@ Casting
@ MetalPowderSolidfication
@ Molding
4 Y SubtractionProcess
@ MechanicalSubtraction
& ChemicalSubtraction
& ThermalSubtraction
& ConsolidationProcess
& DeformationProcess
4 P NonShapingProcess
4 @ SurfaceFinishing

O Akenanin Plasatae

¥ Manage ~ 4 Run

heat_sink_manufacturing.json

[heat_sink_manufacturing.json

root @ # JSON # Properties Import
config D] # JSON # Properties Import
input 2 # JSON # Properties Import
root
manufacturing_[1
kb ® # JSON # Properties Import
hs_pl Steady state service network ~
O] # JSON # Properties Import

hs_base_contract_manuf Steady state service network ~

(O} # JSON # Properties Import

hs_base_shearing Steady state service network

O] # JSON # Properties Import

anc_machining Steady state service network | v

0] # JSON # Properties Import

quality_inspection Steady state service network ~

Figure 6. Factory Optima screen showing the composition of the manufacturing I1 composite process (right) by creating input instances of the PMs under the

ontology tab (left).

Optima client denoted as a computer icon. Section 4 details the
‘under-the-hood’ interactions between all three.

Finally, it is important to note that, while a relatively simple
example of the heat sink service network was used to explain key
system functionality, Factory Optima supports hierarchical com-
position, optimisation and trade-off analysis of arbitrary complex
service networks, as long as the atomic performance models (such
as UMP and supply chain components) are available in the model
repository. Furthermore, when new component models are added
to the model repository, no additional changes are required to the
service network model or the overall Factory Optima system.

4. Software architecture: reusable model repository
and unity decision guidance management system

Factory Optima adopts the high-level system architecture that
was proposed in (Brodsky et al. 2016a), which is based around
a reusable model repository and Unity DGMS (Nachawati,

Brodsky, and Luo 2017). The architecture is depicted in
Figure 12. This section overviews this architecture, focusing
on the components relevant to Factory Optima.

The architecture is designed to support various user roles,
as shown in the top-most layer of the diagram in Figure 12.
Among the roles relevant to service network analysis are
facility managers, supply chain managers, process engineers
and design engineers. Support for these roles and their
respective workflows is handled through a diverse set of high-
level tools and applications.

Situated directly below the user roles layer, the applications
layer contains both generic and domain-specific user applica-
tions that support the variety of workflows performed by the
different kinds of users of the system. In this layer, the Factory
Optima web application serves as the primary application
interface for several workflows, including: (1) hierarchically
composing model instances of service networks, (2) perform-
ing different kinds of analysis against these instances and (3)

10 A. BRODSKY ET AL.

& ACME/ ProductWorkspace - U X | +

&> C | @ localhost:8080/unity-server/ACME/ProductWorkspace/tree/ACME/ProductWorkspace/Runs

+ New Resource

Name

JACME/ProductWorkspace/Runs/

Type
4 @ Runinput
4 @ Analytics
© Compute
@ Leamn

© Optimize
© Predict
@ Transformation
© Artifact
© File
© Folder
© View

v @ || Q searc

OptimizationView

v

i

& ACME / ProductWorkspace - U X | 4

&) > C ©® localhost:808

b FactoryOptima > ACME > ProductWorkspace

Search

@ + New [Artifat 4~ Analytics + | B save @ properties ¥ Manage v # Run

Runs / OptimizationView

Repository Ontology

4 B3 ProductWorkspace

[OptimizationView

B i s argmin @ #JsON #Propetties Import

W ProductServiceSystem
4 W Runs <

[OptimizationView iNnput @ #JsoN #Properties Import

[ontology.owl .

[package.json
& @ACME/Enterprise [master] Q{http://repository.vsnet.gmu.edu/process/s hain/comp pplyChain/lib/supply_chain.jqlc s#1
& @NIST/Manufacturing [master] oblective
& @DGMS/Core [master]

metricValues.costPerint
options @ £isoN PProperties import

solver string v

minos

Figure 7. Factory Optima screens showing the creation and initialisation: (a) Creation of a new optimisation view and (b) Initialisation of the optimisation view

(right) and storing the view under Runs in the product workspace (left).

viewing the results of such analyses. Besides the Factory
Optima web application, the system also supports Atom' for
low-level, text editor-based development. Atom is a light-
weight, yet highly extensible text editor with a large library
of user-contributed plugins.

