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Abstract 

Multiple computational methods for modeling dislocations are implemented within a 

high-throughput calculation framework allowing for rigorous investigations comparing the 

methodologies. Focusing on aluminum edge dislocations, twenty-one classical aluminum 

interatomic potentials are used to directly model dislocation core structures using molecular 

dynamics, as well as provide input data for solving the semidiscrete variational Peierls-Nabarro 

dislocation model. The predicted dislocation core spreading obtained from both computational 

methods show similar trends across the potentials. Additionally, tests are done to rigorously 

determine if a recent correction to the Peierls-Nabarro model results in better agreement with the 

atomistic calculations.  

 

Introduction 

Dislocations in crystalline materials typically dominate yield and hardening mechanisms. 

Accurate computational models of dislocation core structures provide insight into the nature of 

the dislocation, and can lead to the development of improved physically-based yield models. 

While direct atomistic simulations of dislocations for simple materials is commonplace, directly 

modeling dislocation core structures in complex materials can prove challenging. With classical 

atomistic potentials, there is always uncertainty in properties and interactions around defects, 

especially in multi-component systems. Quantum-based calculations, e.g. density functional 

theory (DFT), offer a more robust description of defects, but they may be too expensive for 

dislocations with wide cores. 

The semidiscrete variational Peierls-Nabarro (SDVPN) model [1-3] can be used to 

predict the spreading of a dislocation’s core. In the Peierls-Nabarro model, the dislocation is 

represented as a continuum spread of infinitesimal Volterra dislocations. The SDVPN model 

offers a numerical approximation in which the displacement caused by the dislocation is 

evaluated at equally spaced positions and assumed constant between those positions. Typically, 

positions match the spacings of atomic columns along the slip plane, giving the spreading an 

apparent discreteness corresponding to actual atomic discreteness. The advantage of the SDVPN 

model is that it can provide a prediction for the dislocation spreading based only on a generalized 

stacking fault energy map, i.e. gamma surface, and elastic constants, both of which can be 

obtained using DFT, even for complex materials.  
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There have been proposed corrections to improve the SDVPN model. Miller et. al. [4] 

used a non-local Kernel that linearly added interactions between increasingly separated pairs of 

model evaluation coordinates. Wang [5] considered the surface effect along the slip plane to 

derive a correction term with coefficients related to phonon velocities and crystal geometries. 

This surface effect correction has been used to model dislocations in a wide range of materials 

using DFT data [6-10]. Recently, Liu, et. al. [11-13] showed that either correction can be 

numerically fit to atomistic results.  

The computational methods associated with direct atomistic modeling of dislocations and 

solving the SDVPN model are implemented in the openly available iprPy high-throughput 

calculation framework (https://github.com/usnistgov/iprPy). The high-throughput framework 

allows calculations to be performed across a wide range of input parameters, such as 

composition, dislocation type, interatomic potential, and calculation size. This setup also allows 

direct comparison of the results from the different calculation methods to help validate and verify 

that the methodologies are sound and meaningful.  

This paper investigates the impact that the surface effect correction has on SDVPN 

predictions of aluminum 110
2
a  edge dislocations. The choice of aluminum edge dislocation is 

practical as direct atomistic representations can be obtained with classical potentials, and the 

potentials are known to give a wide range of stacking fault behaviors [14]. Using twenty-one 

classical interatomic potentials, the correction term is evaluated based on how it improves the 

predicted dislocation structure relative to atomistic results, and the transferability of the 

correction across the different potentials.      