The Factory Optima web application is hosted on top of Unity
DGMS and is composed of different types of services, including:

® Process Composition & View Services that provide sup-
port for the instantiation, composition and management of
service networks centred around a form-based web inter-
face. Given a particular performance model (e.g.
CompositeService), the JSON Schema for its input is first

retrieved from the Industry Knowledge base. The schemais
used to automatically generate a web-based form for
instantiation and composition of input instances. This is
done by using and extending the JSON Editor? project.

® Industry Knowledge base Services that provide support
for the construction, manipulation and querying of the
Industry Knowledge base. An OWL2 ontology is used to
capture and represent a hierarchy of manufacturing con-
cepts, instances and relationships and is based on the
MSDL ontology (Ameri and Dutta 2006). The ontology
also captures the association between performance
models and the JSON Schema documents, which are
used both for validation and form generation. Both the

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 1

x [+

& ACME / ProductWorkspace - |

< C' @ localhost:8080/unity-server/ACME/ProductWorkspace/tree/ACME/Prod

+ Import JSON

Resource
4 [Productworkspace
W MaterializedViews

/Runs/Oj

e @ | Q search

4 W ProductServiceSystem

™ Design

8 DownstreamProcess
4 I ServiceNetworks

@8 Production

(] heat_sink_manufacturing.json
[heat_sink_service_network.json
[heat_sink_supply.json

& Runs
[ontology.owl
G

& ACME / ProductWorkspace - |

(o3 (<]

x [+

@ localhost:8080/unity-server/ACME/ProductWorkspace/tree/ACME/Produc

la FactoryOptima > ACME > ProductWorkspace

e/Runs/Optimi;

v O || Q searcn

B Artifact

+ New 4 Analytics v | B Save @ Properties WK Manage v #

0 7 ACME / ProductWorkspace | Runs | OptimizationView

Repository Ontology

4 [productWorkspace
B MaterializedViews a
W ProductServiceSystem
= Runs
[OptimizationView
D ontology.owl
[package.json
4 & @ACME/Enterprise [master]
4 W Catalog
4 W ContractServiceProviders
4 W MigServiceProviders
[aluminum_plate_contract_manuf.json
[hs_base_contract_manuf.json
4 W VendingServiceProviders
[accessories_vendor.json
[alumina_vendor.json
4 Im ProductionServiceResources
4 B Demand
[demand_l1.json
4 m PhysicalResources
4 I8 OneinOneOutUMPService
[anodizing.json
[enc_machining.json
D hs_base_drilling.json
[hs_base_shearing.json
[hs_shearing.json
[smelting.json
[assembly.json
[dr_input.json
[drilling.json

[quality_inspection.json

4 B Oendistinnlinan

Figure 8. Factory Optima screens showing the instance import and running an
optimisation view and (b) Optimisation view after importing the heat sink servic
the optimisation view.

OWL API® and Apache Jena* are used in the implemen-
tation of these services.

® Process Analytics Services that provide web-application
support for performing different kinds of analysis against
performance model input instances.

Underlying the above services, Unity Web Application
Services provide a RESTful framework for building intelligent,
decision-making web applications. These services based on the

Run

[optimizationView

rgmin @ #JSON PProperties Import

input | @ | #Json #Propetties Import

config object

(o] # JSON # Properties Import

input object

] # JSON # Properties Import

root string

heat_sink_part_service_network_root

kb object

] & JSON # Properties Import

demand object

a8 # JSON # Properties Import

analyticalModel object

2 # JSON & Properties Import

name string

computeMetrics

optimisation view: (a) Import the heat sink service network input instance into the
e network input instance (right) and use of the Run function from the toolbar to run

analytics engine and repository management functionality of
Unity DGMS, and also include support for user management,
authentication and authorisation. These services are designed
around a RESTful, model-view-controller (MVC) pattern and can
be consumed both by human users using a web browser inter-
face and by other applications via REST client. This is done by
using Jersey,” a RESTful web services library for Java (JAX-RS).
Moving to the bottom-most layer of the diagram in Figure 12,
the proposed system depends on a number of external and low-

12 (&) A BRODSKY ET AL.

& ACME/ ProductWorkspace . U X | +

e @ 1 | Q Search

€ c o ity /ACME/Produc ME/Product)

root @ #uson

config ® ~#uson

input @ 2uson

root

Properties

Properties

Import

Import

Properties

heat_sink_part_service_network_root

kb ®

JSON

Properties

Import

supply_l1 Steady state service network ¥

5] # JSON

analyticalModel

inputThru ®

outputThru =

Alumina ®

v Decimal value

13.73412016234755

Properties

C] & JSON

& JSON

JSON

& JSON

Import

Properties Import

Properties

Import

Properties Import

Properties Import

Figure 9. Factory optima screen showing the results after running optimisation on the heat sink service network.