 

Atomistic simulations 

Atomistic simulations are performed with the LAMMPS software [15] using classical 

interatomic potentials for aluminum obtained from the Interatomic Potential Repository website 

(http://www.ctcms.nist.gov/potentials). For each potential, the face-centered cubic (fcc) lattice 

constants are evaluated by performing an energy minimization that simultaneously relaxes the 

box dimensions to zero pressure. The minimization procedure is repeated until the lattice 

constants are observed to converge. Elastic constants are estimated by applying small strains of 

10-8 to the relaxed system and measuring the resulting change in the system’s total virial stresses.  

https://github.com/usnistgov/iprPy
http://www.ctcms.nist.gov/potentials
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2D gamma surfaces for the  111  fcc crystallographic plane are evaluated by constructing 

an atomic system with crystallographic vector dimensions of      1111021150115  . The x- and 

y-boundaries are kept periodic, while the z-boundary is non-periodic. A  111  plane at the center 

of the z-direction is identified, and all atoms above that plane are shifted by a fractional 

combination of two shift vectors,  011
2
1is  and  211

2
1it . A total grid of 5151 points is 

evaluated, with each point having a shift of 5050 ii YtXs  , where X  and Y  are integers. At 

each shift, the system’s total energy is computed after allowing atomic relaxations in the z-

direction. The fault energy at each point is taken relative to the zero shift (i.e. 0YX ) point, 

and divided by the area of the slip plane.   

The Stroh method is used to solve the Eshelby anisotropic dislocation model based on the 

proper crystal orientation, and the lattice and elastic constants for each potential. Dislocation 

monopole systems are constructed by applying the Stroh solution’s displacements to an initially 

perfect fcc system with crystallographic vector dimensions of  98 101 80 111 2 121        , 

producing a dislocation along the system’s z-axis. The system is divided into two regions: an 

active cylindrical region centered on the z-axis, and an inactive region at the x- and y-

boundaries. The radius of the active region is around 66 265a  Å, which insures the inactive 

region is at least 3a  thick everywhere. The positions of the atoms in the active region are relaxed 

through a short thermal anneal followed by an energy minimization, while the atoms in the 

inactive region are held fixed at the elastic solution. Size-dependent tests showed halving or 

doubling the system dimensions to have negligible effects on the dislocation structure. 

Twenty-one potentials with aluminum elemental interactions [16-33] were identified that 

predict a stable face-centered cubic aluminum structure, and a relaxed dislocation structure 

consisting of two partial dislocations. Further discussion on the potentials can be found in the 

supplementary material (refer to online supplementary material). 

 

Semidiscrete variational Peierls-Nabarro model 

The SDVPN model allows for the core spreading of a dislocation to be solved by 

identifying the planar disregistry, i.e. relative displacement above and below the slip plane, that 

minimizes the dislocation’s energy. The dislocation line is taken along the z-axis, and the slip 
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plane corresponds to the 0y  plane. The dislocation’s disregistry vector, i , is evaluated at N  

positions along the x-axis, all equally spaced by x .  

The total energy of the dislocation is expressed as a function of the disregistry at all x 

evaluation positions, and consists of a sum of energy terms 

 surfacestresselasticmisfitndislocatio UUUUU  .     (1) 

Only the zero-stress configurations are investigated here, thus the stress energy term is not used. 

The disregistry is initially taken as an arctan function, and has fixed endpoints of    01 xi  and 

   i

N

i bx  . The remaining disregistry values are updated to minimize Eq. (1) using Powell’s 

minimization method [34]. 

The misfit energy is taken as  

   



N

imisfit xxU
1

 ,       (2) 

where   is the generalized stacking fault energy corresponding to a stacking fault given by the 

disregistry at a position  x . Only 2D gamma surfaces are considered, thus the disregistry 

perpendicular to the slip plane, 2 , is taken as 0 for all  x . Generalized stacking fault energies 

between the measured atomistic values are interpolated using a multiquadric radial basis 

function. 

The short-range configuration-dependent elastic energy of the dislocation is calculated as  

       

 




xxKU jiij

N N

elastic 
 


1 1

,
4

1
,    (3) 

where ijK  is the energy coefficient tensor, i is the dislocation density given by 

           xxxx iii   /1  , and   ,  is a multiplicative factor. Anisotropic values of 

ijK  are obtained from the Stroh method. Here, ijK  is defined such that in the isotropic case

   1/2211 KK  and 33K , where   and   are the shear modulus and Poisson’s ratio, 

respectively. The   factor is calculated for each pair of  ,   indices as 

            1,1,,1,12/3, 2   x , (4a) 

       xx   ln2/1, 22
.     (4b) 
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The expressions for   and   are simplified from the original forms in [1] by assuming a 

constant x . 