4,560 —
4,550 —)

4,540 — 3
4,530 —
4,520
4,510

4,500 —

Total cost per part ($)

4,490 —

4,480

4,470

4,460 T T T T T T

T
484.94 484.96 484.98 485.00 485.02 485.04 485.06 485.08 48510 485.12 48514 485.16 485.18 48520 485.22

Carbon emissions per part (kg)

Figure 10. Pareto optimal curve illustrating the trade-off between cost and CO, emissions per part.

level tools to ultimately provide the bulk of its diverse range of
capabilities. The categories of low-level tools currently used by
the Service Network Analysis system include: (1) solvers for
mathematical programming-based optimisation, including the

IBM CPLEX Optimiser for MILP problems and the MINOS solver
for NLP problems, (2) algebraic modeling languages and systems,
specifically AMPL and the IBM Optimisation Programming
Language (OPL) and (3) languages and tools for data

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 13

(1) Service Network Component Modeling

!|Support modeling q
Inspect, import/export,
and select models

Develop models
UMPs, SN comps, and

user views/functions

Enable modeling)]
Validate, test, and store

models using ontology Service Network

Model Ontology
]

A J

(2) Service Network Instance Composition
&)

*
'

¥
¥

.

Create SN artifacts [\,;
Instances for UMPs,
SN comps, and lines

Support composition
Inspect, import/export
SN artifacts

Enable composition

> Ay

Service Network
Instance

Validate, test, and store SN
artifacts using ontology

(3) Service Network Optimization
)

=

. £\ B
Create opt. artifacts | J|Support optimization

Enable optimization

Inspect, import/export
optimization artifacts

Choose SN instance,
objective, constraints

Conduct optimization and
trade-off analysis

Opt. Results

Figure 11. Overview of tasks performed in the case study completed through factory optima. The user icons specify different classifications of users, including modellers
(orange), process engineers (blue) and the decision-maker (red). The factory optima client and DGMS are represented as computer and database icons, respectively.

manipulation and analysis, primarily the JSONiq language and
the Zorba query processor to handle semi-structured JSON data.

Part of the challenge of developing service network analy-
sis systems lies in the complexity of developing high-level
tools and applications, which support the different user work-
flows, from inadequately granular abstractions provided by
these low-level tools. Typically, such applications are imple-
mented directly using the low-level tools, from scratch, follow-
ing a linear development methodology. Furthermore, due to
the diversity of low-level tools, applications implemented
using one tool are difficult to modify, extend and reuse with
other tools. As a result, the same manufacturing knowledge is
often modelled multiple times using different,
specialised abstractions, instead of being modelled just once
using a single, uniform abstraction.

To overcome these limitations, the architecture is augmen-
ted with Unity DGMS as a middleware layer, situated between
the applications layer and the low-level tools layer in the
diagram in Figure 12. The uniqueness of this solution is that
it is centred around a reusable model repository (middle box
in the DGMS middleware layer) that decouples analytical mod-
els from the various kinds of analysis that can be performed
on them. This provides a uniform, high-level abstraction over
different low-level tools and is key in supporting the optimisa-
tion and trade-off analysis of manufacturing and contract
service networks.

A key technical challenge in realising a system based on
this architecture lies in developing specialised algorithms that
automatically translate a uniform, high-level representation of
a performance model into the low-level, specialised models
required by each of the underlying tools.

The solution to this challenge is based on the Unity DGMS
(Nachawati, Brodsky, and Luo 2017), which provides support
for different methods of analysis, including optimisation and

Pareto-optimal trade-off analysis, without the need to manu-
ally develop specialised models for low-level tools such as
mathematical programming solvers. Within Unity DGMS, the
Unity analytics engine provides several core analytical opera-
tors that can be performed against models in the repository.
The implementation of these core analytical operators, which
include but are not limited to computation, prediction, learn-
ing, simulation and optimisation, involve compilation, sym-
bolic computation and reduction techniques, as well as
specialised optimisation and learning algorithms.

Performance models are one of the key artefacts in the
model repository. They formally describe process feasibility
constraints and metrics of interest (such as cost, throughput
and CO, emissions) as a function of fixed and control para-
meters (such as equipment and contract properties and set-
tings). The model repository for the proposed system contains
PMs that characterise (1) UMPs, (2) a library of base contract
services and (3) a composite steady-state service network. In
addition to performance models, the model repository is also
designed to contain data views, ontologies, schemas and
taxonomies.

To conclude this section, the workflow is now described,
which is followed within the system to optimise the service
network in the case study discussed in Section 3. The work-
flow is depicted in Figure 13. A user such as a modeller or
a process engineer will first set up the problem by construct-
ing a new Runlnput instance for Optimisation (argmin). As
shown in Figures 7 and 8, the user imports an existing perfor-
mance model input instance from the repository to use as
input for the Runinput instance (argmin). The user then initi-
ates the optimisation request through the Factory Optima by
executing the Run function, which calls Unity DGMS to per-
form optimisation. The Unity engine reads all model input and
transformation function files required for optimisation from

14 A. BRODSKY ET AL.

7]
L
e
o
S LN
Q
v
=
Factory Optima Web Application
7))
S
- Process Composition Industry Process Analytics
© : . Knowledgebase .
o & View Services - Services
— Services
E (LX)
Q
< Unity Web Application Services
Unity Server
Unity Analytics Model Repository Management

Q Engine
E Model Repository
; (Optimization J P e Model

k___’/ ¥___’—/
= UMP PM SC PM ° e
5 (Learning J ; s : s Description &
b ol “ + instances + instances “ Discovery
E (Prediction J — (MDD)

— i
2] [—————— = Services
> (Computation J DB Views Ontologies &
(G + instances Taxonomies
a | I

Unity Tool Management

o
2
- MP/CP Statlstl.cal / I?ata . .
S Soliars Machine Manipulation Semantic Web
3 Learning & Analytics
3
o
-

Figure 12. Conceptual architecture of factory optima and underlying software system based on reusable model repository and Unity DGMS. Adopted from
(Brodsky et al. 2017).

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 15

the repository in GitLab. Then, Unity DGMS performs auto-
matic translation of the high-level performance models into
a lower-level optimisation model expressed in the modelling
language AMPL,® and submits it to the MP-based optimisation
solver. The optimisation results are returned to Unity DGMS,
which then instantiates the control settings of the input JSON
with either optimal values or error codes for infeasible or
unbounded problems. The user then gets the optimisation
results in the same form used for input, however where all
decision variables are replaced with instantiated values to
together minimise the objective. The user may then use
these results as actionable recommendations for every com-
ponent of the manufacturing and contract service network.

5. Service network performance models

The system functionality that allows a process engineer to
model the Heat Sink service network, shown in Figure 1, and
to perform trade-off analysis using Pareto optimal graphs is
described in Section 3. The service network is modelled as
a network of PMs, and each PM provides an analytical function
that computes the metrics as a function of the fixed para-
meters and control parameters subject to feasibility con-
straints. In this section, the analytical function of the service
network is described using a flowchart. The code of the ana-
lytical function is given in A. Also, the analytical functions of
the components of service network such as contract manufac-
turer, vendor service and internal manufacturer, captured as
a UMP PM, are briefly described.

The flowchart of the service network PM is shown in Figure 14.
This PM provides an analytical function that transforms the
service network input structure containing subprocesses, input
items, output items, fixed parameters and control parameters as

the one created using the Factory Optima interface shown in
Figure 5 to output metrics subject to feasibility constraints. This
function recursively computes the outputs for all the processes in
subProcess of the service network in terms of their respective
inputs. For instance, the root process structure of the Heat Sink
service network example contains a subProcess with processes of
supply_11, manufacturing_11 and demand_11 (see L0 in Figure 4).
The analytical function will compute the output metrics and
constraints of all the processes in the subProcess recursively. To
accomplish this, the analytical function first checks if the pro-
cesses within subProcess are atomic or composite of a service
network type. Atomic processes in service networks include
contract manufacturers, supplier vendor services and internal
manufacturing activities. If the root process structure is atomic,
then it calls the analytical function of the atomic process PM that
transforms the respective inputs of the atomic process into its
output metrics and constraints. On the other hand, if the pro-
cesses within subProcess is composite of service network type
(e.g. root process of the Heat Sink service network), then the
analytical function of the service network PM calls itself to recur-
sively compute the output metrics and constraint of the compo-
site process in subProcess.

Then, the output metrics of all the atomic and composite
processes in subProcess is aggregated. This is possible due to
the standard interface of all the atomic and composite process
PMs in a given service network. Then, the constraints of the
processes within subProcess as computed by their respective
analytical function is aggregated. Additionally, constraints that
describe the interaction between these processes is also vali-
dated and aggregated. These constraints include the satisfac-
tion of the input flow bound, output flow bound and item
balance zero sum constraints. The input and output flow
bound constraints check to see if the input and output flow

Modeller/ Modeller/ Modeller/
Process Process Process
Engineer Engineer Engineer
Factory Factory Factory
Optima Optima Optima
Web App Web App Web App

MIDDLEWARE | APPLICATIONS| USER ROLES

g UMP PMs Unity [~*UMP PMs Unity
LDD Q" GitLab DGMS &P GitLab DGMS
=

[8 Solver

2+

=

Figure 13. Optimisation workflow of performance models in the system, adopted from (Brodsky et al. 2016a).