The final term, the surface effect energy is taken as 

     
x

x

xx
BU

N
ii

isurface 
















 





1

2
11

24

1



 
.     (5) 

This corresponds to the correction term derived by Wang [5] for dislocations on slip planes with 

rotational symmetry, and uses the discrete summation formula used by Liu [11]. The iB  

constants can be analytically calculated as 

 


22

1 costan
4

3
tvl CCB 


 ,      (6a) 

 


22

3 sintan
4

3
tvth CCB 


 ,      (6b) 

where   is the volume density of the crystal’s unit cell,   is the area density along the glide 

plane,   and   are crystal-dependent orientation angles relating to relative neighbor atom 

vectors, and lC , thC , and tvC are the effective elastic constants associated with longitudinal and 

transverse phonons. For a (111) fcc slip plane, 21tan  , 6/  , and   reduces to the 

(111) interplanar spacing. For phonons propagating along a close-packed <110> direction, the 

effective elastic constants are 

  2/2 441211 CCCCl  ,       (7a) 

  2/1211 CCCth  ,        (7b) 

44CCtv  .         (7c) 

The quality of the SDVPN models, with and without the surface correction, is evaluated 

by comparing the predicted disregistry from the model,  PN

i , to the measured disregistry from 

the atomistic calculations,  MD

i . The discrepancy between the two methods is quantitatively 

evaluated as the sum squared error between  PN

i  and  MD

i  

            


 
22 xx PN

i

MD

i .      (8) 
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This 2  discrepancy is also used to find optimized SDVPN models based on Eqs. (1-5) for each 

potential. Following the work of Liu [11], the model is simplified by setting the two iB  

components to be equal, i.e. BBB  31 , and then finding the B  value that minimizes 2 . 

 

Results 

Initial tests with the SDVPN model showed that x values corresponding to 42ax   

and 100N  or 101N  total points were sufficient to capture the dislocation’s shape and 

spreading for all potentials evaluated. Calculations are performed with two values of N  as 

having an even versus an odd number of points results in the x positions differing by 2/x . 

Figure 1 shows that the two  N values produce disregistry profiles that overlay each other, but 

are evaluated at different positions. While this behavior has little impact on the predicted 

dislocation shape, it is important when evaluating 2  between SDVPN solutions and the 

atomistic results.   

 

Figure 1: Shifting the evaluated x-coordinates by Δx/2 produces disregistry trend that overlay 

each other despite different positions being evaluated. 

The analytical iB  constants are calculated using Eqs. 6 and 7 and the lattice and elastic 

constants computed for each potential. While values do vary across the potentials, most have 
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similar elastic constants ( 120lC GPa, 25thC GPa, and 30tvC GPa) resulting in iB  values 

around 191 B Pa*m and 43 B Pa*m.  

The fitted B  constants are also obtained for every potential. The atomistic disregistry 

profile is shifted to align with the uncorrected SDVPN solution. Shifting is necessary as the 

partial dislocations are not always equidistant from the center of the atomistic system following 

the thermal anneal. The shift is observed to be a small, random adjustment that varies from 

potential to potential, even among potentials with the same aluminum interaction model. Each 

evaluation in the optimization process solves the SDVPN model for a value of B  starting with 

the uncorrected SDVPN disregistry solution as the initial guess. Across the potentials, the fitted 

B  values are found to range from 5 to 18 Pa*m, placing the fitted values between the analytical 

1B  and 3B  constants. For potentials with the same elemental interactions, the fitted B  values 

were observed to vary by as much as 1.5 Pa*m. This variation is primarily attributed to 

differences in alignment; only the 101N  solution and a single shift was tested per potential.  

Figure 2 shows disregistry profiles as computed both with the SDVPN model (lines) and 

atomistics (shapes) for three potentials. The potentials shown were selected to highlight the range 

of predictions observed across the potentials investigated. Disregistry profiles for the remaining 

potentials fall between the 2015--Pascuet-M-I--Al and 2002--Mishin-Y--Ni-Al curves. The 

difference in disregistries across the potentials is primarily dependent on the intrinsic stacking 

fault energy for that potential (refer to online supplementary material). 
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Figure 2: Disregistry profiles for three different interatomic potentials. The atomistic data is 

given by shapes, the uncorrected SDVPN model by dotted lines, the corrected model with 

analytical iB  values by dash-dotted lines, and the corrected model with fitted B  values by solid 

lines.   