16 A. BRODSKY ET AL.

Analytical functlon of service network PM «—

Run analytlcal function
of atomic process PM

process |
subProcess
composite
(service
nework)?

l
Atomic process metrics
and constraints

yes

mmmmmmmmen e Aggregate subProcess metrics

Aggregate subProcess constraints

Aggregate Input flow and output
flow bound constraints within the
service network

P et e Y

Compute supply(item) as ltem
Input amount to the service

all the processes In subProcess

Compute demand|(item) as Item
output amount from the service
network + ltem Input amount to all
the processes In subProcess

o

Aggregate Item balance zero sum
contraints l.e., for each ltem Is
supply(item) >= demand(item)

Aggregate all constraints |.e., SubProcess, Input flow bound, output flow
bound, and Item balance zero sum contraints

E network + ltem outut amount from

éSGI"u’iCG network constraints

1Service network metrics

bemmmmeeeeee——————— »| Return metrics and constraints

Figure 14. Overview of the analytical function of the service network PM.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 17

values are non-negative and within any upper bound specified
by the user (e.g. flow capacity). The item balance zero sum
constraint checks, for each item type, whether the supply of
that item is greater or equal to the demand of the same item
across the service network. Finally, the output metrics and
constraints of the service network is returned as its trans-
formed result.

The atomic subProcesses of the service network such as con-
tract manufacturers, supplier vendor services and internal man-
ufacturing activities have their own PMs in the industry
knowledge base. Hence, the inputs to these atomic processes
can be transformed into output metrics and constraints using
their respective analytical functions. The PM of the contract
manufacturer gets as input the products as well as its respective
pricing and carbon emission quantities, for example. Given the
amount produced, the analytical function of the contract manu-
facturer PM computes the total cost, carbon emissions and the
amount of input items required by the contract manufacturer to
manufacture these products. The PM of the vendor service also
gets as input the products as well as its respective pricing and
carbon emission quantities. For the amount of products sup-
plied, the analytical function of the vendor service PM computes
the total cost and carbon emissions incurred for this service.
Finally, the internal manufacturer service normalises the output
metrics such as cost and carbon emissions from the UMP PM
such as the ones in the industry KB. The UMP PMs from (Brodsky
et al. 2016a) are used to model the internal manufacturer service.
The internal manufacturing service allows the service network
and its UMP-based representation in subProcess to maintain
a standard interface that makes it flexible and easy to use for
the process engineer.

6. Conclusion and future directions

This paper presented Factory Optima, a novel software system
for composition, optimisation and trade-off analysis of manufac-
turing and contract service networks based on a reusable repo-
sitory of performance models representing (1) unit
manufacturing processes, (2) base contract services and (3)
a composite steady-state service network. The uniqueness of
Factory Optima is in its ability to perform optimisation and trade-
off analysis on an arbitrary user-composed service network with-
out the need to manually craft mathematical programming
models, all while achieving the quality of optimisation results
and computational efficiency of mathematical programming
solvers, which significantly outperform simulation-based solvers.

One of the primary goals of this work was to demonstrate
the feasibility of performing analytical tasks on standard reu-
sable representations of manufacturing process models. The
authors envision the eventual realisation of a shared and open
UMP repository to support smart manufacturing activities
across both industry and academia (Bernstein et al. 2016).
Research activities currently ongoing that would support the
dissemination and use of Factory Optima include (1) a web
application supporting the consistent recording of standard
UMP models, (2) review protocols to validate which model
should be curated across federations of users and (3)

automated translation of standard static UMP representations,
as shown in ASTM E3012-16 (ASTM International 2016),
towards operational code in the form of functional models,
such as the UMP PMs presented throughout this paper.

With respect to Factory Optima itself, many research direc-
tions remain open. They include (1) integrating system affor-
dances with other applications curating product and process
specific data, e.g. manufacturing execution systems, enterprise
resource planning software and shop floor streams as described
in (Helu and Hedberg 2015), (2) extending analytical functions to
include prediction, stochastic optimisation and machine learn-
ing to calibrate performance models based on such data and (3)
extending the library of performance models, including for con-
tract services and for representing generic UMP models, when
physics-based models are not available.

Notes

https://atom.io/.
https://github.com/jdorn/json-editor.
http://owlapi.sourceforge.net/.
https://jena.apache.org/.
https://jersey.github.io/.
http://ampl.com/.

ok wnN =

Acknowledgement

This effort has been sponsored in part under the Cooperative Agreement
No.70NANB12H277 between NIST and George Mason University. The work
described was funded by the US Government and is not subject to copyright.

Disclaimer

No approval or endorsement of any commercial product by NIST is
intended or implied. Certain commercial equipment, instruments or mate-
rials are identified in this report to facilitate better understanding. Such
identification does not imply recommendations or endorsement by NIST
nor does it imply the materials or equipment identified are necessarily the
best available for the purpose.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Institute of Standards and
Technology [Cooperative Agreement No. 7ONANB12H277].

ORCID

Alexander Brodsky
Daniel A. Menascé

http://orcid.org/0000-0002-0312-2105
http://orcid.org/0000-0002-4085-6212

References

ASTM International 2016. ASTM E3012-16, Guide for Sustainability
Characterization of Manufacturing Processes. West Conshohocken, PA:
ASTM International.

https://atom.io/
https://github.com/jdorn/json-editor
http://owlapi.sourceforge.net/
https://jena.apache.org/
https://jersey.github.io/
http://ampl.com/

18 A. BRODSKY ET AL.

Amaran, S., N. V. Sahinidis, B. Sharda, and S. J. Bury. 2016. “Simulation
Optimization: A Review of Algorithms and Applications.” Annals of
Operations Research 240 (1): 351-380. doi:10.1007/510479-015-2019-x.

Ameri, F., and D. Dutta. 2006. “An Upper Ontology for Manufacturing
Service Description.” In ASME 2006 IDETC/CIE, edited by Vijay Kumar,
651-661. New York, NY: American Society of Mechanical Engineers.

Aurich, J. C, C. Fuchs, and C. Wagenknecht. 2006. “Life Cycle Oriented
Design of Technical Product-Service Systems.” Journal of Cleaner
Production 14 (17): 1480-1494. doi:10.1016/j.jclepro.2006.01.019.

Bernstein, W. Z, D. Lechevalier, and D. Libes. 2018. “UMP Builder:
Capturing and Exchanging Manufacturing Models for Sustainability.”
In ASME 2018 International Manufacturing Science and Engineering
Conference, College Station, TX.

Bernstein, W. Z., M. Mani, K. W. Lyons, K. C. Morris, and B. Johansson. 2016.
“An Open Web-Based Repository for Capturing Manufacturing Process
Information.” In ASME 2016 IDETC/CIE, VO04T05A028. New York, NY:
American Society of Mechanical Engineers.

Brettel, M., N. Friederichsen, M. Keller, and M. Rosenberg. 2014. “How
Virtualization, Decentralization and Network Building Change the
Manufacturing Landscape: An Industry 4.0 Perspective.” International
Journal of Mechanical, Industrial Science and Engineering 8 (1): 37-44.

Brodsky, A., G. Shao, M. Krishnamoorthy, A. Narayanan, D. Menascé, and R.
Ak. 2017. “Analysis and Optimization Based on Reusable Knowledge
Base of Process Performance Models.” International Journal of
Advanced Manufacturing Technology 88: 337-357.

Brodsky, A., M. Krishnamoorthy, M. O. Nachawati, W. Z. Bernstein, and
D. A. Menascé. 2017. “Manufacturing and Contract Service Networks:
Composition, Optimization and Tradeoff Analysis Based on a Reusable
Repository of Performance Models.” 2017 IEEE International Conference
on Big Data (Big Data). Boston, MA.

Brodsky, A., M. Krishnamoorthy, W. Z. Bernstein, and M. O. Nachawati.
2016a. “A System and Architecture for Reusable Abstractions of
Manufacturing Processes.” 2016 IEEE International Conference on Big
Data (Big Data). Washington, DC, December 2004-2013.

Denno, P., and D. B. Kim. 2016. “Integrating Views of Properties in Models
of Unit Manufacturing Processes.” International Journal of Computer
Integrated Manufacturing 29 (9): 996-1006. doi:10.1080/0951192X.
2015.1130259.

Gao, R, L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori, and M. Helu.
2015. “Cloud-Enabled Prognosis for Manufacturing.” CIRP Annals 64 (2):
749-772. doi:10.1016/j.cirp.2015.05.011.