Figure 2 also provides a qualitative comparison of how well the SDVPN model agrees 

with the atomistic results. The original uncorrected SDVPN model (dotted lines) gives the rough 

shape of the atomistic disregistry profile (shapes), but noticeable disagreements can be seen, 

especially in the regions with large changes in the disregistry with respect to x. Adding the 

surface energy correction with either the analytically calculated iB  constants (dash-dotted lines) 

or the fitted B constant (solid lines) qualitatively produces better agreements with the atomistic 

data. 

Figure 3a plots 2  values for all the potentials. For the uncorrected and the analytical 

values, the smallest 2  between the 100N  and 101N  solutions are used. The SDVPN 

model with the surface correction consistently has a comparable or smaller 2  than the model 

without the correction. For the uncorrected model, the mean and standard deviation in 2  across 

all potentials are 0.67 Å2 and 0.29 Å2, respectively. Applying the correction with the analytical 
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iB  values improves these values to 0.15 Å2 and 0.12 Å2, respectively, and the fitted B values 

improves them to 0.078 Å2 and 0.045 Å2, respectively.  

 

Figure 3: Quantitative evaluations of the agreement in predicted disregistry between the SDVPN 

models and the atomistic results. (a) The 2  discrepancy for each potential. (b) Dislocation 

halfwidth values. 

An alternate metric for evaluating the agreement between the SDVPN models and 

atomistic results is the dislocation’s halfwidth,  . The halfwidth was estimated by linearly 

interpolating the x-coordinates where  1 / 4ix b   and  1 3 / 4ix b  . Figure 3b plots PN  for 

the different model options versus MD  revealing varying levels of agreement. The uncorrected 

model under-predicts the atomistic halfwidth by an average of 3.4 Å, while the model with the 

analytical iB  values slightly over-predicts by an average of 1.2 Å, and the model with the fitted 

B  constants is off by an average of only 0.2 Å.   

Practically, the results suggest that the analytical iB  values are more transferable across 

potentials than the fitted B  values. For the same element, variations in the analytical values are 

small, and can be easily tuned to a specific potential using its elastic constants. In contrast, the 

fitted values are observed to strongly vary across potentials. Obtaining an optimum B value for a 

potential requires that a full atomistic representation be possible and available. Taken together, 
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this indicates that the analytical version is more applicable to more expensive and robust 

atomistic potentials, such as DFT, where direct atomistic representations may not be easily 

obtainable.  

 

Summary and Conclusions 

Methods for predicting dislocation structures using either direct atomistic simulations or 

the SDVPN model are implemented in an open source, high-throughput computational 

framework. Implementing the calculations into the framework allows for comprehensive 

investigations to be performed across a range of input parameters. Here, aluminum edge 

dislocations are evaluated using twenty-one classical interatomic potentials and for the SDVPN 

model with and without a recent correction term.  

Evaluating the same dislocation structure with multiple classical interatomic potentials 

demonstrates the sensitivity of the results to the choice of potential, and reveals trends across the 

predictions. Comparisons of dislocation disregistry predictions between the various methods 

show that including the slip plane surface energy correction in the SDVPN model consistently 

improves the model. Averaging evaluation metrics across the potentials also provides a rough 

estimate of the error associated with the SDVPN methods themselves. 

Further work is needed to investigate other options of the SDVPN model and how 

universal the results shown here are across compositions and dislocation types. Expanding the 

fitting procedure to independently solve both iB  constants should be explored to determine if it 

offers constants that are more transferable across potentials. Using full 3D gamma surfaces may 

be important for certain potentials or dislocation structures. Investigating the influence of the 

surface correction on other dislocation types, especially asymmetric dislocations, is needed as the 

term’s formulation is based on symmetry assumptions. 
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