Helu, M., and T. Hedberg. 2015. “Enabling Smart Manufacturing Research
and Development Using a Product Lifecycle Test Bed.” Procedia
Manufacturing 1: 86-97. doi:10.1016/j.promfg.2015.09.066.

Klemmt, A., S. Horn, G. Weigert, and K.-J. Wolter. 2009. “Simulation Based
Optimization vs. Mathematical Programming: A Hybrid Approach for
Optimizing Scheduling Problems.” Robotics and Computer-Integrated
Manufacturing 25 (6): 917-925. doi:10.1016/j.rcim.2009.04.012.

Lee, J. 2003. “E-Manufacturing Fundamental, Tools, and Transformation.”
Robotics and Computer-Integrated Manufacturing 19 (6): 501-507.
doi:10.1016/50736-5845(03)00060-7.

Lee, J, W. Fangji, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel. 2014.
“Prognostics and Health Management Design for Rotary Machinery
Systems - Reviews, Methodology and Applications.” Mechanical
Systems and Signal Processing 42 (1-2): 314-334. doi:10.1016/j.
ymssp.2013.06.004.

Menasce, D. A. 2004a. “Composing Web Services: A QoS View."” IEEE
Internet Computing 8 (6): 88—90. doi:10.1109/MIC.2004.57.

Menasce, D. A. 2004b. “Response-Time Analysis of Composite Web
Services.” IEEE Internet Computing 8 (1): 90-92. doi:10.1109/
MIC.2004.1260710.

Nachawati, M. O., A. Brodsky, and J. Luo. 2017. “Unity Decision Guidance
Management System: Analytics Engine and Reusable Model
Repository.” 19th International Conference on Enterprise Information
Systems (ICEIS), edited by Slimane Hammoudi, Michal Smialek,
312-323. Porto, Portugal.

Otto, J., B. Vogel-Heuser, and O. Niggemann. 2018. “Automatic Parameter
Estimation for Reusable Software Components of Modular and

Reconfigurable Cyber-Physical Production Systems in the Domain of
Discrete Manufacturing.” IEEE Transactions on Industrial Informatics 14
(1): 275-282. doi:10.1109/T11.2017.2718729.

Ren, L., L. Zhang, L. Wang, F. Tao, and X. Chai. 2017. “Cloud Manufacturing:
Key Characteristics and Applications.” International Journal of Computer
Integrated Manufacturing 30 (6): 501-515. doi:10.1080/
0951192X.2014.902105.

Salvendy, G. 2001. Handbook of Industrial Engineering: Technology and
Operations Management. Hoboken, NJ: Wiley.

Tan, R. B. H,, and H. H. Khoo. 2005. “An LCA Study of a Primary Aluminum
Supply Chain.” Journal of Cleaner Production 13 (6): 607-618.
doi:10.1016/j.jclepro.2003.12.022.

Tsiakis, P., N. Shah, and C. C. Pantelides. 2001. “Design of Multi-Echelon
Supply Chain Networks under Demand Uncertainty.” Industrial &
Engineering Chemistry Research 40 (16): 3585-3604. doi:10.1021/
ie0100030.

Wang, L, M. Térngren, and M. Onori. 2015. “Current Status and
Advancement of Cyber-Physical Systems in Manufacturing.” Journal of
Manufacturing ~ Systems 37 (Part 2): 517-527. doi:10.1016/j.
jmsy.2015.04.008.

Wu, D., C. Jennings, J. Terpenny, S. Kumara, and R. X. Gao. 2018. “Cloud-
Based Parallel Machine Learning for Tool Wear Prediction.” Journal of
Manufacturing Science and Engineering 140 (4): 041005. doi:10.1115/
1.4038002.

Wu, D, M. J. Greer, D. W. Rosen, and D. Schaefer. 2013. “Cloud
Manufacturing: Strategic Vision and State-Of-The-Art.” Journal of
Manufacturing Systems 32 (4): 564-579. doi:10.1016/j.jmsy.2013.04.008.

Xu, X. 2012. “From Cloud Computing to Cloud Manufacturing.” Robotics
and Computer Integrated Manufacturing 28 (1): 75-86. doi:10.1016/j.
rcim.2011.07.002.

Appendix A. JSONiq Code for Service Network
Performance Model

declare function ns : computeMetrics (Sinput){
let SrootProcess := Sinput . input . root
let Soutput:= ns : computeSCmetrics
(Sinput . input kb, Sinput . config, $rootProcess)
return Soutput
k
declare function ns : computeSCmetrics
(Sstepsinputs, $config, SrootProcess){
let
Ssteplnput := $stepsinputs . SrootProcess,
SanalyticalModel := $steplnput . analyticalModel,
SprocessMetrics := { },
$processMetrics = { |
if (not fn : matches($analyticalModel . ns,
"service network . jg ”)) then
ns : evaluateAtomicProcesses
({input : $steplnput, config : $config})
else
let
$subProcessMetrics = { |
for $p in $steplnput . subProcesses []
return {$p :(ns : computeSCmetrics
($stepsinputs, $config, $p))}
|
$metrics := ns : metricAggr (
for $p in $steplnput . subProcesses []
return $subProcessMetrics . $p . metricValues
)
SinputThru := $steplnput . inputThru,
SoutputThru := $steplnput . outputThru,

$subProcessConstraints :=
every $p in $steplnput . subProcesses [] satisfies
$subProcessMetrics . $p . constraints,

https://doi.org/10.1007/s10479-015-2019-x
https://doi.org/10.1016/j.jclepro.2006.01.019
https://doi.org/10.1080/0951192X.2015.1130259
https://doi.org/10.1080/0951192X.2015.1130259
https://doi.org/10.1016/j.cirp.2015.05.011
https://doi.org/10.1016/j.promfg.2015.09.066
https://doi.org/10.1016/j.rcim.2009.04.012
https://doi.org/10.1016/S0736-5845(03)00060-7
https://doi.org/10.1016/j.ymssp.2013.06.004
https://doi.org/10.1016/j.ymssp.2013.06.004
https://doi.org/10.1109/MIC.2004.57
https://doi.org/10.1109/MIC.2004.1260710
https://doi.org/10.1109/MIC.2004.1260710
https://doi.org/10.1109/TII.2017.2718729
https://doi.org/10.1080/0951192X.2014.902105
https://doi.org/10.1080/0951192X.2014.902105
https://doi.org/10.1016/j.jclepro.2003.12.022
https://doi.org/10.1021/ie0100030
https://doi.org/10.1021/ie0100030
https://doi.org/10.1016/j.jmsy.2015.04.008
https://doi.org/10.1016/j.jmsy.2015.04.008
https://doi.org/10.1115/1.4038002
https://doi.org/10.1115/1.4038002
https://doi.org/10.1016/j.jmsy.2013.04.008
https://doi.org/10.1016/j.rcim.2011.07.002
https://doi.org/10.1016/j.rcim.2011.07.002

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING . 19

$boundConstraintsIT :=
every $i in keys (SinputThru) satisfies
cu : checkBounds(SinputThru($i), SinputThru($i)("v")),

$boundConstraintsOT :=
every $o in keys (SoutputThru)satisfies
cu : checkBounds($outputThru($o), SoutputThru($0)("v")),

$processltems := fn : distinct —values ((
keys (SinputThru),
keys (SoutputThru),
(for $p in $steplnput . subProcesses []
return
(keys ($subProcessMetrics . $p . inputThru),
keys ($subProcessMetrics . $p . outputThru))
),

$zeroSumConstraints :=
every $i in $processitems
satisfies (let
$supply =
(if (fn : exists (SinputThru($i)("v")) then
SinputThru($i)("v”) else 0) +
sum (for $p in $Ssteplnput . subProcesses []
return $subProcessMetrics . $p . outputThru($i)("v")),
$demand =
(if (fn : exists (SoutputThru($i)("v"))) then
SoutputThru($i)("v") else 0) +
sum (for $p in $stepinput . subProcesses [
return $subProcessMetrics . $p . inputThru($i)("v"))
return $supply ge $demand
)

$constraints := $subProcessConstraints and
$boundConstraintsIT and
$boundConstraintsOT and
$zeroSumConstraints,

$rootProcessMetrics := {
analyticalModel : $steplnput . analyticalModel,
inputThru : SinputThru,
outputThru : $outputThru,
metricValues : $metrics,
constraints : $Sconstraints

}

return { | $rootProcessMetrics, {subProcesses :
$subProcessMetrics}|}
|}

return $processMetrics

	Abstract
	1. Introduction
	2. Service networks: ecosystem and workflows
	3. System functionality and acase study
	3.1. Ontology of industry knowledge€base
	3.2. Repository
	3.3. Service network composition
	3.4. Service network optimisation
	3.5. Trade-off analysis
	3.6. Overview of case study

	4. Software architecture: reusable model repository and unity decision guidance management system
	5. Service network performance models
	6. Conclusion and future directions
	Notes
	Acknowledgement
	Disclaimer
	Disclosure statement
	Funding
	References
	Appendix A.JSONiq Code for Service Network Performance Model

